Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. X-ray Structure Description
2.3. Hirshfeld Analysis
2.4. Enrichment Ratio
2.5. Energy Framework Analysis
2.6. Comparative DFT Study
2.7. Biological Studies
2.7.1. Antimicrobial Assay
2.7.2. Cytotoxicity Assessments
3. Materials and Methods
3.1. Materials and Physical Characterizations
3.2. Synthesis of BMPyTr
3.3. Synthesis of [Co(BMPyTr)Cl2]·H2O
3.4. Crystal Structure Determination
3.5. Hirshfeld Analysis
3.6. Computational Details
3.7. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.Q.; Chen, J.; Zhang, Z.; Ma, J.; Pan, Y.; Ejhieh, N.A.; Lu, C.; Bo, Z. Current status and prospects of MOFs as controlled delivery of Pt anticancer drugs. Dalton Trans. 2023, 52, 6226–6238. [Google Scholar]
- Soliman, S.M.; Fathalla, E.M.; Sharaf, M.M.; El-Faham, A.; Barakat, A.; Haukka, M.; Slawin, A.M.; Woollins, J.D.; Abu-Youssef, M.A. Synthesis, structure and antimicrobial activity of new Co(II) complex with bis-morpholino/benzoimidazole-s-triazine ligand. Inorganics 2023, 11, 278. [Google Scholar] [CrossRef]
- Gönül, İ.; Burak, A.; Karaca, S.; Şahin, O.; Serin, S. Novel copper(II) complexes of two tridentate ONN type ligands: Synthesis, characterization, electrical conductivity and luminescence properties. Inorg. Chim. Acta 2018, 477, 75–83. [Google Scholar] [CrossRef]
- Fink, J.K. The Chemistry of Bio-Based Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Nedelko, V.V.; Shastin, A.V.; Korsunskii, B.L.; Chukanov, N.V.; Larikova, T.S.; Kazakov, A.I. Synthesis and thermal decomposition of ditetrazol-5-ylamine. Russ. Chem. Bull. 2005, 54, 1710–1714. [Google Scholar] [CrossRef]
- El-Faham, A.; Dahlous, K.A.; Al Othman, Z.A.; Al-Lohedan, H.A.; El-Mahdy, G.A. sym-Trisubstituted 1,3,5-triazine derivatives as promising organic corrosion inhibitors for steel in acidic solution. Molecules 2016, 21, 436. [Google Scholar] [CrossRef]
- Mikhaylichenko, S.N.; Patel, S.M.; Dalili, S.; Chesnyuk, A.A.; Zaplishny, V.N. Synthesis and structure of new 1,3,5-triazine-pyrazole derivatives. Tetrahedron Lett. 2009, 50, 2505–2508. [Google Scholar] [CrossRef]
- Farooq, M.; Sharma, A.; Almarhoon, Z.; Al-Dhfyan, A.; El-Faham, A.; Taha, N.A.; Wadaan, M.A.; de la Torre, B.G.; Albericio, F. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos. Bioorg. Chem. 2019, 87, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Mooibroek, T.J.; Gamez, P. The s-triazine ring, a remarkable unit to generate supramolecular interactions. Inorg. Chim. Acta 2007, 360, 381–404. [Google Scholar] [CrossRef]
- Gamez, P.; Reedijk, J. 1,3,5-Triazine-based synthons in supramolecular chemistry. Eur. J. Inorg. Chem. 2006, 2006, 29–42. [Google Scholar] [CrossRef]
- Das, A.; Demeshko, S.; Dechert, S.; Meyer, F. A new triazine-based tricompartmental ligand for stepwise assembly of mononuclear, dinuclear, and 1D-polymeric heptacoordinate Manganese(II)/Azido complexes. Eur. J. Inorg. Chem. 2011, 2011, 1240–1248. [Google Scholar] [CrossRef]
- Golankiewicz, B.; Januszczyk, P.; Ikeda, S.; Balzarini, J.; De Clercq, E. Synthesis and antiviral activity of benzyl-substituted imidazo [1,5-a]-1,3,5-triazine (5,8-diaza-7,9-dideazapurine) derivatives. J. Med. Chem. 1995, 38, 3558–3565. [Google Scholar] [CrossRef] [PubMed]
- Lucry, L.; Enoma, F.; Estour, F.; MÉnager, S.; Lafont, O.; Oulyadi, H. Synthesis and biological testing of 3-phenyloctahydro-pyrimido [1,2-a]-s-triazine derivatives. J. Heterocycl. Chem. 2002, 39, 663–670. [Google Scholar] [CrossRef]
- Chu, J.; Chen, W.; Su, G.; Song, Y.F. Four new copper(II) complexes with di-substituted s-triazine-based ligands. Inorg. Chim. Acta 2011, 376, 350–357. [Google Scholar] [CrossRef]
- Shanmugakala, R.; Tharmaraj, P.; Sheela, C. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties. J. Mol. Struct. 2014, 1076, 606–613. [Google Scholar] [CrossRef]
- Katugampala, S.; Perera, I.C.; Nanayakkara, C.; Perera, T. Synthesis, characterization, and antimicrobial activity of novel sulfonated copper-triazine complexes. Bioinorg. Chem. Appl. 2018, 2018, 2530851. [Google Scholar] [CrossRef]
- Rollas, S.; Güniz Küçükgüzel, Ş. Biological activities of hydrazone derivatives. Molecules 2007, 12, 1910–1939. [Google Scholar] [CrossRef]
- Jabeen, M. A comprehensive review on analytical applications of hydrazone derivatives. J. Turk. Chem. Soc. A Chem. 2022, 9, 663–698. [Google Scholar] [CrossRef]
- Kourounakis, A.P.; Xanthopoulos, D.; Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 2020, 40, 709–752. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Huo, Q.; Liu, Y. Syntheses, crystal structures of two coordination polymers constructed from imidazole-based dicarboxylate ligands containing alkyl group. Inorg. Chem. Commun. 2013, 30, 115–119. [Google Scholar] [CrossRef]
- Zhang, B.J.; Wang, C.J.; Qiu, G.M.; Huang, S.; Zhou, X.L.; Weng, J.; Wang, Y.Y. Polycarboxylate anions effect on the structures of a series of transition metal-based coordination polymers: Syntheses, crystal structures and bioactivities. Inorg. Chim. Acta 2013, 397, 48–59. [Google Scholar] [CrossRef]
- Kundu, S.; Roy, S.; Bhar, K.; Ghosh, R.; Lin, C.H.; Ribas, J.; Ghosh, B.K. Syntheses, structures and magnetic properties of two one-dimensional coordination polymers of cobalt(II) and nickel(II) dicyanamide containing a tridentate N-donor Schiff base. J. Mol. Struct. 2013, 1038, 78–85. [Google Scholar] [CrossRef]
- Matsubara, K.; Sueyasu, T.; Esaki, M.; Kumamoto, A.; Nagao, S.; Yamamoto, H.; Koga, Y.; Kawata, S.; Matsumoto, T. Cobalt(II) complexes bearing a bulky N-heterocyclic carbene for catalysis of kumada–tamao–corriu cross-coupling reactions of aryl halides. Eur. J. Inorg. Chem. 2012, 2012, 3079–3086. [Google Scholar] [CrossRef]
- Matsubara, K.; Kumamoto, A.; Yamamoto, H.; Koga, Y.; Kawata, S. Synthesis and structure of cobalt(II) iodide bearing a bulky N-heterocyclic carbene ligand, and catalytic activation of bromoalkanes. J. Organomet. Chem. 2013, 727, 44–49. [Google Scholar] [CrossRef]
- Maghami, M.; Farzaneh, F.; Simpson, J.; Ghiasi, M.; Azarkish, M. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand. J. Mol. Struct. 2015, 1093, 24–32. [Google Scholar] [CrossRef]
- Scarpellini, M.; Neves, A.; Hörner, R.; Bortoluzzi, A.J.; Szpoganics, B.; Zucco, C.; Nome Silva, R.A.; Drago, V.; Mangrich, A.S.; Ortiz, W.A. Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua/hydroxy copper(II) complexes containing tridentate imidazole-rich ligands. Inorg. Chem. 2003, 42, 8353–8365. [Google Scholar] [CrossRef]
- Singh, V.P.; Katiyar, A.; Singh, S. Synthesis, characterization of some transition metal(II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti microbial activity. Biometals 2008, 21, 491–501. [Google Scholar] [CrossRef]
- Takeuchi, T.; Böttcher, A.; Quezada, C.M.; Meade, T.J.; Gray, H.B. Inhibition of thermolysin and human α-thrombin by cobalt(III) Schiff base complexes. Bioorg. Med. Chem. 1999, 7, 815–819. [Google Scholar] [CrossRef]
- Dimiza, F.; Papadopoulos, A.N.; Tangoulis, V.; Psycharis, V.; Raptopoulou, C.P.; Kessissoglou, D.P.; Psomas, G. Biological evaluation of non-steroidal anti-inflammatory drugs-cobalt(II) complexes. Dalton Trans. 2010, 39, 4517–4528. [Google Scholar] [CrossRef]
- Liang, F.; Wang, P.; Zhou, X.; Li, T.; Li, Z.; Lin, H.; Gao, D.; Zheng, C.; Wu, C. Nickle(II) and cobalt(II) complexes of hydroxyl-substituted triazamacrocyclic ligand as potential antitumor agents. Bioorg. Med. Chem. Lett. 2004, 14, 1901–1904. [Google Scholar] [CrossRef]
- Maccari, R.; Ottanà, R.; Bottari, B.; Rotondo, E.; Vigorita, M.G. In vitro advanced antimycobacterial screening of cobalt(II) and copper(II) complexes of fluorinated isonicotinoylhydrazones. Bioorg. Med. Chem. Lett. 2004, 14, 5731–5733. [Google Scholar] [CrossRef]
- Unitt, J.F.; Boden, K.L.; Wallace, A.V.; Ingall, A.H.; Coombs, M.E.; Ince, F. Novel cobalt complex inhibitors of mitochondrial calcium uptake. Bioorg. Med. Chem. 1999, 7, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- McKerrow, J.H.; Sun, E.; Rosenthal, P.J.; Bouvier, J. The proteases and pathogenicity of parasitic protozoa. Annu. Rev. Microbiol. 1993, 47, 821–853. [Google Scholar] [CrossRef] [PubMed]
- Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. Int. J. Pharm. Med. Chem. 2007, 340, 117–126. [Google Scholar] [CrossRef]
- Huang, P.P.; Wu, T.T.; Tuo, M.Q.; Ge, J.; Huang, P.; Wang, W.Q.; Yang, J.P.; Pan, H.B.; Lu, J.F. Supramolecular complexes of Co(II), Zn(II) and Mn(II) based on a pyridazine dicarboxylic derivative: Synthesis, crystal structures and properties. J. Mol. Struct. 2024, 1307, 138061. [Google Scholar] [CrossRef]
- Amiri, A.; Mirzaei, M. Metal–Organic Frameworks in Analytical Chemistry; The Royal Society of Chemistry: London, UK, 2023. [Google Scholar] [CrossRef]
- Mirzaei, M.; Eshtiagh-Hosseini, M.; Bauzá, A.; Zarghami, S.; Ballester, P.; Maguee, J.T.; Frontera, A. On the importance of non covalent interactions in the structure of coordination Cu(II) and Co(II) complexes of pyrazine- and pyridine-dicarboxylic acid derivatives: Experimental and theoretical views. CrystEngComm 2014, 16, 6149–6158. [Google Scholar] [CrossRef]
- Mirzaei, M.; Eshtiagh-Hosseini, H.; Karrabi, Z.; Molčanov, K.; Eydizadeh, E.; Maguee, J.T.; Bauzád, A.; Frontera, A. Crystal engineering with coordination compounds of NiII, CoII, and CrIII bearing dipicolinic acid driven by the nature of the noncovalent interactions. CrystEngComm 2014, 16, 5352–5363. [Google Scholar] [CrossRef]
- Hebrard, F.; Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev. 2009, 109, 4272–4282. [Google Scholar] [CrossRef]
- Junge, K.; Papa, V.; Beller, M. Cobalt–pincer complexes in catalysis. Chem. Eur. J. 2019, 25, 122–143. [Google Scholar] [CrossRef]
- Pototschnig, G.; Maulide, N.; Schnürch, M. Direct functionalization of C−H bonds by iron, nickel, and cobalt catalysis. Chem. Eur. J. 2017, 23, 9206–9232. [Google Scholar] [CrossRef]
- Shao, D.; Shi, L.; Wei, H.Y.; Wang, X.Y. Field-induced single-ion magnet behaviour in two new cobalt(II) coordination polymers with 2,4,6-Tris (4-pyridyl)-1,3,5-triazine. Inorganics 2017, 5, 90. [Google Scholar] [CrossRef]
- Osman, A.H. Synthesis and characterization of cobalt(II) and nickel(II) complexes of some Schiff bases derived from 3-hydrazino-6-methyl[1,2,4] triazin-5(4H)one. Transit. Met. Chem. 2006, 31, 35–41. [Google Scholar] [CrossRef]
- Menati, S.; Rudbari, H.A.; Askari, B.; Farsani, M.R.; Jalilian, F.; Dini, G. Synthesis and characterization of insoluble cobalt(II), nickel(II), zinc(II) and palladium(II) Schiff base complexes: Heterogeneous catalysts for oxidation of sulfides with hydrogen peroxide. Comptes Rendus Chim. 2016, 19, 347–356. [Google Scholar] [CrossRef]
- Marandi, F.; Moeini, K.; Arkak, A.; Mardani, Z.; Krautscheid, H. Docking studies to evaluate the biological activities of the Co(II) and Ni(II) complexes containing the triazine unit: Supported by structural, spectral, and theoretical studies. J. Coord. Chem. 2018, 71, 3893–3911. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E.; El-Faham, A. Syntheses, structure, Hirshfeld analysis and antimicrobial activity of four new Co(II) complexes with s-triazine-based pincer ligand. Inorg. Chim. Acta 2020, 510, 119753. [Google Scholar] [CrossRef]
- Soliman, S.M.; Massoud, R.A.; Al-Rasheed, H.H.; El-Faham, A. Syntheses and structural investigations of penta-coordinated Co(II) complexes with bis-pyrazolo-s-triazine pincer ligands, and evaluation of their antimicrobial and antioxidant activities. Molecules 2021, 26, 3633. [Google Scholar] [CrossRef]
- Fathalla, E.M.; Abu-Youssef, M.A.; Sharaf, M.M.; El-Faham, A.; Barakat, A.; Badr, A.M.; Soliman, S.M.; Slawin, A.M.; Woollins, J.D. Synthesis, characterizations, antitumor and antimicrobial evaluations of novel Mn(II) and Cu(II) complexes with NNN-tridentate s-triazine-schiff base ligand. Inorg. Chim. Acta 2023, 555, 121586. [Google Scholar] [CrossRef]
- Fathalla, E.M.; Abu-Youssef, M.A.; Sharaf, M.M.; El-Faham, A.; Barakat, A.; Haukka, M.; Soliman, S.M. synthesis, X-ray structure of two hexa-coordinated Ni(II) complexes with s-triazine hydrazine schiff base ligand. Inorganics 2023, 11, 222. [Google Scholar] [CrossRef]
- Hassan, M.; El-Faham, A.; Barakat, A.; Haukka, M.; Tatikonda, R.; Abu-Youssef, M.A.M.; Soliman, S.M.; Yousri, A. Synthesis, X-ray structure, cytotoxic, and anti-Microbial activities of Zn(II) complexes with a hydrazono s-triazine bearing pyridyl arm. Inorganics 2024, 12, 176. [Google Scholar] [CrossRef]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Lu, J.F.; Huang, P.; Zhang, D.; Wang, Q.; Zheng, N.; Wu, R.; Liu, Q.; Jin, L.X.; Yu, X.H.; Ji, X.H.; et al. 1-(3-Amino-4-morpholino-1H-indazole-1-carbonyl)-N-phenylcyclopropane-1-carboxamide: Design, synthesis, crystal structure, antitumor activity, DFT and Hirshfeld surface analysis. J. Mol. Struct. 2020, 1210, 127996. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, J.; Gao, Y.H.; Jin, L.X.; Wang, Q.; Yu, X.H.; Lu, J.F. N-{2-[(2-chlorothieno[3,2-d]pyrimidin-4-yl)amino]ethyl}-3-methoxybenzamide: Design, synthesis, crystal structure, antiproliferative activity, DFT, Hirshfeld surface analysis and molecular docking study. J. Biomol. Struct. Dyn. 2020, 40, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, Y.X.; Cai, Z.; Tong, L.; Dong, W.K. Structural, fluorescent and theoretical studies of a more flexible salamo-type ligand and its uncommon tetranuclear chloride-bridged nickel(II) complex. J. Mol. Struct. 2024, 1309, 138164. [Google Scholar] [CrossRef]
- Gan, L.L.; Niu, H.Y.; Liu, L.L.; Dong, W.K.; Ding, Y.J. The effect of different counter-anions on two nonsymmetric salamo-type copper(II) complexes with different structures. J. Mol. Struct. 2024, 1302, 137526. [Google Scholar] [CrossRef]
- Ding, Y.F.; Man, L.L.; Tong, L.; Li, X.; Dong, W.K.; Ding, Y.J. Differently structural Cu(II) and Ni(II) complexes of a nonsymmetrical tetradentate half-salamo like N3O-donor ligand: Synthesis, crystal structure, spectral properties and theoretical studies. J. Mol. Struct. 2024, 1301, 137341. [Google Scholar] [CrossRef]
- Tong, L.; Ding, Y.F.; Li, X.; Man, L.L.; Dong, W.K. Synthesis, crystal structure, fluorescence properties, and theoretical studies of a dinuclear Ni(II) complex derived from a quinoline-containing half-salamo-type ligand. J. Coord. Chem. 2023, 76, 1635–1649. [Google Scholar] [CrossRef]
- Tabti, S.; Aggoun, D.; Aref, D.; Sawafta, A.; Djedouani, A.; Abu-Rayyan, A.; AlObaid, A.; Lhoste, J.; Robert, C.; Augste, S.; et al. Spectral, crystal structure of novel Pyran-2-one Zwitterion Schiff derivative: Thermal, Physicochemical, DFT/HSA-interactions, enol↔imine tautomerization and anticancer activity. J. Mol. Struct. 2024, 1310, 138258. [Google Scholar] [CrossRef]
- Aouad, M.R.; Messali, M.; Rezki, N.; Al-Zaqri, N.; Warad, I. Single proton intramigration in novel 4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione: XRD-crystal interactions, physicochemical, thermal, Hirshfeld surface, DFT realization of thiol/thione tautomerism. J. Mol. Liq. 2018, 264, 621–630. [Google Scholar] [CrossRef]
- Abu Saleemh, F.; Musameh, S.; Sawafta, A.; Brandao, P.; Tavares, C.J.; Ferdov, S.; Barakat, A.; Al Ali, A.; Al-Noaimi, M.; Warad, I. Diethylenetriamine/diamines/copper(II) complexes [Cu(dien)(NN)]Br2: Synthesis, solvatochromism, thermal, electrochemistry, single crystal, Hirshfeld surface analysis and antibacterial activity. Arab. J. Chem. 2017, 10, 845–854. [Google Scholar] [CrossRef]
- Christian, J.; Ejsmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2015, 51, 3735–3738. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Attwa, M.W.; Kadi, A.A.; Alkahtani, H.M. Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl) ethylidene) amino)-5-phenyl-4H-1,2,4-triazol-3-yl) thio)-5-((2-isopropylcyclohexyl) oxy) Furan-2(5H)-one: A combined approach using single-crystal X-ray diffraction, Hirshfeld surface analysis, and conceptual density functional theory. Crystals 2023, 13, 1313. [Google Scholar] [CrossRef]
- Turner, M.J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M.A. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett. 2014, 5, 4249–4255. [Google Scholar] [CrossRef] [PubMed]
- Hajji, M.; Mtiraoui, H.; Amiri, N.; Msaddek, M.; Guerfel, T. Crystallographic and first-principles density functional theory study on the structure, noncovalent interactions, and chemical reactivity of 1,5-benzodiazepin-2-ones derivatives. Int. J. Quantum Chem. 2019, 119, e26000. [Google Scholar] [CrossRef]
- Abad, N.; Sallam, H.H.; Al-Ostoot, F.H.; Khamees, H.A.; Al-horaibi, S.A.; Khanum, S.A.; Madegowda, M.; El Hafi, M.; Mague, J.T.; Essassi, E.M. Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. J. Mol. Struct. 2021, 1232, 130004. [Google Scholar] [CrossRef]
- Edwards, A.J.; Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Intermolecular interactions in molecular crystals: What’s in a name? Farad. Disc. 2017, 203, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor. Chem. Acc. 2022, 141, 68. [Google Scholar] [CrossRef]
- Zhong, A.; Chen, D.; Li, R. Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives. Chem. Phys. Lett. 2015, 633, 265–272. [Google Scholar] [CrossRef]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Cryst. 2019, E75, 308–318. [Google Scholar] [CrossRef]
- Sreenatha, N.; Chakravarthy, A.J.; Suchithra, B.; Lakshminarayana, B.; Hariprasad, S.; Ganesha, D. Crystal, spectral characterization, molecular docking, Hirshfeld computational studies and 3D-energy framework analysis of a novel puckered compound (C14H15ClO): 2-Chloro-3-phenyl-5,5-dimethylcyclohex-2-en-1-one. J. Mol. Struct. 2020, 1210, 127979. [Google Scholar] [CrossRef]
- Guo, Z.A.; Xian, J.Y.; Rong, L.R.; Qin, H.; Jie, Z. Theoretical study of metal ion impact on geometric and electronic properties of terbutaline compounds. Monatsh. Chem. 2019, 150, 1355–1364. [Google Scholar] [CrossRef]
- Refaat, H.M.; Alotaibi, A.A.M.; Dege, N.; El-Faham, A.; Soliman, S.M. Co(II) complexes based on the bis-pyrazol-s-triazine pincer ligand: Synthesis, X-ray structure studies, and cytotoxic evaluation. Crystals 2022, 12, 741. [Google Scholar] [CrossRef]
- Rikagu Oxford Diffraction. CrysAlisPro; Rikagu Oxford Diffraction Inc.: Oxfordshire, UK, 2020. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Turner, M.; McKinnon, J.; Wolff, S.; Grimwood, D.; Spackman, P.; Jayatilaka, D.; Spackman, M. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Frisch, M.; Clemente, F.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; et al. Uranyl extraction by N,N-dialkylamide ligands studied by static and dynamic DFT simulations. In Gaussian 09; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Dennington, R.D., II; Keith, T.; Millam, J. GaussView, Version 4.1; Semichem Inc.: Shawnee Mission, KS, USA, 2007.
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Lu, P.L.; Liu, Y.C.; Toh, H.S.; Lee, Y.L.; Liu, Y.M.; Ho, C.M.; Huang, C.C.; Liu, C.E.; Ko, W.C.; Wang, J.H. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009–2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int. J. Antimicrob. Agents 2012, 40, S37–S43. [Google Scholar] [CrossRef]
[Co(BMPyTr)Cl2]·H2O | |
---|---|
CCDC | 2,340,998 |
empirical formula | C18H26Cl2CoN8O3 |
fw | 532.30 |
temp (K) | 120(2) |
λ (Å) | 1.54184 |
cryst syst | Triclinic |
space group | P |
a (Å) | 8.50463(10) |
b (Å) | 11.85531(14) |
c (Å) | 22.1524(2) |
α (deg) | 84.2782(9) |
β (deg) | 87.3524(9) |
γ (deg) | 89.2680(10) |
V (Å3) | 2219.94(4) |
Z | 4 |
ρcalc (Mg/m3) | 1.593 |
μ (Mo Kα) (mm−1) | 8.615 |
No. reflns. | 89,427 |
Unique reflns. | 9559 |
Completeness to θ = 67.684° | 100% |
GOOF (F2) | 1.093 |
Rint | 0.0304 |
R1 a (I ≥ 2σ) | 0.0270 |
wR2 b (I ≥ 2σ) | 0.0724 |
Bond Distances | |||
---|---|---|---|
Co(1)-N(2) | 2.0360(13) | Co(1B)-N(2B) | 2.0301(12) |
Co(1)-N(1) | 2.1375(13) | Co(1B)-N(1B) | 2.1459(13) |
Co(1)-N(4) | 2.1762(13) | Co(1B)-N(4B) | 2.1919(12) |
Co(1)-Cl(2) | 2.2909(4) | Co(1B)-Cl(2B) | 2.2840(4) |
Co(1)-Cl(1) | 2.3414(4) | Co(1B)-Cl(1B) | 2.3221(4) |
Bond angles | |||
N(2)-Co(1)-N(1) | 75.55(5) | N(2B)-Co(1B)-N(1B) | 75.82(5) |
N(2)-Co(1)-N(4) | 77.91(5) | N(2B)-Co(1B)-N(4B) | 77.71(5) |
N(1)-Co(1)-N(4) | 153.21(5) | N(1B)-Co(1B)-N(4B) | 152.95(5) |
N(2)-Co(1)-Cl(2) | 131.14(4) | N(2B)-Co(1B)-Cl(2B) | 131.95(4) |
N(1)-Co(1)-Cl(2) | 90.03(4) | N(1B)-Co(1B)-Cl(2B) | 90.80(4) |
N(4)-Co(1)-Cl(2) | 104.93(4) | N(4B)-Co(1B)-Cl(2B) | 102.87(3) |
N(2)-Co(1)-Cl(1) | 107.06(4) | N(2B)-Co(1B)-Cl(1B) | 104.10(4) |
N(1)-Co(1)-Cl(1) | 91.95(4) | N(1B)-Co(1B)-Cl(1B) | 92.45(4) |
N(4)-Co(1)-Cl(1) | 99.20(3) | N(4B)-Co(1B)-Cl(1B) | 99.31(4) |
Cl(2)-Co(1)-Cl(1) | 120.07(2) | Cl(2B)-Co(1B)-Cl(1B) | 122.68(2) |
D-H⋯A | d(D-H) | d(H⋯A) | d(D⋯A) | <(DHA) | Symmetry Codes |
---|---|---|---|---|---|
N(3)-H(3)⋯O(3) | 0.85(2) | 1.92(2) | 2.7737(19) | 175(2) | |
N(3B)-H(3B)⋯O(4) | 0.81(2) | 2.00(2) | 2.8074(18) | 173(2) | |
O(3)-H(3D)⋯Cl(1) | 0.83(3) | 2.43(3) | 3.2414(15) | 167(3) | −x − 1, −y + 1, −z + 2 |
O(3)-H(3C)⋯Cl(2) | 0.88(3) | 2.29(3) | 3.1605(15) | 176(3) | −x, −y + 1, −z + 2 |
O(4)-H(4C)⋯Cl(1B) | 0.83(3) | 2.45(3) | 3.2639(14) | 169(3) | −x, −y + 1, −z + 1 |
O(4)-H(4A)⋯Cl(2B) | 0.87(3) | 2.31(3) | 3.1865(14) | 177(3) | −x + 1, −y + 1, −z + 1 |
Contact | Length (Å) | Symm. Code |
---|---|---|
Cl(2)⋯C(1) | 3.420(2) | −x, −y, 2 − z |
Cl(2B)⋯C(1B) | 3.444(2) | 1 − x, 2 − y, 1 − z |
Cl(2B)⋯C(2B) | 3.437(2) | 1 − x, 2 − y, 1 − z |
Contact | %C a | %R b | EXY | Atom | %S c |
---|---|---|---|---|---|
Cl⋯H | 16.7 | 11.9 | 1.4 | H | 70.2 |
O⋯C | 0.8 | 1.0 | 0.8 | O | 6.05 |
O⋯H | 11.2 | 8.5 | 1.3 | N | 7.1 |
N⋯C | 1.8 | 1.1 | 1.6 | C | 8 |
N⋯H | 9.3 | 10.0 | 0.9 | Cl | 8.45 |
H⋯C | 11.4 | 11.2 | 1.0 | ||
H⋯H | 45.9 | 49.3 | 0.9 | ||
Cl⋯N | 0.2 | 1.2 | 0.2 |
No. | Complex | M(II) | BMPyTr | M(II)+ BMPyTr | [M(II)− BMPyTr]2+ | Eint a (kcal/mol) |
---|---|---|---|---|---|---|
1A | [Co(BMPyTr)Cl2]·H2O | −1381.84 | −1288.52 | −2670.36 | −2670.85 | −311.54 |
1B | [Co(BMPyTr)Cl2]·H2O b | −1381.84 | −1288.54 | −2670.38 | −2670.86 | −303.38 |
2 | [Mn(BMPyTr)Cl2] | −1150.15 | −1288.57 | −2438.72 | −2439.13 | −260.79 |
3 | [Cu(BMPyTr)Cl2]·H2O | −1639.50 | −1288.56 | −2928.06 | −2928.64 | −366.09 |
4 | [Zn(BMPyTr)(NO3)2] | −1778.45 | −1288.49 | −3066.95 | −3067.47 | −322.23 |
5 | [Zn(BMPyTr)(NCS)2] | −1778.45 | −1288.48 | −3066.94 | −3067.44 | −314.89 |
6 | [Cu(BMPyTr)(NO3)2] | −1639.50 | −1364.96 | −3004.46 | −3005.04 | −364.27 |
7 | [Ni(BMPyTr)(H2O)3](NO3)2·3H2O | −1507.30 | −1288.55 | −2795.85 | −2796.42 | −356.37 |
8 | [Ni(BMPyTr)(H2O)3](NO3)2·H2O | −1507.30 | −1288.55 | −2795.85 | −2796.42 | −361.57 |
Microorganism | BMPyTr | 1 | 2 f | 3 f | 4 g | 5 g | Control |
---|---|---|---|---|---|---|---|
S. aureus | NA b (ND) c | 13(1250) | 11(2500) | 18(625) | 14(625) | 15(625) | 24(78) d |
B. subtilis | NA b (ND) c | 15(625) | 19(312) | 20(312) | 15(625) | 16(312) | 26(39) d |
E.coli | NA b (ND) c | 16(156) | 10(2500) | NA(ND) | NA b (ND) c | NA b (ND) c | 30(10) d |
P.vulgaris | NA b (ND) c | 18(78) | 12(1250) | 14(1250) | 18(156) | 20(78) | 25(5) d |
A. fumigatus | NA b (ND) c | - | NA b (ND) c | NA b (ND) c | 10(625) | NA b (ND) c | 17(5) e |
C. albicans | NA b (ND) c | - | 8(5000) | NA b (ND) c | 9(625) | 10(312) | 20(5) e |
Cell Line | HCT-116 | A-549 |
---|---|---|
BMPyTr | 155.7 ± 7.6 | 145.3 ± 7.1 |
1 | 224.0 ± 10.3 | 131.2 ± 6.8 |
2 | 61.0 ± 2.5 | 118.8 ± 6.0 |
3 | 27.7 ± 1.1 | 40.3 ± 2.3 |
4 | 51.46 ± 2.16 | 71.88 ± 5.07 |
5 | 62.81 ± 2.82 | 97.26 ± 5.07 |
cis-platin | 17.8 ± 1.6 | 24.9 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altowyan, M.S.; El-Faham, A.; Hassan, M.; Barakat, A.; Haukka, M.; Abu-Youssef, M.A.M.; Soliman, S.M.; Yousri, A. Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm. Inorganics 2024, 12, 268. https://doi.org/10.3390/inorganics12100268
Altowyan MS, El-Faham A, Hassan M, Barakat A, Haukka M, Abu-Youssef MAM, Soliman SM, Yousri A. Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm. Inorganics. 2024; 12(10):268. https://doi.org/10.3390/inorganics12100268
Chicago/Turabian StyleAltowyan, Mezna Saleh, Ayman El-Faham, MennaAllah Hassan, Assem Barakat, Matti Haukka, Morsy A. M. Abu-Youssef, Saied M. Soliman, and Amal Yousri. 2024. "Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm" Inorganics 12, no. 10: 268. https://doi.org/10.3390/inorganics12100268
APA StyleAltowyan, M. S., El-Faham, A., Hassan, M., Barakat, A., Haukka, M., Abu-Youssef, M. A. M., Soliman, S. M., & Yousri, A. (2024). Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm. Inorganics, 12(10), 268. https://doi.org/10.3390/inorganics12100268