Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines
Abstract
:1. Introduction
2. Synthesis of 8-Arylnaphthylamines
3. α-Diimine Nickel and Palladium Catalysts
Entry | Catalyst | T (°C) | P (atm) | Time (h) | Act. b | Mn (105 g/mol) | PDI | BD (/1000C) | Tm (°C) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4 (R = Me) | 25 | 8 | 0.5 | 16.0 | 4.6 | 1.3 | 93 | 44 | [30] |
2 | 4 (R = An) | 25 | 8 | 0.5 | 38.7 | 10.2 | 1.8 | 85 | 47 | [30] |
3 c | 5 (R = Me) | 25 | 8 | 16 | 0.04 | 4.9 | 1.1 | 115 | - d | [31] |
4 c | 5 (R = An) | 25 | 8 | 16 | 0.05 | 4.8 | 1.1 | 115 | - d | [31] |
5 e | 6 (R = F) | −35 | 6 | 0.17 | 0.6 | 0.1 | 1.2 | 9 | 128 | [43] |
6 f | 7 (R = O, x = 2) | 25 | 7.9 | 0.5 | 27.0 | 4.2 | 1.6 | 19 | 107 | [44] |
7 g | 8 (ArF = 4-CF3C6F4) | 25 | 17.6 | 16 | 0.1 | 1.0 | 1.2 | 123 | - d | [46] |
8 h | 8 (ArF = 4-CF3C6F4) | 25 | 13.6 | 0.17 | 225.9 | 63 | 1.1 | 30 | 104 | [46] |
9 i | 9 (X = Me) | 80 | 10 | 0.5 | 6.3 | 1.7 | 1.6 | 36 | 85 | [47] |
10 i | 10 (X = Me) | 80 | 10 | 0.5 | 5.6 | 1.9 | 1.8 | 39 | 83 | [47] |
11 j | 12 (R1 = p-Tol) | 30 | 5 | 0.5 | 4.8 | 4.4 | 1.26 | 168 | - d | [51] |
Entry | Catalyst | T (°C) | P (atm) | Conc. (mol/L) | Time (h) | Act. a | Mn (104 g/mol) | PDI | BD (/1000C) | X b (%) | Tm (°C) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 c | 5 (R = Me) | 25 | 6 | 5.0 | 16.5 | 0.6 | 0.5 | 1.5 | 121 | 13.8 | - d | [31] |
2 e | 9 (X = Me) | 80 | 10 | 2.0 | 6 | 1.2 | 0.6 | 1.9 | 35 | 2.9 | 97 | [48] |
3 f | 12 (R1 = p-Tol) | 30 | 4 | 2.0 | 12 | 1.1 | 1.0 | 1.3 | 120 | 3.9 | - d | [51] |
4 g | 15 (R = OMe) | 40 | 4 | 2.0 | 10 | 0.6 | 0.6 | 1.2 | 134 | 22.7 | - d | [52] |
5 g | 16 | 40 | 4 | 2.0 | 10 | 0.9 | 1.3 | 1.4 | 121 | 15.3 | - d | [53] |
Entry | Catalyst | Monomer | Conc. (mol/L) | Act. b | Mn (104 g/mol) | PDI | BD (/1000C) | Tm (°C) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 c | 6 (R = CF3) | 1-decene | 0.1 | 0.5 | 3.2 | 1.2 | - d | 106 | [40] |
2 e | 11 | 1-hexene | 5.0 | 1.0 | 0.9 | 1.6 | 44 | 106 | [50] |
3 f | 14 (R = Ph) | 1-decene | 0.1 | 0.2 | 1.3 | 1.5 | 26 | 105 | [55] |
4. Pyridine-Imine Nickel and Palladium Catalysts
5. Bis(imino)pyridyl Iron Catalysts
6. Salicylaldimine Nickel Catalysts
7. Nickel and Palladium Catalysts Bearing Other [N,O] Chelate Ligands
8. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Galli, P.; Vecellio, G. Technology: Driving force behind innovation and growth of polyolefins. Prog. Polym. Sci. 2001, 26, 1287–1336. [Google Scholar] [CrossRef]
- Imanishi, Y.; Naga, N. Recent developments in olefin polymerizations with transition metal catalysts. Prog. Polym. Sci. 2001, 26, 1147–1198. [Google Scholar] [CrossRef]
- Berkefeld, A.; Mecking, S. Coordination copolymerization of polar vinyl monomers H2C=CHX. Angew. Chem. Int. Ed. 2008, 47, 2538–2542. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.S.; Shi, X.; Pei, L.; Du, C.; Gao, H.; Qiu, Z.; Gao, H. Alternating copolymerization of carbon monoxide and vinyl arenes using [N,N] bidentate palladium catalysts. J. Polym. Sci. 2022, 60, 1448–1467. [Google Scholar] [CrossRef]
- Zheng, H.; Qiu, Z.; Li, D.; Pei, L.; Gao, H. Advance on nickel- and palladium-catalyzed insertion copolymerization of ethylene and acrylate monomers. J. Polym. Sci. 2023, 61, 2987–3021. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, H.; Gao, H.; Cheng, Z.; Feng, C.; Yang, J.; Gao, H. Recent advances in synthesis of non-alternating polyketone generated by copolymerization of carbon monoxide and ethylene. Int. J. Mol. Sci. 2024, 25, 1348. [Google Scholar] [CrossRef]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100, 1169–1204. [Google Scholar] [CrossRef]
- Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: Relationships between catalyst structures and catalytic properties. Chem. Rev. 2015, 115, 12091–12137. [Google Scholar] [CrossRef]
- Deng, H.; Zheng, H.; Gao, H.; Pei, L.; Gao, H. Late transition metal catalysts with chelating amines for olefin polymerization. Catalysts 2022, 12, 936. [Google Scholar] [CrossRef]
- Younkin, T.R.; Connor, E.F.; Henderson, J.I.; Friedrich, S.K.; Grubbs, R.H.; Bansleben, D.A. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science 2000, 287, 460–462. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.-H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83. [Google Scholar] [CrossRef]
- Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682. [Google Scholar] [CrossRef]
- Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661–5669. [Google Scholar] [CrossRef]
- Zhong, L.; Du, C.; Liao, G.; Liao, H.; Zheng, H.; Wu, Q.; Gao, H. Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with alpha-diimine nickel catalysts. J. Catal. 2019, 375, 113–123. [Google Scholar] [CrossRef]
- Zhong, L.; Zheng, H.; Du, C.; Du, W.; Liao, G.; Cheung, C.S.; Gao, H. Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations. J. Catal. 2020, 384, 208–217. [Google Scholar] [CrossRef]
- Zheng, H.; Zhong, L.; Du, C.; Du, W.; Cheung, C.S.; Ruan, J.; Gao, H. Combining hydrogen bonding interactions with steric and electronic modifications for thermally robust α-diimine palladium catalysts toward ethylene (co)polymerization. Catal. Sci. Technol. 2021, 11, 124–135. [Google Scholar] [CrossRef]
- Zheng, H.; Pei, L.; Deng, H.; Gao, H.; Gao, H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur. Polym. J. 2023, 184, 111773. [Google Scholar] [CrossRef]
- Klabunde, U.; Itten, S.D. Nickel catalysis for ethylene homo- and co-polymerization. J. Mol. Catal. 1987, 41, 123–134. [Google Scholar] [CrossRef]
- Johnson, L.K.; Killian, C.M.; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415. [Google Scholar] [CrossRef]
- Johnson, L.K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc. 1996, 118, 267–268. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C. A continuing legend: The Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem. 2019, 10, 2354–2369. [Google Scholar] [CrossRef]
- Schmid, M.; Eberhardt, R.; Klinga, M.; Leskelä, M.; Rieger, B. New C2v- and chiral C2-symmetric olefin polymerization catalysts based on nickel(II) and palladium(II) diimine complexes bearing 2,6-diphenyl aniline moieties: Synthesis, structural characterization, and first insight into polymerization properties. Organometallics 2001, 20, 2321–2330. [Google Scholar] [CrossRef]
- Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, B. New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design. J. Am. Chem. Soc. 2007, 129, 9182–9191. [Google Scholar] [CrossRef] [PubMed]
- Rhinehart, J.L.; Brown, L.A.; Long, B.K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316–16319. [Google Scholar] [CrossRef]
- Rhinehart, J.L.; Mitchell, N.E.; Long, B.K. Enhancing α-diimine catalysts for high-temperature ethylene polymerization. ACS Catal. 2014, 4, 2501–2504. [Google Scholar] [CrossRef]
- Dai, S.; Sui, X.; Chen, C. Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54, 9948–9953. [Google Scholar] [CrossRef]
- Kanai, Y.; Foro, S.; Plenio, H. Bispentiptycenyl-diimine-nickel complexes for ethene polymerization and copolymerization with polar monomers. Organometallics 2019, 38, 544–551. [Google Scholar] [CrossRef]
- Liao, Y.D.; Zhang, Y.X.; Cui, L.; Mu, H.L.; Jian, Z.B. Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species. Organometallics 2019, 38, 2075–2083. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Mecking, S.; Jian, Z. Ultrahigh branching of main-chain-functionalized polyethylenes by inverted insertion selectivity. Angew. Chem. Int. Ed. 2020, 59, 14296–14302. [Google Scholar] [CrossRef]
- Zhang, D.; Nadres, E.T.; Brookhart, M.; Daugulis, O. Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics 2013, 32, 5136–5143. [Google Scholar] [CrossRef]
- Allen, K.E.; Campos, J.; Daugulis, O.; Brookhart, M. Living polymerization of ethylene and copolymerization of ethylene/methyl acrylate using “sandwich” diimine palladium catalysts. ACS Catal. 2015, 5, 456–464. [Google Scholar] [CrossRef]
- Mu, H.; Zhou, G.; Hu, X.; Jian, Z. Recent advances in nickel mediated copolymerization of olefin with polar monomers. Coord. Chem. Rev. 2021, 435, 213802. [Google Scholar] [CrossRef]
- Daugulis, O.; Zaitsev, V.G. Anilide ortho-arylation by using C–H activation methodology. Angew. Chem. Int. Ed. 2005, 44, 4046–4048. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, V.G.; Shabashov, D.; Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 2005, 127, 13154–13155. [Google Scholar] [CrossRef]
- Nadres, E.T.; Santos, G.I.F.; Shabashov, D.; Daugulis, O. Scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of sp2 and sp3 C–H bonds. J. Org. Chem. 2013, 78, 9689–9714. [Google Scholar] [CrossRef]
- Gates, D.P.; Svejda, S.A.; Oñate, E.; Killian, C.M.; Johnson, L.K.; White, P.S.; Brookhart, M. Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: Influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 2000, 33, 2320–2334. [Google Scholar] [CrossRef]
- Maldanis, R.J.; Wood, J.S.; Chandrasekaran, A.; Rausch, M.D.; Chien, J.C.W. The formation and polymerization behavior of Ni(II) α-diimine complexes using various aluminum activators. J. Org. Chem. 2002, 645, 158–167. [Google Scholar] [CrossRef]
- Cherian, A.E.; Lobkovsky, E.B.; Coates, G.W. Chiral anilines: Development of C2-symmetric, late-transition metal catalysts for isoselective 2-butene polymerization. Chem. Commun. 2003, 2566–2567. [Google Scholar] [CrossRef]
- Cherian, A.E.; Rose, J.M.; Lobkovsky, E.B.; Coates, G.W. A C2-symmetric, living α-diimine Ni(II) catalyst: Regioblock copolymers from propylene. J. Am. Chem. Soc. 2005, 127, 13770–13771. [Google Scholar] [CrossRef]
- Vaidya, T.; Klimovica, K.; LaPointe, A.M.; Keresztes, I.; Lobkovsky, E.B.; Daugulis, O.; Coates, G.W. Secondary alkene insertion and precision chain-walking: A new route to semicrystalline “polyethylene” from α-olefins by combining two rare catalytic events. J. Am. Chem. Soc. 2014, 136, 7213–7216. [Google Scholar] [CrossRef]
- O’Connor, K.S.; Watts, A.; Vaidya, T.; LaPointe, A.M.; Hillmyer, M.A.; Coates, G.W. Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: Synthesis, structure, and properties. Macromolecules 2016, 49, 6743–6751. [Google Scholar] [CrossRef]
- O’Connor, K.S.; Lamb, J.R.; Vaidya, T.; Keresztes, I.; Klimovica, K.; LaPointe, A.M.; Daugulis, O.; Coates, G.W. Understanding the insertion pathways and chain walking mechanisms of α-diimine nickel catalysts for α-olefin polymerization: A 13C NMR spectroscopic investigation. Macromolecules 2017, 50, 7010–7027. [Google Scholar] [CrossRef]
- Padilla-Vélez, O.; O’Connor, K.S.; LaPointe, A.M.; MacMillan, S.N.; Coates, G.W. Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation. Chem. Commun. 2019, 55, 7607–7610. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, Y.; Jian, Z. Tunable branching and living character in ethylene polymerization using “polyethylene glycol sandwich” α-diimine nickel catalysts. Polym. Chem. 2021, 12, 1236–1243. [Google Scholar] [CrossRef]
- Batsanov, S.S. Van der Waals radii of elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Medina, J.T.; Tran, Q.H.; Hughes, R.P.; Wang, X.; Brookhart, M.; Daugulis, O. Ethylene polymerizations catalyzed by fluorinated “sandwich” diimine-nickel and palladium complexes. J. Am. Chem. Soc. 2024, 146, 15143–15154. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Du, W.; Cheung, C.S.; Li, D.; Gao, H.; Deng, H.; Gao, H. Unprecedented square-planar α-diimine dibromonickel complexes and their ethylene polymerizations modulated by Ni–phenyl interactions. Macromolecules 2022, 55, 3533–3540. [Google Scholar] [CrossRef]
- Zheng, H.; Qiu, Z.; Gao, H.; Li, D.; Cheng, Z.; Tu, G.; Gao, H. Noncovalent Ni–phenyl interactions promoted α-diimine nickel-catalyzed copolymerization of ethylene and methyl acrylate. Macromolecules 2024, 57, 5279–5288. [Google Scholar] [CrossRef]
- Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 2019, 11, 872–879. [Google Scholar] [CrossRef]
- Eagan, J.M.; Padilla-Vélez, O.; O’Connor, K.S.; MacMillan, S.N.; LaPointe, A.M.; Coates, G.W. Chain-straightening polymerization of olefins to form polar functionalized semicrystalline polyethylene. Organometallics 2022, 41, 3411–3418. [Google Scholar] [CrossRef]
- Lu, W.; Liao, Y.; Dai, S. Facile access to ultra-highly branched polyethylenes using hybrid “sandwich” Ni(II) and Pd(II) catalysts. J. Catal. 2022, 411, 54–61. [Google Scholar] [CrossRef]
- Dai, S.; Li, S. Effect of aryl orientation on olefin polymerization in iminopyridyl catalytic system. Polymer 2020, 200, 122607. [Google Scholar] [CrossRef]
- Li, S.; Dai, S. Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system. J. Catal. 2021, 393, 51–59. [Google Scholar] [CrossRef]
- Li, S.; Dai, S. 8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems. Polym. Chem. 2020, 11, 7199–7206. [Google Scholar] [CrossRef]
- Dai, S.; Sui, X.; Chen, C. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun. 2016, 52, 9113–9116. [Google Scholar] [CrossRef]
- Chen, Z.; Allen, K.E.; White, P.S.; Daugulis, O.; Brookhart, M. Synthesis of branched polyethylene with “half-sandwich” pyridine-imine nickel complexes. Organometallics 2016, 35, 1756–1760. [Google Scholar] [CrossRef]
- Ge, Y.; Cai, Q.; Wang, Y.; Gao, J.; Chi, Y.; Dai, S. Synthesis of high-molecular-weight branched polyethylene using a hybrid “sandwich” pyridine-imine Ni(II) catalyst. Front. Chem. 2022, 10, 886888. [Google Scholar] [CrossRef]
- Liao, Y.-D.; Cai, Q.; Dai, S.-Y. Synthesis of high molecular weight polyethylene and E-MA copolymers using iminopyridine Ni(II) and Pd(II) complexes containing a flexible backbone and rigid axial substituents. Chin. J. Polym. Sci. 2023, 41, 233–239. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, H.; Qiu, Z.; Zheng, H.; Li, D.; Jiang, L.; Gao, H. π–π Interactions-driven ethylene polymerization using “sandwich” bis(imino)pyridyl iron catalysts. ACS Catal. 2024, 14, 7956–7966. [Google Scholar] [CrossRef]
- Chen, Z.; Mesgar, M.; White, P.S.; Daugulis, O.; Brookhart, M. Synthesis of branched ultrahigh-molecular-weight polyethylene using highly active neutral, single-component Ni(II) catalysts. ACS Catal. 2015, 5, 631–636. [Google Scholar] [CrossRef]
- Ji, P.; Guo, L.; Hu, X.; Li, W. Ethylene polymerization by salicylaldimine nickel(II) complexes derived from arylnaphthylamine. J. Polym. Res. 2017, 24, 30. [Google Scholar] [CrossRef]
- Kenyon, P.; Wörner, M.; Mecking, S. Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene. J. Am. Chem. Soc. 2018, 140, 6685–6689. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kang, X.; Mu, H.; Jian, Z. Positive effect of polar solvents in olefin polymerization catalysis. Macromolecules 2022, 55, 5441–5447. [Google Scholar] [CrossRef]
- Zou, C.; Dai, S.; Chen, C. Ethylene polymerization and copolymerization using nickel 2-iminopyridine-n-oxide catalysts: Modulation of polymer molecular weights and molecular-weight distributions. Macromolecules 2018, 51, 49–56. [Google Scholar] [CrossRef]
- Tran, Q.H.; Brookhart, M.; Daugulis, O. New neutral nickel and palladium sandwich catalysts: Synthesis of ultra-high molecular weight polyethylene (UHMWPE) via highly controlled polymerization and mechanistic studies of chain propagation. J. Am. Chem. 2020, 142, 7198–7206. [Google Scholar] [CrossRef]
- Liang, T.; Goudari, S.B.; Chen, C. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nat. Commun. 2020, 11, 372. [Google Scholar] [CrossRef]
- Small, B.L.; Brookhart, M.; Bennett, A.M.A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; McTavish, S.J.; Solan, G.A.; White, A.J.P.; Williams, D.J.; Britovsek, G.J.P.; Kimberley, B.S.; Maddox, P.J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 849–850. [Google Scholar] [CrossRef]
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar] [CrossRef]
- Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.-H. Access to highly active and thermally stable iron procatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands. Chem. Commun. 2011, 47, 3257–3259. [Google Scholar] [CrossRef]
- Mitchell, N.E.; Anderson, W.C., Jr.; Long, B.K. Mitigating chain-transfer and enhancing the thermal stability of co-based olefin polymerization catalysts through sterically demanding ligands. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3990–3995. [Google Scholar] [CrossRef]
- Schnitte, M.; Scholliers, J.S.; Riedmiller, K.; Mecking, S. Remote perfluoroalkyl substituents are key to living aqueous ethylene polymerization. Angew. Chem. Int. Ed. 2020, 59, 3258–3263. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Daugulis, O.; Brookhart, M. Ethylene polymerization with Ni(II) diimine complexes generated from 8-halo-1-naphthylamines: The role of equilibrating Syn/Anti diastereomers in determining polymer properties. Organometallics 2019, 38, 4658–4668. [Google Scholar] [CrossRef]
- Ge, Y.; Li, S.; Fan, W.; Dai, S. Flexible “sandwich” (8-alkylnaphthyl α-diimine) catalysts in insertion polymerization. Inorg. Chem. 2021, 60, 5673–5681. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Lu, Z.; Dai, S. Flexible axial shielding strategy for the synthesis of high-molecular-weight polyethylene and polar functionalized polyethylene with pyridine-imine Ni(II) and Pd(II) complexes. Organometallics 2022, 41, 2042–2049. [Google Scholar] [CrossRef]
- Klimovica, K.; Kirschbaum, K.; Daugulis, O. Synthesis and properties of “sandwich” diimine-coinage metal ethylene complexes. Organometallics 2016, 35, 2938–2943. [Google Scholar] [CrossRef]
- Liu, C.; Shen, H.-Q.; Chen, M.-W.; Zhou, Y.-G. C2-Symmetric hindered “sandwich” chiral N-heterocyclic carbene precursors and their transition metal complexes: Expedient syntheses, structural authentication, and catalytic properties. Organometallics 2018, 37, 3756–3769. [Google Scholar] [CrossRef]
- Hubbell, A.K.; Lamb, J.R.; Klimovica, K.; Mulzer, M.; Shaffer, T.D.; MacMillan, S.N.; Coates, G.W. Catalyst-controlled regioselective carbonylation of isobutylene oxide to pivalolactone. ACS Catal. 2020, 10, 12537–12543. [Google Scholar] [CrossRef]
- Klimovica, K.; Heidlas, J.X.; Romero, I.; Le, T.V.; Daugulis, O. “Sandwich” diimine-copper catalysts for C–H functionalization by carbene insertion. Angew. Chem. Int. Ed. 2022, 61, e202200334. [Google Scholar] [CrossRef]
- Le, T.V.; Romero, I.; Daugulis, O. “Sandwich” diimine-copper catalyzed trifluoroethylation and pentafluoropropylation of unactivated C(sp3)–H bonds by carbene insertion. Chem. Eur. J. 2023, 29, e202301672. [Google Scholar] [CrossRef]
Entry | Catalyst | T (°C) | P (atm) | Time (h) | Act. a | Mn (105 g/mol) | PDI | BD (/1000C) | Tm (°C) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 b | 13 (R1 = CH3) | 25 | 27.2 | 1 | 12.3 | 0.3 | 1.8 | 48 | 85 | [56] |
2 c | 16 | 30 | 6 | 0.5 | 3.4 | 2 | 1.9 | 87 | −4 | [57] |
3 c | 17 | 30 | 6 | 0.5 | 2.4 | 0.4 | 1.6 | 73 | 54 | [58] |
4 d | 18 (X = CF3) | 30 | 10 | 0.5 | 12.7 | 0.02 | 15.1 | - e | 124 | [59] |
5 f | 20 (R = CF3) | 50 | 40.8 | 0.5 | 9.5 | 12.6 | 2.4 | 6 | 130 | [60] |
6 g | 21 (X = tBu) | 20 | 9 | 0.5 | 6.9 | 5.7 | 1.4 | 23 | 103 | [61] |
7 h | 22 (R1 = R2 = CF3) | 60 | 39.4 | 0.5 | 80.7 | 11.1 | 1.2 | 3.5 | 128 | [62] |
8 i | 23 | 90 | 39.5 | 0.5 | 32.5 | 6.6 | 1.5 | 15 | 108 | [63] |
9 j | 24 | 40 | 8 | 0.5 | 10.0 | 8.4 | 2.6 | 26 | 116 | [64] |
10 k | 25 | 25 | 27.2 | 4 | 2.7 | 41 | 1.2 | 19 | ND | [65] |
11 l | 26 (R = tBu) | 80 | 8 | 1 | 6.0 | 12.3 | 2.0 | 70 | 63.4 | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Wang, W.; Zheng, H.; Wang, D.; Zhao, X.; Tu, G.; Yang, J.; Gao, H. Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines. Inorganics 2024, 12, 277. https://doi.org/10.3390/inorganics12110277
Qiu Z, Wang W, Zheng H, Wang D, Zhao X, Tu G, Yang J, Gao H. Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines. Inorganics. 2024; 12(11):277. https://doi.org/10.3390/inorganics12110277
Chicago/Turabian StyleQiu, Zonglin, Wenyan Wang, Handou Zheng, Dengfei Wang, Xinglong Zhao, Guangshui Tu, Jiahao Yang, and Haiyang Gao. 2024. "Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines" Inorganics 12, no. 11: 277. https://doi.org/10.3390/inorganics12110277
APA StyleQiu, Z., Wang, W., Zheng, H., Wang, D., Zhao, X., Tu, G., Yang, J., & Gao, H. (2024). Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines. Inorganics, 12(11), 277. https://doi.org/10.3390/inorganics12110277