Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism
Abstract
:1. Introduction
2. Results and Discussion
3. Batch Adsorption
3.1. pH
3.2. Adsorbent Dosage
3.3. Dye Concentration
3.4. Contact Time
4. Characterization of the Adsorbent After TB Adsorption
4.1. Adsorption Isotherm and Kinetics
4.2. Mechanism
4.3. Selectivity
4.4. Salt Effect
4.5. Reusability
4.6. Comparison
5. Materials and Methods
5.1. Synthesis of NiZnBi LTH (NZB LTH or NZB)
5.2. Batch Adsorption Study
5.3. Characterization Techniques
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abu Elella, M.H.; Aamer, N.; Abdallah, H.M.; López-Maldonado, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Mohamed, R.R. Novel high-efficient adsorbent based on modified gelatin/montmorillonite nanocomposite for removal of malachite green dye. Sci. Rep. 2024, 14, 1228. [Google Scholar] [CrossRef] [PubMed]
- Zulkiflee, A.; Mansoob Khan, M.; Yusuf Khan, M.; Khan, A.; Hilni Harunsani, M. Nb2O5/BiOCl composite as a visible-light-active photocatalyst for the removal of RhB dye and photoelectrochemical studies. J. Photochem. Photobiol. A 2024, 446, 115177. [Google Scholar] [CrossRef]
- Sriram, G.; Thangarasu, S.; Selvakumar, K.; Kurkuri, M.; Dhineshbabu, N.R.; Oh, T.H. Effective removal of Rose Bengal using Ni-Co-Zn layered triple hydroxide: Studies on batch adsorption, mechanism, selectivity, co-ions, and reusability. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133199. [Google Scholar] [CrossRef]
- Varjani, S.; Rakholiya, P.; Shindhal, T.; Shah, A.V.; Ngo, H.H. Trends in dye industry effluent treatment and recovery of value added products. J. Water Process Eng. 2021, 39, 101734. [Google Scholar] [CrossRef]
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Louis, K.S.; Siegel, A.C. Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods. In Mammalian Cell Viability: Methods and Protocols; Stoddart, M.J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 7–12. [Google Scholar] [CrossRef]
- Abdelkader, E.A.; McBain, V.A.; Anand, M.; Scott, N.W.; Rehman Siddiqui, M.A.; Lois, N. In vivo safety of trypan blue use in vitreoretinal surgery. Retina 2011, 31, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Hussain, B.; Sajad, M.; Usman, H.; Al-Ghanim, K.A.; Riaz, M.N.; Berenjian, A.; Mahboob, S.; Show, P.L. Assessment of hepatotoxicity and nephrotoxicity in Cirrhinus mrigala induced by trypan blue—An azo dye. Environ. Res. 2022, 215, 114120. [Google Scholar] [CrossRef]
- Ledakowicz, S.; Paździor, K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Sriram, G.; Bendre, A.; Mariappan, E.; Altalhi, T.; Kigga, M.; Ching, Y.C.; Jung, H.-Y.; Bhaduri, B.; Kurkuri, M. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism—A review. Sustain. Mater. Technol. 2022, 31, e00378. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Jayamuthunagai, J.; Praveenkumar, R.; Iyyappan, J. Phytoremediation Techniques for the Removal of Dye in Wastewater. In Bioremediation: Applications for Environmental Protection and Management; Varjani, S.J., Agarwal, A.K., Gnansounou, E., Gurunathan, B., Eds.; Springer: Singapore, 2018; pp. 243–252. [Google Scholar] [CrossRef]
- Zafar, A.M.; Naeem, A.; Minhas, M.A.; Hasan, M.J.; Rafique, S.; Ikhlaq, A. Removal of reactive dyes from textile industrial effluent using electrocoagulation in different parametric conditions of aluminum electrodes. Total Environ. Adv. 2024, 9, 200087. [Google Scholar] [CrossRef]
- Madhurima, V.P.; Kumari, K.; Jain, P.K. Synthesis and study of carbon nanomaterials through arc discharge technique for efficient adsorption of organic dyes. Diam. Relat. Mater. 2024, 141, 110538. [Google Scholar] [CrossRef]
- Uğan, M.; Onac, C.; Kaya, A.; Köseoğlu, D.; Akdoğan, A. Removal of Reactive Red 195 dye from textile industry wastewater with Deep Eutectic Solvent-based green extraction. J. Mol. Liq. 2024, 398, 124249. [Google Scholar] [CrossRef]
- Le Nam Vo, V.; Chung, Y.-M. Catalytic wet peroxide oxidation of organic dye with in-situ generated H2O2 over bifunctional Fe-Pt@Pd/SiO2 catalyst prepared by double-metal complex salt approach. Appl. Catal. A 2024, 676, 119640. [Google Scholar] [CrossRef]
- Ciğeroğlu, Z.; El Messaoudi, N.; Şenol, Z.M.; Başkan, G.; Georgin, J.; Gubernat, S. Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: A review. Mater. Today Sustain. 2024, 26, 100735. [Google Scholar] [CrossRef]
- Modwi, A.; Elamin, M.R.; Abdulkhair, B.Y.; Elamin, N.Y.; Ali Ben Aissa, M.; Ben Said, R. Synthesis and characterization of Ti-dopedY2O3@C3N4 nanocomposite for the removal of dyes from aqueous solution. Inorg. Chem. Commun. 2023, 158, 111594. [Google Scholar] [CrossRef]
- Rimzim; Singh, J.; Mittal, S.; Singh, H. Robust removal of cationic dyes by zinc ferrite composites in single and ternary dye systems. Inorg. Chem. Commun. 2023, 153, 110756. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Velicu, M.; Fu, H.; Suri, R.P.S.; Woods, K. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater. J. Hazard. Mater. 2007, 148, 599–605. [Google Scholar] [CrossRef]
- Papić, S.; Koprivanac, N.; Lončarić Božić, A.; Meteš, A. Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dye. Pigment. 2004, 62, 291–298. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Strieder, M.M.; Silva, L.F.O.; dos Reis, G.S.; Dotto, G.L. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int. J. Biol. Macromol. 2024, 270, 132307. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, L.; Guo, Y.; Huang, X.; Guo, Z. High crystalline LDHs with strong adsorption properties effectively remove oil and micro-nano plastics. J. Clean. Prod. 2024, 437, 140628. [Google Scholar] [CrossRef]
- Sarkar, A.; Mushahary, N.; Basumatary, F.; Das, B.; Basumatary, S.F.; Venkatesan, K.; Selvaraj, M.; Rokhum, S.L.; Basumatary, S. Efficiency of montmorillonite-based materials as adsorbents in dye removal for wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 112519. [Google Scholar] [CrossRef]
- Tsoutsa, E.K.; Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. An Update on Agricultural Wastes Used as Natural Adsorbents or Coagulants in Single or Combined Systems for the Removal of Dyes from Wastewater. Water Air Soil Pollut. 2024, 235, 178. [Google Scholar] [CrossRef]
- Akash, S.; Rameshwar, S.S.; Rajamohan, N.; Rajasimman, M.; Vo, D.-V.N. Metal oxide nanobiochar materials to remediate heavy metal and dye pollution: A review. Environ. Chem. Lett. 2024, 22, 2091–2112. [Google Scholar] [CrossRef]
- Njuguna, D.; Schönherr, H. Tunable Gellan Gum Hydrogels as High Capacity Adsorbents for Rapid Dye Removal. ACS Appl. Polym. Mater. 2024, 6, 1528–1539. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, F.; Zhang, X.; Li, M.-C.; Chen, Y.; Hoop, C.F.d.; Qi, J.; Huang, X. Bio-based adsorption foam composed of MOF and polyethyleneimine-modified cellulose for selective anionic dye removal. Environ. Res. 2024, 248, 118263. [Google Scholar] [CrossRef]
- Tamer, T.M.; Abbas, R.; Sadik, W.A.; Omer, A.M.; Abd-Ellatif, M.M.; Mohy-Eldin, M.S. Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model. Sci. Rep. 2024, 14, 1284. [Google Scholar] [CrossRef]
- Koli, A.; Kumar, A.; Pattanshetti, A.; Supale, A.; Garadkar, K.; Shen, J.; Shaikh, J.; Praserthdam, S.; Motkuri, R.K.; Sabale, S. Hierarchical Porous Activated Carbon from Wheat Bran Agro-Waste: Applications in Carbon Dioxide Capture, Dye Removal, Oxygen and Hydrogen Evolution Reactions. ChemPlusChem 2024, 89, e202300373. [Google Scholar] [CrossRef]
- Koli, A.; Battu, A.K.; Motkuri, R.K.; Sabale, S. Hierarchical porous activated carbon derived from agro-waste for potential CO2 capture and efficient dye removal applications. Biomass Convers. Biorefinery 2024, 14, 10177–10188. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Salehi, G.; Rabiee, N. Rapid and efficient removal of methylene blue dye from aqueous solutions using extract-modified Zn–Al LDH. Chemosphere 2024, 350, 141011. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.R.; Danish, M.; Alam, M.G.; Majeed, S.; Alanazi, A.M. A review of pre- and post-surface-modified neem (Azadirachta indica) biomass adsorbent: Surface functionalization mechanism and application. Chemosphere 2024, 351, 141180. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, D.; Fu, R.; Zeng, W. Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dye. Pigment. 2012, 95, 689–694. [Google Scholar] [CrossRef]
- Wu, C.; Li, K.; Ni, X.; He, Y.; Wang, Y.; Ju, A. Efficient Template-Catalyzed In Situ Polymerization for Carbon Xerogels with Large Specific Surface Area and High Adsorption. Langmuir 2024, 40, 9985–9992. [Google Scholar] [CrossRef]
- Kazemi, S.Y.; Pourfaraj, R.; Biparva, P. Synthesis of MgZnAl Layered Triple Hydroxide Nanoplates as an Efficient Adsorbent for Removing the Acid Yellow 76 Azo Dye. ChemistrySelect 2024, 9, e202400789. [Google Scholar] [CrossRef]
- Singh, V.K.; Sett, A.; Karmakar, S. Waste to wealth: Facile activation of red mud waste and insights into industrial reactive dye removal from wastewater. Chem. Eng. J. 2024, 481, 148373. [Google Scholar] [CrossRef]
- Noormohammadi, M.; Zabihi, M.; Faghihi, M. Novel chitosan–clay–iron nanocomposites supported on anodic aluminum as an efficient plate-shaped adsorbent for the removal of arsenic and dye from aqueous solutions. J. Phys. Chem. Solids 2024, 187, 111874. [Google Scholar] [CrossRef]
- Wei, S.; Tan, Z.; Liu, Z.; Zuo, H.; Xia, Y.; Zhang, Y. Removal of methyl orange dye by high surface area biomass activated carbon prepared from bamboo fibers. Ind. Crops Prod. 2024, 218, 118991. [Google Scholar] [CrossRef]
- Wang, A.-L.; Xu, H.; Li, G.-R. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Lett. 2016, 1, 445–453. [Google Scholar] [CrossRef]
- Bahadi, S.A.; Drmosh, Q.A.; Onaizi, S.A. Synergism between polyethyleneimine, graphene oxide, and MgFeAl-layered triple hydroxide in removing acid red 1 dye and bisphenol A from contaminated water samples. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133579. [Google Scholar] [CrossRef]
- Mahmoud, R.; Kotb, N.M.; GadelHak, Y.; El-Ela, F.I.A.; Shehata, A.Z.; Othman, S.I.; Allam, A.A.; Rudayni, H.A.; Zaher, A. Investigation of ternary Zn–Co–Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci. Rep. 2024, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef]
- Daud, M.; Hai, A.; Banat, F.; Wazir, M.B.; Habib, M.; Bharath, G.; Al-Harthi, M.A. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)—Containing hybrids as promising adsorbents for dyes removal. J. Mol. Liq. 2019, 288, 110989. [Google Scholar] [CrossRef]
- Shan, R.; Yan, L.; Yang, K.; Yu, S.; Hao, Y.; Yu, H.; Du, B. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution. Chem. Eng. J. 2014, 252, 38–46. [Google Scholar] [CrossRef]
- Asadi, E.; Haroonian, P.; Ghaedi, M.; Asfaram, A. Removal of tartrazine and indigo carmine with layered double hydroxide-modified graphite nanocomposite: Isotherm, kinetics and response surface methodology (RSM) optimization. J. Mol. Liq. 2024, 402, 124769. [Google Scholar] [CrossRef]
- Gupta, V.; Gupta, S.; Miura, N. Electrochemically synthesized large area network of CoxNiyAlz layered triple hydroxides nanosheets: A high performance supercapacitor. J. Power Sources 2009, 189, 1292–1295. [Google Scholar] [CrossRef]
- Patil, K.; Babar, P.; Bae, H.; Jo, E.; Jang, J.S.; Bhoite, P.; Kolekar, S.; Kim, J.H. Enhanced electrocatalytic activity of a layered triple hydroxide (LTH) by modulating the electronic structure and active sites for efficient and stable urea electrolysis. Sustain. Energy Fuels 2022, 6, 474–483. [Google Scholar] [CrossRef]
- Hamad, H.A.; Nageh, H.; El-Bery, H.M.; Kasry, A.; Carrasco-Marín, F.; Elhady, O.M.; Soliman, A.M.M.; El-Remaily, M.A.E.A.A.A. Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions. J. Colloid Interface Sci. 2021, 599, 227–244. [Google Scholar] [CrossRef]
- Khatun, S.; Roy, P. Cobalt chromium vanadium layered triple hydroxides as an efficient oxygen electrocatalyst for alkaline seawater splitting. Chem. Commun. 2022, 58, 1104–1107. [Google Scholar] [CrossRef]
- Kandasamy, B.; Govindasamy, P.; Thangavelu, P.; Theerthagiri, J.; Min, A.; Choi, M.Y. Improved visible light photocatalytic degradation of yttrium doped NiMgAl layered triple hydroxides for the effective removal of methylene blue dye. Chemosphere 2022, 290, 133299. [Google Scholar] [CrossRef] [PubMed]
- Ismail, U.M.; Onaizi, S.A.; Vohra, M.S. Novel MgCuAl-layered triple hydroxide for aqueous selenite and selenate treatment. Emergent Mater. 2024, 7, 521–532. [Google Scholar] [CrossRef]
- Chowdhury, M.F.; Kim, C.-M.; Jang, A. High-efficient and rapid removal of anionic and cationic dyes using a facile synthesized sole adsorbent NiAlFe-layered triple hydroxide (LTH). Chemosphere 2023, 332, 138878. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, T.; Mao, Y.; Wang, J.; Sun, C. Highly efficient bifunctional layered triple Co, Fe, Ru hydroxides and oxides composite electrocatalysts for Zinc-Air batteries. J. Electroanal. Chem. 2023, 935, 117315. [Google Scholar] [CrossRef]
- Sriram, G.; Dhanabalan, K.; Ajeya, K.V.; Aruchamy, K.; Ching, Y.C.; Oh, T.H.; Jung, H.-Y.; Kurkuri, M. Recent progress in anion exchange membranes (AEMs) in water electrolysis: Synthesis, physio-chemical analysis, properties, and applications. J. Mater. Chem. A 2023, 11, 20886–21008. [Google Scholar] [CrossRef]
- Wang, G.; He, L.; Guo, Z.; Li, M. Ternary metal layered hydroxides: As promising electrode materials for supercapacitors. J. Energy Storage 2023, 72, 108544. [Google Scholar] [CrossRef]
- Alnasrawi, F.A.; Mohammed, A.A.; Al-Musawi, T.J. Synthesis, characterization and adsorptive performance of CuMgAl-layered double hydroxides/montmorillonite nanocomposite for the removal of Zn(II) ions. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100771. [Google Scholar] [CrossRef]
- Xiong, C.; Cao, W.; Long, Q.; Chen, J.; Yu, Y.; Lian, X.; Huang, J.; Du, G.; Chen, N. Etching-induced ion exchange engineering of two-dimensional layered NiFeCo-based hydroxides for high energy charge storage. Dalton Trans. 2024, 53, 1295–1306. [Google Scholar] [CrossRef]
- Al-Jamimi, H.A.; Bahadi, S.A.; BinMakhashen, G.M.; Onaizi, S.A. Optimal hybrid artificial intelligence models for predicting the adsorptive removal of dyes and phenols from aqueous solutions using an amine-functionalized graphene oxide/layered triple hydroxide nanocomposite. J. Mol. Liq. 2023, 391, 123374. [Google Scholar] [CrossRef]
- Abdel-Hady, E.E.; Mohamed, H.F.M.; Hafez, S.H.M.; Fahmy, A.M.M.; Magdy, A.; Mohamed, A.S.; Ali, E.O.; Abdelhamed, H.R.; Mahmoud, O.M. Textural properties and adsorption behavior of Zn–Mg–Al layered double hydroxide upon crystal violet dye removal as a low cost, effective, and recyclable adsorbent. Sci. Rep. 2023, 13, 6435. [Google Scholar] [CrossRef]
- Zaghouane-Boudiaf, H.; Boutahala, M.; Arab, L. Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chem. Eng. J. 2012, 187, 142–149. [Google Scholar] [CrossRef]
- Waheed, T.; Din, S.u.; Ming, L.; Ahmad, P.; Min, P.; Haq, S.; Khandaker, M.U.; Boukhris, I.; Faruque, M.R.I.; Rehman, F.U.; et al. Porous Hierarchical Ni/Mg/Al Layered Double Hydroxide for Adsorption of Methyl Orange from Aqueous Solution. Nanomaterials 2023, 13, 1943. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, S.; Ahn, H.; Koh, Y.; Kim, K.; Lee, M.K.; Lee, J.W.; Kang, Y.T. Investigation on sacrificial hydrolysis reaction of octadecyltrimethoxysilane for moisture resistance enhancement of metal–organic framework. Sep. Purif. Technol. 2024, 350, 127957. [Google Scholar] [CrossRef]
- Yuan, C.; Xiong, S.; Zhang, X.; Shen, L.; Zhang, F.; Gao, B.; Su, L. Template-free synthesis of ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Res. 2009, 2, 722–732. [Google Scholar] [CrossRef]
- Wang, D.; Xu, R.; Wang, X.; Li, Y. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17, 979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Liu, S.; Pan, G.L.; Li, G.R.; Gao, X.P. A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A 2014, 2, 1524–1529. [Google Scholar] [CrossRef]
- Winiarski, J.; Tylus, W.; Winiarska, K.; Szczygieł, I.; Szczygieł, B. XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions. J. Spectrosc. 2018, 2018, 2079278. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L.; Kim, E.J.; Hahn, S.H. Electronic structure and optical properties of Zn(OH)2: LDA + U calculations and intense yellow luminescence. RSC Adv. 2015, 5, 87496–87503. [Google Scholar] [CrossRef]
- Ghaedi, M.; Khafri, H.Z.; Asfaram, A.; Goudarzi, A. Response surface methodology approach for optimization of adsorption of Janus Green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: Kinetic and isotherm study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 152, 233–240. [Google Scholar] [CrossRef]
- Hobosyan, M.A.; Yolchinyan, S.A.; Martirosyan, K.S. A novel nano-energetic system based on bismuth hydroxide. RSC Adv. 2016, 6, 66564–66570. [Google Scholar] [CrossRef]
- Liu, S.; Ren, G.; Gao, X.; Li, Z.; Wang, L.; Meng, X. A novel bismuth hydroxide (Bi(OH)3) semiconductor with highly-efficient photocatalytic activity. Chem. Commun. 2022, 58, 8198–8201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, X.; Tan, Y.; Gao, Y.; Wu, J.; Hu, J.; Stein, A.; Tang, B. A facile approach to prepare Bi(OH)3 nanoflakes as high-performance pseudocapacitor materials. New J. Chem. 2015, 39, 5927–5930. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.-L.; Jiang, W.-F. Solar-driven Bi6O5(OH)3(NO3)5(H2O)3/Bi2WO6 heterojunction for efficient degradation of organic pollutants: Insights into adsorption mechanism, charge transfer and degradation pathway. Sep. Purif. Technol. 2024, 349, 127747. [Google Scholar] [CrossRef]
- Zeng, X.; Cai, Z.; Zhang, C.; Wang, D.; Xu, J.; Wang, X. Novel NiFe-LDH@Ni-MOF/NF heterostructured electrocatalysts for efficient oxygen evolution. Mater. Res. Lett. 2022, 10, 88–96. [Google Scholar] [CrossRef]
- Jian, W.; Jin, Z.; Yang, J.; Meng, G.; Liu, H.; Liu, H. Anticorrosion and antibiofouling performance of in-situ prepared layered double hydroxide coating modified by sodium pyrithione on aluminum alloy 7075. J. Ind. Eng. Chem. 2022, 113, 419–430. [Google Scholar] [CrossRef]
- Manríquez, M.E.; Hernández-Cortez, J.G.; Wang, J.A.; Chen, L.F.; Zuñiga-Moreno, A.; Gómez, R. Synthesis of transition metal doped lamellar double hydroxides as base catalysts for acetone aldol condensation. Appl. Clay Sci. 2015, 118, 188–194. [Google Scholar] [CrossRef]
- Xu, J.; Song, Y.; Tan, Q.; Jiang, L. Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides. J. Mater. Sci. 2017, 52, 5908–5916. [Google Scholar] [CrossRef]
- Abo El-Reesh, G.Y.; Farghali, A.A.; Taha, M.; Mahmoud, R.K. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci. Rep. 2020, 10, 587. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Chen, Y.; Liu, T.; Liu, C.; Zhang, X.; Yi, M.; Chu, Z.; Han, X. A novel three-dimensional hierarchical CuAl layered double hydroxide with excellent catalytic activity for degradation of methyl orange. RSC Adv. 2017, 7, 29051–29057. [Google Scholar] [CrossRef]
- Spectroscopy of Carboxylic Acids and Nitriles. Available online: https://chem.libretexts.org/@go/page/448775 (accessed on 8 November 2024).
- Kudo, S.; Nakashima, S. Changes in IR band areas and band shifts during water adsorption to lecithin and ceramide. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 228, 117779. [Google Scholar] [CrossRef]
- Nait-Merzoug, A.; Guellati, O.; Djaber, S.; Habib, N.; Harat, A.; El-Haskouri, J.; Begin, D.; Guerioune, M. Ni/Zn Layered Double Hydroxide (LDH) Micro/Nanosystems and Their Azorubine Adsorption Performance. Appl. Sci. 2021, 11, 8899. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xu, Y.; Zhao, L.; Deng, M.; Yang, P.; Peng, G.; Ke, G. Preparation of ZnNiAl-LDHs microspheres and their adsorption behavior and mechanism on U(VI). Sci. Rep. 2021, 11, 21625. [Google Scholar] [CrossRef] [PubMed]
- Rego, R.M.; Sriram, G.; Ajeya, K.V.; Jung, H.-Y.; Kurkuri, M.D.; Kigga, M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. J. Hazard. Mater. 2021, 416, 125941. [Google Scholar] [CrossRef]
- Lade, H.; Kadam, A.; Paul, D.; Govindwar, S. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium. Int. J. Environ. Res. Public Health 2015, 12, 3480–3505. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.K. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2004, 113, 81–88. [Google Scholar] [CrossRef]
- Zubair, M.; Aziz, H.A.; Ahmad, M.A.; Ihsanullah, I.; Al-Harthi, M.A. Adsorption and reusability performance of M-Fe (M = Co, Cu, Zn and Ni) layered double hydroxides for the removal of hazardous Eriochrome Black T dye from different water streams. J. Water Process Eng. 2021, 42, 102060. [Google Scholar] [CrossRef]
- Tabti, H.A.; Ammam, A.; Guezzen, B.; Boudinar, M.; Kadeche, A.; Ramdani, A.; Doumi, B.; Ech-Chergui, A.N.; Boudia, R.A.; Adjdir, M. Exploring the potential of Cu-LDHs composite for efficient Coomassie brilliant blue dye removal: Evaluating adsorption isotherms and antibacterial activity. Res. Chem. Intermed. 2024, 50, 2793–2825. [Google Scholar] [CrossRef]
- Sardi, A.; Bounaceur, B.; Mokhtar, A.; Boukoussa, B.; Abbes, M.T.; Chaibi, W.; Nacer, A.; Khadidja, K.B.; Issam, I.; Iqbal, J.; et al. Kinetics and Thermodynamic Studies for Removal of Trypan Blue and Methylene Blue from Water Using Nano Clay Filled Composite of HTAB and PEG and its Antibacterial Activity. J. Polym. Environ. 2023, 31, 5065–5088. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Nikitha, M.; Pandi, K.; Meenakshi, S.; Park, C.M. Effective and selective removal of organic pollutants from aqueous solutions using 1D hydroxyapatite-decorated 2D reduced graphene oxide nanocomposite. J. Mol. Liq. 2021, 331, 115795. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Cicek, S.; Gungor, A.A. Removing Trypan blue dye using nano-Zn modified Luffa sponge. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 2–8. [Google Scholar] [CrossRef]
- Priyadarshini, B.; Patra, T.; Sahoo, T.R. An efficient and comparative adsorption of Congo red and Trypan blue dyes on MgO nanoparticles: Kinetics, thermodynamics and isotherm studies. J. Magnes. Alloys 2021, 9, 478–488. [Google Scholar] [CrossRef]
- Sismanoglu, T.; Aroguz, A.Z. Adsorption kinetics of diazo-dye from aqueous solutions by using natural origin low-cost biosorbents. Desalination Water Treat. 2015, 54, 736–743. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Ye, X.; Hu, K.; Zhong, H.; Yu, J.; Jin, M.; Guo, Z. A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Appl. Surf. Sci. 2014, 308, 82–90. [Google Scholar] [CrossRef]
- Prabhu, S.M.; Khan, A.; Hasmath Farzana, M.; Hwang, G.C.; Lee, W.; Lee, G. Synthesis and characterization of graphene oxide-doped nano-hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. J. Mol. Liq. 2018, 269, 746–754. [Google Scholar] [CrossRef]
Adsorbent | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
qmax (mg·g−1) | KL (L·mg−1) | RL | R2 | 1/n | KF (mg·g−1) | R2 | |
NZB LTH | 5.3 | 2.06 | 0.088 to 0.015 | 0.998 | 0.256 | 3.022 | 0.792 |
Adsorbent | Pseudo-First-Order | Pseudo-Second-Order | ||||||
---|---|---|---|---|---|---|---|---|
C0 (mg·L−1) | qe, exp (mg·g−1) | (min−1) | qe, cal (mg·g−1) | R2 | K2 (g·mg−1·min−1) | qe, cal (mg·g−1) | R2 | |
NZB LTH | 10 | 2.99 | 0.022 | 0.70 | 0.945 | 0.165 | 3.03 | 0.999 |
20 | 4.58 | 0.026 | 3.54 | 0.920 | 0.026 | 5.36 | 0.994 | |
30 | 5.16 | 0.031 | 4.34 | 0.912 | 0.020 | 6.13 | 0.996 |
1st Stage | 2nd Stage | 1st Stage | 2nd Stage | 1st Stage | 2nd Stage | ||
---|---|---|---|---|---|---|---|
NZB LTH | 10 mg·L−1 | Kint1 | Kint2 | C1 | C2 | R21 | R22 |
0.137 | 0.015 | 1.989 | 2.808 | 0.980 | 0.905 | ||
20 mg·L−1 | Kint1 | Kint2 | C1 | C2 | R21 | R22 | |
0.228 | 0.124 | 2.431 | 3.595 | 0.997 | 0.999 | ||
30 mg·L−1 | Kint1 | Kint2 | C1 | C2 | R21 | R22 | |
0.449 | 0.129 | 1.841 | 4.235 | 0.921 | 0.999 |
Adsorbents | Dye | Dye Concentration | pH | Volume (mL) | Dosage (g) | qmax (mg·g−1) | Ref. |
---|---|---|---|---|---|---|---|
MMT@HTAB@PEG | Trypan blue | 20–120 mg·L−1 | 2.0 | 50 | 0.03 | 267.3 | [91] |
HA@rGO | Trypan blue | 50 mg·L−1 | Natural | 50 | 0.1 | 146.5 | [92] |
LS-Zn | Trypan blue | 10–200 mg·L−1 | 7.0 | 50 | 1.0 | 129.8 | [93] |
MgO | Trypan blue | 15–45 mg·L−1 | 5.4 | 50 | 0.02 | 93.5 | [94] |
PMB | Trypan blue | 1000 mg·L−1 | 7.5 | 10 | 0.1 | 72.5 | [95] |
PDDA/GO | Trypan blue | 0.001–1 mM | 6.0 | 0.5 | 0.001 | 50.0 | [96] |
GO-nHAp | Trypan blue | 50–200 mg·L−1 | 6.7 | 25 | 0.05 | 41.0 | [97] |
NZB LTH | Trypan blue | 5–30 mg·L−1 | ~4.5–5.0 | 25 | 0.08 | 5.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriram, G.; Baby, N.; Dhanabalan, K.; Arunpandian, M.; Selvakumar, K.; Sadhasivam, T.; Oh, T.H. Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism. Inorganics 2024, 12, 296. https://doi.org/10.3390/inorganics12110296
Sriram G, Baby N, Dhanabalan K, Arunpandian M, Selvakumar K, Sadhasivam T, Oh TH. Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism. Inorganics. 2024; 12(11):296. https://doi.org/10.3390/inorganics12110296
Chicago/Turabian StyleSriram, Ganesan, Nimisha Baby, Karmegam Dhanabalan, Muthuraj Arunpandian, Karuppaiah Selvakumar, Thangarasu Sadhasivam, and Tae Hwan Oh. 2024. "Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism" Inorganics 12, no. 11: 296. https://doi.org/10.3390/inorganics12110296
APA StyleSriram, G., Baby, N., Dhanabalan, K., Arunpandian, M., Selvakumar, K., Sadhasivam, T., & Oh, T. H. (2024). Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism. Inorganics, 12(11), 296. https://doi.org/10.3390/inorganics12110296