Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Z@Fe3O4 NPs
2.2. Adsorption Studies of Ternary Metal Ions Using Z@Fe3O4 NPs
2.2.1. Influence of the Adsorbent Weight and pH
2.2.2. A Study on Adsorption Kinetic
2.2.3. A Study on Absorption Isotherms
3. Materials and Methods
3.1. Chemical and Materials
3.2. Synthesis of Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs)
3.3. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiseon, J.; Lee, D.S. Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind. Eng. Chem. Res. 2016, 55, 3852–3860. [Google Scholar]
- Hassan, N.M.; Adu-Wusu, K. Cesium removal from hanford tank waste solution using resorcinol-formaldehyde resin. Solvent Extr. Ion Exch. 2005, 23, 375–389. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J. Treatment of radioactive wastewater using direct contact membrane distillation. J. Hazard. Mater. 2013, 261, 307–315. [Google Scholar] [CrossRef]
- Repo, E.; Malinen, L.; Koivula, R.; Harjula, R.; Sillanpää, M. Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan. J. Hazard. Mater. 2011, 187, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Nilchi, A.; Hadjmohammadi, M.R.; Garmarodi, S.R.; Saberi, R. Studies on the adsorption behaviour of trace amounts of 90Sr2+, 140La3+, 60Co2+, Ni2+ and Zr4+ cations on synthesized inorganic ion exchangers. J. Hazard. Mater. 2009, 167, 531–535. [Google Scholar] [CrossRef]
- Kong, S.; Wang, Y.; Zhan, H.; Yuan, S.; Yu, M.; Liu, M. Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite. Water Environ. Res. 2014, 86, 147–155. [Google Scholar] [CrossRef]
- Munthali, M.W.; Johan, E.; Aono, H.; Matsue, N. Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J. Asian Ceram. Soc. 2015, 3, 245–250. [Google Scholar] [CrossRef]
- Osmanlioglu, A.E. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J. Hazard. Mater. 2006, 137, 332–335. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, O.N.; Singh, K. Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res. Lett. 2017, 12, 298. [Google Scholar] [CrossRef]
- da Costa, G.; De Grave, E.; de Bakker, P.; Vandenberghe, R. Synthesis and characterization of some iron oxides by Sol-Gel method. J. Solid State Chem. 1994, 113, 405–412. [Google Scholar] [CrossRef]
- Zargoosh, K.; Abedini, H.; Abdolmaleki, A.; Molavian, M.R. Effective Removal of Heavy Metal Ions from Industrial Wastes Using Thiosalicylhydrazide-Modified Magnetic Nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 14944–14954. [Google Scholar] [CrossRef]
- Sivashankar, R.; Sathya, A.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration—A review. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 36–49. [Google Scholar] [CrossRef]
- Koivula, R.; Paajanen, A.; Harjula, R.; Lehto, J. Decontamination of radioactive cobalt, nickel, strontium, and cesium from simulate solutions using tin antimonate columns. Solvent Extr. Ion Exch. 2003, 21, 915–928. [Google Scholar] [CrossRef]
- Hung, D.Q.; Dinh, L.X.; Van Tung, N.; Huong, L.T.M.; Lien, N.T.; Minh, P.T.; Le, T.-H. The adsorption kinetic and isotherm studies of metal ions (Co2+, Sr2+, Cs+) on Fe3O4 nanoparticle of radioactive importance. Results Chem. 2023, 6, 101095. [Google Scholar] [CrossRef]
- Tayyebi, A.; Outokesh, M.; Moradi, S.; Doram, A. Synthesis and characterization of ultrasound assisted graphene oxide–magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. Appl. Surf. Sci. 2015, 353, 350–362. [Google Scholar] [CrossRef]
- Kamel, N.H. Adsorption models of 137Cs radionuclide and Sr (II) on some Egyptian soils. J. Environ. Radioact. 2010, 101, 297–303. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Shao, D.; Li, J.; Wang, X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 2008, 164, 923–928. [Google Scholar] [CrossRef]
- An, Q.; Liu, Q.; Han, C.; Zhao, K.; Sheng, J.; Wei, Q.; Yan, M.; Mai, L. Amorphous vanadium oxide matrixes sup- porting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256. [Google Scholar] [CrossRef]
- Nene, A.G.; Takahashi, M.; Somani, P.R. Fe3O4 and Fe nanoparticles by chemical reduction of fe(acac)3 by ascorbic acid: Role of water. World J. Nano Sci. Eng. 2016, 6, 20–28. [Google Scholar] [CrossRef]
- Jahangiriana, H.; Ismaila, M.H.S.; Haronc, M.D.J.; Moghaddam, R.R.; Shamelie, K.; Hosseinia, S.; Kalantarie, K.; Khandanloue, R.; Gharibshahif, E.; Soltaninejad, S. Synthesis and characterization of zeolite/Fe3O4 nanocomposite by green quick precipitation method. Dig. J. Nanomater. Biostruct. 2013, 8, 1405–1413. [Google Scholar]
- Ahmed, S.R.; Cirone, J.; Chen, A. Fluorescent Fe3O4 Quantum Dots for H2O2 Detection. ACS Appl. Nano Mater. 2019, 2, 2076–2085. [Google Scholar] [CrossRef]
- Gupta, S.; Babu, B. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem. Eng. J. 2009, 150, 352–365. [Google Scholar] [CrossRef]
- Lei, T.; Li, S.-J.; Jiang, F.; Ren, Z.-X.; Wang, L.-L.; Yang, X.-J.; Tang, L.-H.; Wang, S.-X. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent. Nanoscale Res. Lett. 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Aslibeiki, B.; Arsalani, N. Preparation of Fe3O4/vine shoots derived activated carbon nanocomposite for improved removal of Cr(VI) from aqueous solution. Sci. Rep. 2023, 13, 3960. [Google Scholar] [CrossRef] [PubMed]
- Mirshahghassemi, S.; Lead, J.R. Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles. Environ. Sci. Technol. 2015, 49, 11729–11736. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Xie, J.; Mirshahghassemi, S.; Lead, J. Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Adv. 2020, 10, 3266–3276. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, J.; Zhao, X.; Li, F.; Jiang, F.; Zhang, M.; Cheng, X. Competitive adsorption of strontium and cobalt onto tin antimonate. Chem. Eng. J. 2016, 285, 679–689. [Google Scholar] [CrossRef]
- Karami, H. Heavy metal removal from water by magnetite nanorods. Chem. Eng. J. 2013, 219, 209–216. [Google Scholar] [CrossRef]
- Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549. [Google Scholar] [CrossRef]
- Zhu, L.; Pan, D.; Ding, L.; Tang, F.; Zhang, Q.; Liu, Q.; Yao, S. Mixed hemimicelles SPE based on CTAB-coated Fe3O4/SiO2 NPs for the determination of herbal bioactive constituents from biological samples. Talanta 2010, 80, 1873–1880. [Google Scholar] [CrossRef]
- Tuutijärvi, T.; Lub, J.; Sillanpää, M.; Chen, G. As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 2009, 166, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Raju, G.; Holmgren, A.; Forsling, W. Adsorption of Dextrin at Mineral/Water Interface. J. Colloid Interface Sci. 1997, 193, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Anastassakis, G.N. A study on the separation of magnesite fines by magnetic carrier methods. Colloids Surf. A Physicochem. Eng. Asp. 1999, 149, 585–593. [Google Scholar] [CrossRef]
- Belachew, N.; Hinsene, H. Preparation of Zeolite 4A for Adsorptive Removal of Methylene Blue: Optimization, Kinetics, Isotherm, and Mechanism Study. Silicon 2022, 14, 1629–1641. [Google Scholar] [CrossRef]
- Ali, M.M.S.; Sami, N.M.; El Sayed, A.A. Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: Kinetics and equilibrium studies. J. Radioanal. Nuclear Chem. 2020, 324, 189–201. [Google Scholar] [CrossRef]
- Cai, Y.-H.; Yang, X.J.; Schäfer, A.I. Removal of Naturally Occurring Strontium by Nanofiltration/Reverse Osmosis from Groundwater. Membranes 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, H.P.; Duval, J.F.L.; Pinheiro, J.P.; Blust, R.; Town, R.M. Chemodynamics and bioavailability of metal ion complexes with nanoparticles in aqueous media. Environ. Sci. Nano 2017, 4, 2108–2133. [Google Scholar] [CrossRef]
- Duval, J.F.L.; Town, R.M.; van Leeuwen, H.P. Lability of nanoparticulate metal complexes at a macroscopic metal responsive (bio)interface: Expression and asymptotic scaling laws. J. Phys. Chem. C 2018, 122, 6052–6065. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khallou, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Roby, O.; Hammoudan, I.; Saddik, R.; Garcia, Y.; Almarhoon, Z.M.; Mabkhot, Y.N. Kinetics, thermodynamics, equilibrium, surface modelling and atomic absorption analysis of selective Cu(II) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material. RSC Adv. 2022, 12, 611–625. [Google Scholar] [CrossRef]
- Sivashankar, R.; Sathya, A.B.; Sivasubramanian, V. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution. Ecotoxicol. Environ. Saf. 2015, 121, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Nithya, R.; Thirunavukkarasu, A.; Sathya, A.B.; Sivashankar, R. Magnetic materials and magnetic separation of dyes from aqueous solutions: A review. Environ. Chem. Lett. 2021, 19, 1275–1294. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Wu, D.; Li, X.; Luo, Y.; Han, C.; Ma, W.; He, S. Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale Res. Lett. 2017, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Jahangirian, H.; Rafiee-Moghaddam, R.; Jahangirian, N.; Nikpey, B.; Jahangirian, S.; Bassous, N.; Saleh, B.; Kalantari, K.; Webster, T.J. Green synthesis of zeolite/Fe2O3 nanocomposites: Toxicity & cell proliferation assays and application as a smart iron nanofertilizer. Int. J. Nanomed. 2020, 15, 1005–1020. [Google Scholar] [CrossRef]
Kinetic Adsorption Parameters | Ternary Ions Absorption | |||
---|---|---|---|---|
Cs+ | Sr2+ | Co2+ | ||
Pseudo-first-order | qe.exp(mg/g) | 43.29 | 20.46 | 14.70 |
qe.cal (mg/g) | 4.43 | 10.00 | 8.58 | |
k1 (min−1) | 0.048 | 0.023 | 0.021 | |
R2 | 0.4622 | 0.9415 | 0.9573 | |
Pseudo-second-order | qe.cal(mg/g) | 43.29 | 20.33 | 14.56 |
k2 (g/mg·min) | 0.026 | 0.007 | 0.007 | |
R2 | 0.9997 | 0.9917 | 0.9826 | |
Elovich | ae (mg/g·min) | 5.61 × 105 | 4.22 × 101 | 1.54 × 101 |
be (g/mg) | 3.87 × 10−1 | 3.96 × 10−1 | 5.18 × 10−1 | |
R2 | 0.8214 | 0.9563 | 0.9483 | |
Intra-particle diffusion | kint1(mg/g∙min0.5) | 3.59 | 1.80 | 1.34 |
R21 | 0.9770 | 0.9579 | 0.9927 | |
kint2(mg/g·min0.5) | 0.042 | 0.542 | 0.568 | |
R22 | 0.0212 | 0.8707 | 0.9132 |
Kinetic Adsorption Parameters | Ternary Ions Absorption | |||
---|---|---|---|---|
Cs+ | Sr2+ | Co2+ | ||
Dubinin–Radushkevich isotherm | qmax (mg/g) | 26.95 | 13.17 | 9.77 |
β(mol2/J2) | 4.0 × 10−7 | 7.0 × 10−8 | 1.0 × 10−7 | |
E (kJ/mol) | 1.12 | 2.67 | 2.24 | |
R2 | 0.7959 | 0.8168 | 0.6676 | |
Temkin isotherm | δT (kJ/mol) | 0.24 | 1.46 | 2.23 |
KT (L/g) | 2.15 | 149.51 | 251.56 | |
R2 | 0.9546 | 0.6829 | 0.5583 | |
Freundlich isotherm | nF | 1.70 | 5.43 | 6.89 |
KF (mg/g) | 8.23 | 7.70 | 5.94 | |
R2 | 0.8908 | 0.7408 | 0.6477 | |
Langmuir isotherm | qmax(mg/g) | 48.31 | 15.02 | 10.41 |
KL (L/mg) | 0.19 | 2.07 | 0.69 | |
R2 | 0.9758 | 0.9206 | 0.9441 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.V.; Nguyen, L.T.; Nguyen, H.T.T.; Le, T.-H. Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs). Inorganics 2024, 12, 276. https://doi.org/10.3390/inorganics12110276
Nguyen TV, Nguyen LT, Nguyen HTT, Le T-H. Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs). Inorganics. 2024; 12(11):276. https://doi.org/10.3390/inorganics12110276
Chicago/Turabian StyleNguyen, Tung Van, Lien Thi Nguyen, Ha Thi Thu Nguyen, and Thu-Huong Le. 2024. "Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs)" Inorganics 12, no. 11: 276. https://doi.org/10.3390/inorganics12110276
APA StyleNguyen, T. V., Nguyen, L. T., Nguyen, H. T. T., & Le, T. -H. (2024). Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs). Inorganics, 12(11), 276. https://doi.org/10.3390/inorganics12110276