Glass Formation and Properties of Multicomponent Glasses of the As2Se3-Ag2Te-GeTe System
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Preparation of Glass Samples
2.3. Characterization of Materials
3. Results and Discussion
3.1. Synthesis and State of the Obtained Alloys—Delineation of the Glass Formation Region in the As2Se3-Ag2Te-GeTe System
- -
- Specimens in a glassy state (vitrification region)—29 compositions: SG1–SG4; SG6–SG9; SG12–SG15; SG17–SG18; SG20–SG21; SG24–SG28; SG30–SG32; SG34–SG36; SG38;
- -
- Specimens in glass crystal state—SG5; SG10; SG19; SG22−SG23; SG29; SG33; SG39−SG40;
- -
- Samples in the crystalline state, located outside the glass formation region—2 compositions: SG11, SG16.
3.2. Study of the Dependence Composition—A Property of Vitreous Samples with a Common Composition (As2Se3)x(Ag2Te)y(GeTe)z
3.2.1. Thermal Characteristics
3.2.2. Density, Microhardness, Compactness, and Thermo-Mechanical Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, S.; Jaiswal, P.; Lohia, P.; Dwivedi, D.K. Chalcogenide glasses for sensor application: A Review. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018; pp. 1–5. [Google Scholar]
- Bokova, M.; Dumortier, S.; Poupin, C.; Cousin, R.; Kassem, M.; Bychkov, E. Potentiometric Chemical Sensors Based on Metal Halide Doped Chalcogenide Glasses for Sodium Detection. Sensors 2022, 22, 9986. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.V.; Malacarne, L.C.; Baesso, M.L.; Qu, W.; Dy, E.; Xie, Z.; Fahlman, J.; Shen, J.; Nelson, G. Potentiometric sensors with chalcogenide glasses as sensitive membranes: A short review. J. Non-Cryst. Solids 2018, 49, 8–18. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Tominaga, J. Chalcogenide Glasses in Optical Recording: Recent Progress. J. Optoelectron. Adv. Mater. 2002, 4, 679–686. [Google Scholar]
- Asokan, S.; Lakshmi, K.P. Electrical Switching and Other Properties of Chalcogenide Glasses. J. Indian Inst. Sci. 2011, 91, 319–330. [Google Scholar]
- Boukhris, I. Compositional dependence of physicochemical properties of quaternary (0.9GeS2-0.1CdS)100 x(Sb2S3)x chalcogenide glasses for solar cells and near infrared devices. Mater. Today Commun. 2021, 27, 102414. [Google Scholar] [CrossRef]
- Danto, S.; Houizot, P.; Boussard-Plèdel, C.; Zhang, X.H.; Smektala, F.; Lucas, J. A family of far-infrared transmitting Glasses in the Ga–Ge–Te system for space applications. Adv. Funct. Mater. 2006, 16, 1847–1852. [Google Scholar] [CrossRef]
- Wilhelm, A.A.; Boussard-Plédel, C.; Coulombier, Q.; Lucas, J.; Bureau, B.; Lucas, P. Development of far infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv. Mater. 2007, 19, 3796–3800. [Google Scholar] [CrossRef]
- Maurugeon, S.; Bureau, B.; Boussard-Plédel, C.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing. Opt. Mater. 2011, 33, 660–663. [Google Scholar] [CrossRef]
- Svoboda, R.; Brandová, D.; Málek, J. Thermal behavior of Ge20SeyTe80−y infrared glasses (for y up to 8 at.%). J. Alloys Compd. 2018, 680, 427–435. [Google Scholar] [CrossRef]
- Chahal, S.; Ramesh, K. Glass formation, thermal stability and fragility minimum in Ge-Te-Se glasses. Mater. Res. Bull. 2022, 152, 111833. [Google Scholar] [CrossRef]
- Yang, Z.; Lucas, P. Tellurium based far infrared transmitting glasses. J. Am. Ceram. Soc. 2009, 92, 2920–2923. [Google Scholar] [CrossRef]
- Cui, S.; Le Coq, D.; Boussard-Plédel, C.; Bureau, B. Electrical and optical investigations in Te–Ge–Ag and Te–Ge–AgI chalcogenide glasses. J. Alloys Compd. 2015, 639, 173–179. [Google Scholar] [CrossRef]
- Cui, S.; Boussard-Plédel, C.; Lucas, J.; Bureau, B. Te-based glass fiber for far-infrared biochemical sensing up to 16 μm. Opt. Express 2014, 22, 21253–21262. [Google Scholar] [CrossRef] [PubMed]
- Jovari, P.; Nazabal, V.; Boussard, C.; Cui, S.; Kaban, I.; Michalik, S.; Webb, M.A.; Le Coq, D.; Chernikov, R.; Chen, N.; et al. Short- and medium range order in GeTe4-Ag glasses. J. Non-Cryst. Solids 2023, 599, 121–970. [Google Scholar] [CrossRef]
- Tostanoski, N.J.; Heilweil, E.J.; Wachtel, P.F.; Musgraves, J.D.; Sundaram, S.K. Structure-terahertz property relationship and femtosecond laser irradiation effects in chalcogenide glasses. J. Non-Cryst. Solids 2023, 600, 122020. [Google Scholar] [CrossRef]
- Chijikov, D.M.; Schastlivii, V.P. Selenium and Selenides; Nauka: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Ilyasly, T.; Gahramanova, G.; Abbasova, R.; Veysova, S.; Ismailov, Z. Investigation of the electrical properties glasses of Tm-As-S AND Tm-As-Se SYSTEMS. New Mater. Compd. Appl. 2021, 5, 227–234. [Google Scholar]
- Bahl, S.K.; Chopra, K.L. Amorphous versus crystalline GeTe films. II. Optical properties. J. Appl. Phys. 1969, 40, 4940. [Google Scholar]
- Bahl, S.K.; Chopra, K.L. Amorphous versus crystalline GeTe films. III. Electrical properties and band structure. J. Appl. Phys. 1970, 41, 2196. [Google Scholar] [CrossRef]
- Huber, E.; Marinero, E.E. Laser-induced crystallization of amorphous GeTe: A time-resolved study. Phys. Rev. 1987, B36, 1595. [Google Scholar] [CrossRef]
- Bureau, B.; Danto, S.; Ma, H.L.; Boussard-Pl´edel, C.; Zhang, X.H.; Lucas, J. Tellurium based glasses: A ruthless glass to crystal competition. Solid State Sci. 2008, 10, 427–433. [Google Scholar] [CrossRef]
- Zhu, J.; Pandey, R. Silver tellurides: Structural, elastic, and optical properties of AgTe and Ag2Te. J. Phys. Chem. Solids 2019, 129, 41–45. [Google Scholar] [CrossRef]
- Tveryanovich, Y.S.; Fazletdinov, T.R.; Tverjanovich, A.S.; Pankin, D.V.; Smirnov, E.V.; Tolochko, O.V.; Panov, M.S.; Churbanov, M.F.; Skripachev, I.V.; Shevelko, M.M. Increasing the plasticity of chalcogenide glasses in the system Ag2Se–Sb2Se3–GeSe2. Chem. Mater. 2022, 34, 2743–2751. [Google Scholar] [CrossRef]
- Bonshted-Kupletskaya, E. Opredelenieudelnovowesamineralov; Nauka: Moscow, Russia, 1951. [Google Scholar]
- Aljihmani, L.; Vassilev, V.; Petkov, P. Compositional trends of the physico-chemical properties in pseudoternary chalcogenide glasses. J. Optoelectr. Adv. Mater. 2003, 5, 1187. [Google Scholar]
- Sanditv, D.S. Microhardness and glass transition temperature of inorganic glasses. Fizika Khimiya Stekla. 1977, 3, 14–19. [Google Scholar]
- Vassilev, V.; Karadashka, I.; Parvanov, S. New chalcogenide glasses in the Ag2Te–As2Se3–CdTe system. J. Phys. Chem. Solids 2008, 69, 1835–1840. [Google Scholar] [CrossRef]
- Vassilev, V.; Karadashka, I.; Parvanov, S. Physicochemical properties of glasses in the As2Se3-Ag2Te-GeTe. Int. Sci. Conf. Gabrovo 2007, 2, 285. (In Bulgarian) [Google Scholar]
- Cheng, J.; Chen, W.; Ye, D. Novel chalcohalide glasses in the As-Ge-Ag-Se-Te-I system. J. Non-Cryst. Solids 1995, 184, 124–127. [Google Scholar] [CrossRef]
- Shi, X.Z.; Gu, Y.; Liu, T.Y.; Jiang, Z.H.; Li, R.; Zeng, F.H. Effect of different P2O5/SnF2 ratios on the structure and properties of phosphate glass. J. Non-Cryst. Solids 2022, 578, 121350. [Google Scholar] [CrossRef]
- Perumal, S.; Samanta, M.; Ghosh, T.; Shenoy, U.S.; Bohra, A.K.; Bhattacharya, S.; Singh, A.; Waghmare, U.V.; Biswas, K. Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In. Joule 2019, 3, 2565–2580. [Google Scholar] [CrossRef]
- Tichý, L.; Tichá, H. On the chemical threshold in chalcogenide glasses. Mater. Lett. 1994, 21, 313. [Google Scholar] [CrossRef]
- Chen, W.; Chen, G.N.; Cheng, J.J. Properties of chalcogenide glasses in the Ge-As-Se-Te-I system. Phys. Chem. Glas. 1997, 38, 156–160. [Google Scholar]
- Chen, W.; Cheng, J.; Chen, G. Formation and properties of chalcohalide glasses in the AsSe-GeTe-CuI system. J. Non-Cryst. Solids 1997, 221, 274–280. [Google Scholar] [CrossRef]
Compound | Isothermal Steps | Cooling | |||||||
---|---|---|---|---|---|---|---|---|---|
T1, °C | t1, min | T2, °C | t2, min | T3, °C | t3, min | T4, °C | t4, min | ||
As2Se3 | 300 | 60 | 550 | 60 | 750 | 60 | 450 | 30 | Furnace off |
GeTe | 500 | 60 | 950 | 60 | 750 | 60 | - | - | Furnace off |
Ag2Te | 500 | 60 | 1000 | 60 | 900 | - | - | - | Furnace off |
(As2Se3)x(Ag2Te)y(GeTe)z | 450 | 30 | 770 | 60 | 1000 | 120 | 950 | - | Ice + water mixture |
Sample | Composition, mol % | State | ||
---|---|---|---|---|
As2Se3 | Ag2Te | GeTe | ||
x | y | z | ||
SG1 | 90.0 | - | 10.0 | glass |
SG2 | 81.0 | 9.0 | 10.0 | glass |
SG3 | 72.0 | 18.0 | 10.0 | glass |
SG4 | 63.0 | 27.0 | 10.0 | glass |
SG5 | 54.0 | 36.0 | 10.0 | glass + crystalline |
SG6 | 80.0 | - | 20.0 | glass |
SG7 | 72.0 | 8.0 | 20.0 | glass |
SG8 | 64.0 | 16.0 | 20.0 | glass |
SG9 | 56.0 | 24.0 | 20.0 | glass |
SG10 | 52.0 | 28.0 | 20.0 | glass + crystalline |
SG11 | 48.0 | 32.0 | 20.0 | crystalline |
SG12 | 70.0 | - | 30.0 | glass |
SG13 | 63.0 | 7.0 | 30.0 | glass |
SG14 | 56.0 | 14.0 | 30.0 | glass |
SG15 | 49.0 | 21.0 | 30.0 | glass |
SG16 | 45.5 | 24.5 | 30.0 | crystalline |
SG17 | 58.5 | 6.5 | 35.0 | glass |
SG18 | 52.0 | 13.0 | 35.0 | glass |
SG19 | 45.5 | 19.5 | 35.0 | glass + crystalline |
SG20 | 60.0 | - | 40.0 | glass |
SG21 | 48.0 | 12.0 | 40.0 | glass |
SG22 | 36.0 | 24.0 | 40.0 | glass + crystalline |
SG23 | 38.5 | 16.5 | 45.0 | glass + crystalline |
SG24 | 50.0 | - | 50.0 | glass |
SG25 | 45.0 | 5.0 | 50.0 | glass |
SG26 | 40.0 | 10.0 | 50.0 | glass |
SG27 | 35.0 | 15.0 | 50.0 | glass |
SG28 | 30.0 | 20.0 | 50.0 | glass |
SG29 | 25.0 | 25.0 | 50.0 | glass + crystalline |
SG30 | 40.0 | - | 60.0 | glass |
SG31 | 28.0 | 12.0 | 60.0 | glass |
SG32 | 24.0 | 16.0 | 60.0 | glass |
SG33 | 20.0 | 20.0 | 60.0 | glass + crystalline |
SG34 | 30.0 | - | 70.0 | glass |
SG35 | 24.0 | 6.0 | 70.0 | glass |
SG36 | 21.0 | 9.0 | 70.0 | glass |
SG37 | 15.0 | 15.0 | 70.0 | glass + crystalline |
SG38 | 20.0 | - | 80.0 | glass |
SG39 | 12.0 | 8.0 | 80.0 | glass + crystalline |
SG40 | 10.0 | - | 90.0 | glass + crystalline |
Sample | Composition, mol % | m | Tg, °C | Tcr, °C | Tm, °C | ||
---|---|---|---|---|---|---|---|
As2Se3 | Ag2Te | GeTe | |||||
x | y | z | |||||
SG1 | 90.0 | - | 10.0 | 0 | 202 | - | 299 |
SG2 | 81.0 | 9.0 | 10.0 | 0.1 | 189 | 249 | 297 |
SG3 | 72.0 | 18.0 | 10.0 | 0.2 | 174 | 232 | 295 |
SG4 | 63.0 | 27.0 | 10.0 | 0.3 | 160 | 213 | 295 |
SG6 | 80.0 | - | 20.0 | 0 | 203 | - | - |
SG7 | 72.0 | 8.0 | 20.0 | 0.1 | 192 | - | 280 |
SG8 | 64.0 | 16.0 | 20.0 | 0.2 | 178 | 242 | 295 |
SG9 | 56.0 | 24.0 | 20.0 | 0.3 | 165 | 217 | 293 |
SG12 | 70.0 | - | 30.0 | 0 | 205 | - | - |
SG13 | 63.0 | 7.0 | 30.0 | 0.1 | 198 | - | - |
SG14 | 56.0 | 14.0 | 30.0 | 0.2 | 184 | 251 | 294 |
SG15 | 49.0 | 21.0 | 30.0 | 0.3 | 170 | 222 | 298 |
SG24 | 50.0 | - | 50.0 | 0 | 215 | - | 297 |
SG26 | 40.0 | 10.0 | 50.0 | 0.2 | 202 | - | 293 |
SG27 | 35.0 | 15.0 | 50.0 | 0.3 | 186 | - | 297 |
SG28 | 30.0 | 20.0 | 50.0 | 0.4 | 170 | 246 | 387 |
SG34 | 30.0 | - | 70.0 | 0 | 222 | - | 292 |
SG35 | 24.0 | 6.0 | 70.0 | 0.2 | 208 | - | - |
Sample | Composition, mol % | m | d, g cm−3 | HV, kgf mm−2 | C | ||
---|---|---|---|---|---|---|---|
As2Se3 | Ag2Te | GeTe | |||||
x | y | z | |||||
SG1 | 90.0 | 0 | 10.0 | 0 | 4.31 | 84 | −0.1042 |
SG2 | 81.0 | 9.0 | 10.0 | 0.1 | 4.73 | 83 | −0.0543 |
SG3 | 72.0 | 18.0 | 10.0 | 0.2 | 5.16 | 74 | −0.0100 |
SG4 | 63.0 | 27.0 | 10.0 | 0.3 | 5.40 | 67 | −0.0086 |
SG6 | 80.0 | 0 | 20.0 | 0 | 4.40 | 90 | −0.0985 |
SG7 | 72.0 | 8.0 | 20.0 | 0.1 | 4.77 | 87 | −0.0581 |
SG8 | 64.0 | 16.0 | 20.0 | 0.2 | 5.18 | 80 | −0.0165 |
SG9 | 56.0 | 24.0 | 20.0 | 0.3 | 5.41 | 73 | −0.0146 |
SG12 | 70.0 | 0 | 30.0 | 0 | 4.48 | 93 | −0.0969 |
SG13 | 63.0 | 7.0 | 30.0 | 0.1 | 4.84 | 89 | −0.0577 |
SG14 | 56.0 | 14.0 | 30.0 | 0.2 | 5.23 | 83 | −0.0185 |
SG15 | 49.0 | 21.0 | 30.0 | 0.3 | 5.46 | 77 | −0.0144 |
SG20 | 60.0 | 0 | 40.0 | 0 | 4.58 | 96 | −0.0936 |
SG21 | 48.0 | 12.0 | 40.0 | 0.2 | 5.28 | 87 | −0.0221 |
SG24 | 50.0 | 0 | 50.0 | 0 | 4.68 | 129 | −0.1052 |
SG25 | 45.0 | 5.0 | 50.0 | 0.1 | 5.00 | 118 | −0.0593 |
SG26 | 40.0 | 10.0 | 50.0 | 0.2 | 5.33 | 110 | −0.0275 |
SG27 | 35.0 | 15.0 | 50.0 | 0.3 | 5.50 | 89 | −0.0282 |
SG30 | 40.0 | 0 | 60.0 | 0 | 4.75 | 131 | −0.1022 |
SG31 | 28.0 | 12.0 | 60.0 | 0.3 | 5.58 | 101 | −0.0269 |
SG34 | 30.0 | 0 | 70.0 | 0 | 4.84 | 133 | −0.1114 |
SG35 | 24.0 | 6.0 | 70.0 | 0.2 | 5.51 | 115 | −0.0209 |
Sample | Composition, mol % | m | Vh, 10−3 nm3 | Eh, kJ mol−1 | E | ||
---|---|---|---|---|---|---|---|
As2Se3 | Ag2Te | GeTe | |||||
x | y | z | |||||
SG1 | 90.0 | 0 | 10.0 | 0 | 28.50 | 14.6 | 1260 |
SG2 | 81.0 | 9.0 | 10.0 | 0.1 | 28.05 | 14.2 | 1245 |
SG3 | 72.0 | 18.0 | 10.0 | 0.2 | 30.44 | 13.7 | 1110 |
SG4 | 63.0 | 27.0 | 10.0 | 0.3 | 32.57 | 13.3 | 1005 |
SG6 | 80.0 | 0 | 20.0 | 0 | 26.66 | 14.6 | 1350 |
SG7 | 72.0 | 8.0 | 20.0 | 0.1 | 26.94 | 14.3 | 1305 |
SG8 | 64.0 | 16.0 | 20.0 | 0.2 | 28.41 | 13.9 | 1200 |
SG9 | 56.0 | 24.0 | 20.0 | 0.3 | 30.24 | 13.5 | 1095 |
SG12 | 70.0 | 0 | 30.0 | 0 | 25.90 | 14.7 | 1395 |
SG13 | 63.0 | 7.0 | 30.0 | 0.1 | 26.67 | 14.5 | 1335 |
SG14 | 56.0 | 14.0 | 30.0 | 0.2 | 27.75 | 14.0 | 1245 |
SG15 | 49.0 | 21.0 | 30.0 | 0.3 | 29.00 | 13.6 | 1155 |
SG24 | 50.0 | 0 | 50.0 | 0 | 19.07 | 15.0 | 1935 |
SG26 | 40.0 | 10.0 | 50.0 | 0.2 | 21.76 | 14.6 | 1650 |
SG27 | 35.0 | 15.0 | 50.0 | 0.3 | 25.99 | 14.1 | 1470 |
SG34 | 30.0 | 0 | 70.0 | 0 | 18.76 | 15.2 | 1995 |
SG35 | 24.0 | 6.0 | 70.0 | 0.2 | 21.64 | 14.8 | 1725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karadashka, I.; Ivanova, V.; Jordanov, V.; Karadjova, V. Glass Formation and Properties of Multicomponent Glasses of the As2Se3-Ag2Te-GeTe System. Inorganics 2024, 12, 11. https://doi.org/10.3390/inorganics12010011
Karadashka I, Ivanova V, Jordanov V, Karadjova V. Glass Formation and Properties of Multicomponent Glasses of the As2Se3-Ag2Te-GeTe System. Inorganics. 2024; 12(1):11. https://doi.org/10.3390/inorganics12010011
Chicago/Turabian StyleKaradashka, Ina, Vladislava Ivanova, Valeri Jordanov, and Veronika Karadjova. 2024. "Glass Formation and Properties of Multicomponent Glasses of the As2Se3-Ag2Te-GeTe System" Inorganics 12, no. 1: 11. https://doi.org/10.3390/inorganics12010011
APA StyleKaradashka, I., Ivanova, V., Jordanov, V., & Karadjova, V. (2024). Glass Formation and Properties of Multicomponent Glasses of the As2Se3-Ag2Te-GeTe System. Inorganics, 12(1), 11. https://doi.org/10.3390/inorganics12010011