Efficient Catalytic Reduction of Organic Pollutants Using Nanostructured CuO/TiO2 Catalysts: Synthesis, Characterization, and Reusability
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-Ray Diffraction
2.2. Thermal Analysis Measurement
2.3. ATR–FTIR Spectroscopy
2.4. UV–Vis Diffuse Reflectance Spectroscopy
2.5. SEM–EDS Analysis
2.6. Catalytic Reduction of 4-NP and MO by a CuO/TiO2 Catalyst
2.6.1. Kinetic Study
Pollutant | Catalyst | k′ (s−1 g−1) | Time (min) | Conditions | Reference | ||
---|---|---|---|---|---|---|---|
NaBH4 (M) | Pollutant (M) | Catalyst Mass (mg) | |||||
4-Nitrophenol (4-NP) | Cu10/MZ | 5.00 | 10 | 0.0045 | 0.0000675 | 1 | [22] |
Cu10/ZSM-5 | 1.17 | 50 | 0.0045 | 0.0000675 | 1 | [22] | |
CuO/TiO2 | 6.46 | 8 | 0.014 | 0.00035 | 2 | This work | |
Cu NPs@Fe3O4-LS | 1.87 | 3 | 0.125 | 0.00125 | 7 | [4] | |
MnO@Cu/C | 17.33 | 1.5 | 0.0193 | 0.0008 | 4 | [16] | |
C@Cu | 59.00 | 1 | 0.033 | 0.00014 | 1 | [49] | |
Cu-Ag/GP | 0.40 | 10 | 0.0714 | 0.000857 | 10 | [50] | |
Cu-Ni/GP | 0.60 | 7 | 0.0714 | 0.000857 | 10 | [50] | |
CuVOS@SiO2-3 | 1.57 | 2 | 0.00528 | 0.00014377 | 5 | [51] | |
CuVOS-3 | 8.20 | 2 | 0.00582 | 0.000138 | 5 | [52] | |
Methyl orange (MO) | C@Cu | 62.00 | 1 | 0.033 | 0.000061 | 1 | [49] |
CuO/TiO2 | 8.98 | 7 | 0.014 | 0.00035 | 2 | This work | |
Cu-Ag/GP | 0.77 | 4 | 0.0714 | 0.00004286 | 10 | [50] | |
Cu-Ni/GP | 0.38 | 5 | 0.0714 | 0.00004286 | 10 | [50] | |
CuVOS@SiO2-3 | 1.37 | 4 | 0.00528 | 0.0003055 | 5 | [51] | |
CuVOS-3 | 6.47 | 2 | 0.00582 | 0.00029 | 5 | [52] |
Catalyst | kapp (s−1) | k′ (s−1g−1) |
5 wt.% CuO/TiO2 | 0.00175 | 17.5 |
10 wt.% CuO/TiO2 | 0.00175 | 8.7 |
20 wt.% CuO/TiO2 | 0.00328 | 8.2 |
30 wt.% CuO/TiO2 | 0.00308 | 5.1 |
40 wt.% CuO/TiO2 | 0.00512 | 6.4 |
Catalyst | kapp (s−1) | k′ (s−1g−1) |
5 wt.% CuO/TiO2 | 0.00150 | 15.0 |
10 wt.% CuO/TiO2 | 0.00126 | 6.3 |
20 wt.% CuO/TiO2 | 0.00479 | 12.0 |
30 wt.% CuO/TiO2 | 0.00546 | 9.1 |
40 wt.% CuO/TiO2 | 0.00727 | 8.9 |
2.6.2. Effects of Parameters and Reusability
3. Materials and Methods
3.1. Synthesis of the CuO/TiO2 Catalysts
3.2. Catalytic Reduction of Organic Pollutants
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szymczyk, A.; van der Bruggen, B.; Ulbricht, M. Surface Modification of Water Purification Membranes. In Surface Modification of Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 363–398. ISBN 978-3-527-81924-9. [Google Scholar]
- Bilal, M.; Khan, S.; Ali, J.; Ismail, M.; Khan, M.I.; Asiri, A.M.; Khan, S.B. Biosynthesized Silver Supported Catalysts for Disinfection of Escherichia Coli and Organic Pollutant from Drinking Water. J. Mol. Liq. 2019, 281, 295–306. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.B.; Akhtar, K.; Khan, M.A.; Asiri, A.M. Catalytic Reduction of Picric Acid, Nitrophenols and Organic Azo Dyes via Green Synthesized Plant Supported Ag Nanoparticles. J. Mol. Liq. 2018, 268, 87–101. [Google Scholar] [CrossRef]
- Nezafat, Z.; Karimkhani, M.M.; Nasrollahzadeh, M.; Javanshir, S.; Jamshidi, A.; Orooji, Y.; Jang, H.W.; Shokouhimehr, M. Facile Synthesis of Cu NPs@Fe3O4-Lignosulfonate: Study of Catalytic and Antibacterial/Antioxidant Activities. Food Chem. Toxicol. 2022, 168, 113310. [Google Scholar] [CrossRef] [PubMed]
- Munagapati, V.S.; Yarramuthi, V.; Kim, D.-S. Methyl Orange Removal from Aqueous Solution Using Goethite, Chitosan Beads and Goethite Impregnated with Chitosan Beads. J. Mol. Liq. 2017, 240, 329–339. [Google Scholar] [CrossRef]
- Albukhari, S.M.; Ismail, M.; Akhtar, K.; Danish, E.Y. Catalytic Reduction of Nitrophenols and Dyes Using Silver Nanoparticles @ Cellulose Polymer Paper for the Resolution of Waste Water Treatment Challenges. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 548–561. [Google Scholar] [CrossRef]
- El-Aal, M.A.; Said, A.E.-A.A.; Goda, M.N.; Abo Zeid, E.F.; Ibrahim, S.M. Fe3O4@CMC-Cu Magnetic Nanocomposite as an Efficient Catalyst for Reduction of Toxic Pollutants in Water. J. Mol. Liq. 2023, 385, 122317. [Google Scholar] [CrossRef]
- Ghorbani-Vaghei, R.; Veisi, H.; Aliani, M.H.; Mohammadi, P.; Karmakar, B. Alginate Modified Magnetic Nanoparticles to Immobilization of Gold Nanoparticles as an Efficient Magnetic Nanocatalyst for Reduction of 4-Nitrophenol in Water. J. Mol. Liq. 2021, 327, 114868. [Google Scholar] [CrossRef]
- Kaid, M.; Ali, A.E.; Shamsan, A.Q.S.; Younes, S.M.; Abdel-Raheem, S.A.A.; Abdul-Malik, M.A.; Salem, W.M. Efficiency of Maturation Oxidation Ponds as a Post-Treatment Technique of Wastewater. Curr. Chem. Lett. 2022, 11, 415–422. [Google Scholar] [CrossRef]
- Lajevardi, A.; Tavakkoli Yaraki, M.; Masjedi, A.; Nouri, A.; Hossaini Sadr, M. Green Synthesis of MOF@Ag Nanocomposites for Catalytic Reduction of Methylene Blue. J. Mol. Liq. 2019, 276, 371–378. [Google Scholar] [CrossRef]
- Zhang, K.; Suh, J.M.; Choi, J.-W.; Jang, H.W.; Shokouhimehr, M.; Varma, R.S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4, 483–495. [Google Scholar] [CrossRef]
- Landge, V.K.; Sonawane, S.H.; Manickam, S.; Bhaskar Babu, G.U.; Boczkaj, G. Ultrasound-Assisted Wet-Impregnation of Ag–Co Nanoparticles on Cellulose Nanofibers: Enhanced Catalytic Hydrogenation of 4-Nitrophenol. J. Environ. Chem. Eng. 2021, 9, 105719. [Google Scholar] [CrossRef]
- Mekki, A.; Mokhtar, A.; Hachemaoui, M.; Beldjilali, M.; Meliani, M.F.; Zahmani, H.H.; Hacini, S.; Boukoussa, B. Fe and Ni Nanoparticles-Loaded Zeolites as Effective Catalysts for Catalytic Reduction of Organic Pollutants. Microporous Mesoporous Mater. 2021, 310, 110597. [Google Scholar] [CrossRef]
- Omole, M.A.; K’Owino, I.O.; Sadik, O.A. Palladium Nanoparticles for Catalytic Reduction of Cr(VI) Using Formic Acid. Appl. Catal. B Environ. 2007, 76, 158–167. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Priya, V.S.; Balakumar, V.; Prabavathi, S.L.; Muthuraj, V. Noble Metal Nanoparticles (Mx = Ag, Au, Pd) Decorated Graphitic Carbon Nitride Nanosheets for Ultrafast Catalytic Reduction of Anthropogenic Pollutant, 4-Nitrophenol. Environ. Res. 2022, 212, 113185. [Google Scholar] [CrossRef]
- Shokry, R.; Abd El Salam, H.M.; Aman, D.; Mikhail, S.; Zaki, T.; El Rouby, W.M.A.; Farghali, A.A.; Al Zoubi, W.; Ko, Y.G. MOF-Derived Core–Shell MnO@Cu/C as High-Efficiency Catalyst for Reduction of Nitroarenes. Chem. Eng. J. 2023, 459, 141554. [Google Scholar] [CrossRef]
- Alencar, L.M.; Silva, A.W.B.N.; Trindade, M.A.G.; Salvatierra, R.V.; Martins, C.A.; Souza, V.H.R. One-Step Synthesis of Crumpled Graphene Fully Decorated by Copper-Based Nanoparticles: Application in H2O2 Sensing. Sens. Actuators B Chem. 2022, 360, 131649. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Prabowo, B.A.; Winarko, R. Bionanotechnology: The Formation of Copper Nanoparticles Assisted by Biological Agents and Their Applications as Antimicrobial and Antiviral Agents. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100703. [Google Scholar] [CrossRef]
- Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Thanh Hai, N.T.; Viet, N.M.; Nguyen, V.-H. New Frontiers in the Plant Extract Mediated Biosynthesis of Copper Oxide (CuO) Nanoparticles and Their Potential Applications: A Review. Environ. Res. 2022, 203, 111858. [Google Scholar] [CrossRef]
- Godiya, C.B.; Kumar, S.; Park, B.J. Superior Catalytic Reduction of Methylene Blue and 4-Nitrophenol by Copper Nanoparticles-Templated Chitosan Nanocatalyst. Carbohydr. Polym. Technol. Appl. 2023, 5, 100267. [Google Scholar] [CrossRef]
- Patil, D.; Manjanna, J.; Chikkamath, S.; Uppar, V.; Chougala, M. Facile Synthesis of Stable Cu and CuO Particles for 4-Nitrophenol Reduction, Methylene Blue Photodegradation and Antibacterial Activity. J. Hazard. Mater. Adv. 2021, 4, 100032. [Google Scholar] [CrossRef]
- Aslam, S.; Subhan, F.; Waqas, M.; Zifeng, Y.; Yaseen, M.; Naeem, M. Cu Nanoparticles Confined within ZSM-5 Derived Mesoporous Silica (MZ) with Enhanced Stability for Catalytic Hydrogenation of 4-Nitrophenol and Degradation of Azo Dye. Microporous Mesoporous Mater. 2023, 354, 112547. [Google Scholar] [CrossRef]
- Patra, A.K.; Dutta, A.; Bhaumik, A. Cu Nanorods and Nanospheres and Their Excellent Catalytic Activity in Chemoselective Reduction of Nitrobenzenes. Catal. Commun. 2010, 11, 651–655. [Google Scholar] [CrossRef]
- Taherian, Z.; Khataee, A.; Han, N.; Orooji, Y. Hydrogen Production through Methane Reforming Processes Using Promoted-Ni/Mesoporous Silica: A Review. J. Ind. Eng. Chem. 2022, 107, 20–30. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Cui, Z.; Yu, X.; Zhang, X.; Orooji, Y.; Zhang, Q.; Chen, L.; Ma, L. In Situ Synthesis of Cu Nanoparticles on Carbon for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol by Using Pomelo Peel as the Carbon Source. ACS Sustain. Chem. Eng. 2020, 8, 12944–12955. [Google Scholar] [CrossRef]
- Ningsih, L.A.; Yoshida, M.; Sakai, A.; Andrew Lin, K.-Y.; Wu, K.C.W.; Catherine, H.N.; Ahamad, T.; Hu, C. Ag-Modified TiO2/SiO2/Fe3O4 Sphere with Core-Shell Structure for Photo-Assisted Reduction of 4-Nitrophenol. Environ. Res. 2022, 214, 113690. [Google Scholar] [CrossRef]
- Tran, X.T.; Hussain, M.; Kim, H.T. Facile and Fast Synthesis of a Reduced Graphene Oxide/Carbon Nanotube/Iron/Silver Hybrid and Its Enhanced Performance in Catalytic Reduction of 4–Nitrophenol. Solid State Sci. 2020, 100, 106107. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-Supported Nanocomposites for Environmental Application: A Review. Chem. Eng. J. 2011, 170, 381–394. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Khan, S.B.; Maslamani, N.; Danish, E.Y.; Akhtar, K.; Asiri, A.M. Carboxymethyl Cellulose/Copper Oxide–Titanium Oxide Based Nanocatalyst Beads for the Reduction of Organic and Inorganic Pollutants. Polymers 2023, 15, 1502. [Google Scholar] [CrossRef]
- Liao, X.; Zheng, L.; He, Q.; Li, G.; Zheng, L.; Li, H.; Tian, T. Fabrication of Ag/TiO2 Membrane on Ti Substrate with Integral Structure for Catalytic Reduction of 4-Nitrophenol. Process Saf. Environ. Prot. 2022, 168, 792–799. [Google Scholar] [CrossRef]
- Hassan, F.; Abbas, A.; Ali, F.; Nazir, A.; Al Huwayz, M.; Alwadai, N.; Iqbal, M.; Ali, Z. Bio-Mediated Synthesis of Cu-TiO2 Nanoparticles Using Phoenix Dactylifera Lignocellulose as Capping and Reducing Agent for the Catalytic Degradation of Toxic Dyes. Desalination Water Treat. 2023, 298, 53–60. [Google Scholar] [CrossRef]
- Kaur, R.; Pal, B. Cu Nanostructures of Various Shapes and Sizes as Superior Catalysts for Nitro-Aromatic Reduction and Co-Catalyst for Cu/TiO2 Photocatalysis. Appl. Catal. A Gen. 2015, 491, 28–36. [Google Scholar] [CrossRef]
- Akbari, R. Green Synthesis and Catalytic Activity of Copper Nanoparticles Supported on TiO2 as a Highly Active and Recyclable Catalyst for the Reduction of Nitro-Compounds and Degradation of Organic Dyes. J. Mater. Sci. Mater. Electron. 2021, 32, 15801–15813. [Google Scholar] [CrossRef]
- Khodadadi, B.; Yeganeh Faal, A.; Shahvarughi, A. Tilia Platyphyllos Extract Assisted Green Synthesis of CuO/TiO2 Nanocomposite: Application as a Reusable Catalyst for the Reduction of Organic Dyes in Water. Journal of Applied Chemical Research 2019, 13, 51–65. [Google Scholar]
- Tian, X.; Dong, Y.; Zahid, M. One-Pot Synthesis of CuO/TiO Nanocomposites for Improved Photocatalytic Hydrogenation of 4-Nitrophenol to 4-Aminophenol under Direct Sunlight. J. Chin. Chem. Soc. 2023, 70, 848–856. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Wang, J.; Xu, B.; Zhang, X.; Fan, G.; Zhou, L.; Liu, X.; Zhang, K.; Jiang, W. Binary CuO/TiO2 Nanocomposites as High-Performance Catalysts for Tandem Hydrogenation of Nitroaromatics. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127383. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Ha, C.A.; Nguyen, D.T.; Nguyen, T. Green Fabrication of Heterostructured CoTiO3/TiO2 Nanocatalysts for Efficient Photocatalytic Degradation of Cinnamic Acid. ACS Omega 2022, 7, 40163–40175. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Chang, Y.-H.; Yang, W.-D.; Tsai, B.-S. Synthesis and Characterization of Ilmenite NiTiO3 and CoTiO3 Prepared by a Modified Pechini Method. J. Non-Cryst. Solids 2006, 352, 789–794. [Google Scholar] [CrossRef]
- Bopape, D.A.; Mathobela, S.; Matinise, N.; Motaung, D.E.; Hintsho-Mbita, N.C. Green Synthesis of CuO-TiO2 Nanoparticles for the Degradation of Organic Pollutants: Physical, Optical and Electrochemical Properties. Catalysts 2023, 13, 163. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Y.; Zhan, E.; Ta, N.; Shen, W. Anatase TiO2 Hollow Nanosheets: Dual Roles of F−, Formation Mechanism, and Thermal Stability. CrystEngComm 2014, 16, 3431–3437. [Google Scholar] [CrossRef]
- Li, B.; Hao, Y.; Zhang, B.; Shao, X.; Hu, L. A Multifunctional Noble-Metal-Free Catalyst of CuO/TiO2 Hybrid Nanofibers. Appl. Catal. A Gen. 2017, 531, 1–12. [Google Scholar] [CrossRef]
- Angel, R.D.; Durán-Álvarez, J.C.; Zanella, R.; Angel, R.D.; Durán-Álvarez, J.C.; Zanella, R. TiO2-Low Band Gap Semiconductor Heterostructures for Water Treatment Using Sunlight-Driven Photocatalysis. In Titanium Dioxide—Material for a Sustainable Environment; IntechOpen: London, UK, 2018; ISBN 978-1-78923-327-8. [Google Scholar]
- Sirohi, S.; Mittal, A.; Nain, R.; Jain, N.; Singh, R.; Dobhal, S.; Pani, B.; Parida, D. Effect of Nanoparticles Shape on Conductivity of Ag Nanoparticle PVA Composite Films. Polym. Int. 2019, 68, 1961–1967. [Google Scholar] [CrossRef]
- Vidhu, V.K.; Philip, D. Catalytic Degradation of Organic Dyes Using Biosynthesized Silver Nanoparticles. Micron 2014, 56, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, Y.; Yang, Z.; Huang, D.; Xu, S.; Wang, T.; Su, Y.; Hu, N.; Zhang, Y. In Situ Preparation of Magnetic Ni-Au/Graphene Nanocomposites with Electron-Enhanced Catalytic Performance. J. Alloys Compd. 2017, 706, 377–386. [Google Scholar] [CrossRef]
- Lin, F.; Doong, R. Bifunctional Au−Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. J. Phys. Chem. C 2011, 115, 6591–6598. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Jabbari, V.; El-Gendy, A.A.; Curry, M.L.; Noveron, J.C. Ultrafast Catalytic Reduction of Environmental Pollutants in Water via MOF-Derived Magnetic Ni and Cu Nanoparticles Encapsulated in Porous Carbon. Appl. Surf. Sci. 2019, 497, 143608. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.B.; Khan, M.A.; Akhtar, K.; Asiri, A.M. Green Synthesis of Plant Supported CuAg and CuNi Bimetallic Nanoparticles in the Reduction of Nitrophenols and Organic Dyes for Water Treatment. J. Mol. Liq. 2018, 260, 78–91. [Google Scholar] [CrossRef]
- Sun, H.; Abdeta, A.B.; Zelekew, O.A.; Guo, Y.; Zhang, J.; Kuo, D.-H.; Lin, J.; Chen, X. Spherical Porous SiO2 Supported CuVOS Catalyst with an Efficient Catalytic Reduction of Pollutants under Dark Condition. J. Mol. Liq. 2020, 313, 113567. [Google Scholar] [CrossRef]
- Sun, H.; Zelekew, O.A.; Chen, X.; Guo, Y.; Kuo, D.-H.; Lu, Q.; Lin, J. A Noble Bimetal Oxysulfide CuVOS Catalyst for Highly Efficient Catalytic Reduction of 4-Nitrophenol and Organic Dyes. RSC Adv. 2019, 9, 31828–31839. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, S.B.; Asiri, A.M. Catalytic Efficiency of Copper Nanoparticles Modified Silica-Alginate Hydrogel Nanocomposite towards Reduction of Water Pollutants and H2 Generation. Int. J. Hydrogen Energy 2023, 48, 6399–6417. [Google Scholar] [CrossRef]
- Yang, K.; Yan, Y.; Wang, H.; Sun, Z.; Chen, W.; Kang, H.; Han, Y.; Zahng, W.; Sun, X.; Li, Z. Monodisperse Cu/Cu2O@C Core–Shell Nanocomposite Supported on RGO Layers as an Efficient Catalyst Derived from a Cu-Based MOF/GO Structure. Nanoscale 2018, 10, 17647–17655. [Google Scholar] [CrossRef] [PubMed]
Catalyst | TiO2 | 5 wt.% CuO | 10 wt.% CuO | 20 wt.% CuO | 30 wt.% CuO | 40 wt.% CuO |
---|---|---|---|---|---|---|
Band gap (eV) | 3.02 | 2.91 | 2.86 | 2.73 | 2.65 | 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouri, M.; Benzaouak, A.; Zaaboul, F.; Sifou, A.; Dahhou, M.; El Belghiti, M.A.; Azzaoui, K.; Hammouti, B.; Rhazi, L.; Sabbahi, R.; et al. Efficient Catalytic Reduction of Organic Pollutants Using Nanostructured CuO/TiO2 Catalysts: Synthesis, Characterization, and Reusability. Inorganics 2024, 12, 297. https://doi.org/10.3390/inorganics12110297
Abouri M, Benzaouak A, Zaaboul F, Sifou A, Dahhou M, El Belghiti MA, Azzaoui K, Hammouti B, Rhazi L, Sabbahi R, et al. Efficient Catalytic Reduction of Organic Pollutants Using Nanostructured CuO/TiO2 Catalysts: Synthesis, Characterization, and Reusability. Inorganics. 2024; 12(11):297. https://doi.org/10.3390/inorganics12110297
Chicago/Turabian StyleAbouri, Mariyem, Abdellah Benzaouak, Fatima Zaaboul, Aicha Sifou, Mohammed Dahhou, Mohammed Alaoui El Belghiti, Khalil Azzaoui, Belkheir Hammouti, Larbi Rhazi, Rachid Sabbahi, and et al. 2024. "Efficient Catalytic Reduction of Organic Pollutants Using Nanostructured CuO/TiO2 Catalysts: Synthesis, Characterization, and Reusability" Inorganics 12, no. 11: 297. https://doi.org/10.3390/inorganics12110297
APA StyleAbouri, M., Benzaouak, A., Zaaboul, F., Sifou, A., Dahhou, M., El Belghiti, M. A., Azzaoui, K., Hammouti, B., Rhazi, L., Sabbahi, R., Alanazi, M. M., & El Hamidi, A. (2024). Efficient Catalytic Reduction of Organic Pollutants Using Nanostructured CuO/TiO2 Catalysts: Synthesis, Characterization, and Reusability. Inorganics, 12(11), 297. https://doi.org/10.3390/inorganics12110297