ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Pure and Cerium Modified ZnO Powders
2.2. Tribocatalysis for the Degradation of Doxycycline via ZnO and ZnO/Ce Powders
2.3. Tribocatalysis for Degradation of Doxycycline via Different Magnetic Stirring Speeds
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narayanan, D.; Bhat, M.; Paul, N.; Khatri, N.; Saroliya, A. Artificial intelligence driven advances in wastewater treatment: Evaluating techniques for sustainability and efficacy in global facilities. Desalin. Water Treat. 2024, 320, 100618. [Google Scholar] [CrossRef]
- Hamedani, E.; Abasalt, A.; Talebi, S. Application of microbial fuel cells in wastewater treatment and green energy production: A comprehensive review of technology fundamentals and challenges. Fuel 2024, 370, 131855. [Google Scholar] [CrossRef]
- Astira, D.; Abdullah, R.; Widyanto, A.; Dharma, H.; Santoso, L.; Sulistiono, D.; Rahmawati, Z.; Gunawan, T.; Jaafar, J.; Othman, M.; et al. A recent development on core-shell-based material and their application in membranes for water and wastewater treatment. Inorg. Chem. Commun. 2024, 160, 111678. [Google Scholar] [CrossRef]
- Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D.; Sun, J.; Fan, M. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020, 399, 123017. [Google Scholar] [CrossRef]
- Yu, S.; Xie, Z.; Wu, X.; Zheng, Y.; Shi, Y.; Xiong, Z.; Zhou, P.; Liu, Y.; He, C.; Pan, Z.; et al. Review of advanced oxidation processes for treating hospital sewage to achieve decontamination and disinfection. Chin. Chem. Lett. 2024, 35, 108714. [Google Scholar] [CrossRef]
- Ani, I.; Akpan, U.; Olutoye, M.; Hameed, B.; Egbosiuba, T. Adsorption–photocatalysis synergy of reusable mesoporous TiO2–ZnO for photocatalytic degradation of doxycycline antibiotic. Heliyon 2024, 10, e30531. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, K.; Yildiz, Z.; Khalily, M.; Huh, Y.; Han, Y.; Uyar, T. Membrane-based electrospun poly-cyclodextrin nanofibers coated with ZnO nanograins by ALD: Ultrafiltration blended photocatalysis for degradation of organic micropollutants. J. Membr. Sci. 2023, 686, 122002. [Google Scholar] [CrossRef]
- Mahlangu, O.; Mamba, G.; Mamba, B. A facile synthesis approach for GO-ZnO/PES ultrafiltration mixed matrix photocatalytic membranes for dye removal in water: Leveraging the synergy between photocatalysis and membrane filtration. J. Environ. Chem. Eng. 2023, 11, 110065. [Google Scholar] [CrossRef]
- Dyshlyuk, L.; Babich, O.; Ivanova, S.; Vasilchenco, N.; Atuchin, V.; Korolkov, I.; Russakov, D.; Prosekov, A. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int. Biodeterior. Biodegrad. 2020, 146, 104821. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Chen, S.; Guan, J.; Guo, Y.; Yu, W. 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants. Catal. Commun. 2023, 176, 106627. [Google Scholar] [CrossRef]
- Roy, N.; Kannabiran, K.; Mukherjee, A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. Chemosphere 2023, 333, 138912. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Haddao, K.; Emami, N.; Nalchifard, F.; Hussain, W.; Jasem, H.; Dawood, A.; Toghraie, D.; Hekmatifar, M. Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. Sustain. Chem. Pharm. 2022, 29, 100757. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Yu, D. Metal-containing covalent organic framework: A new type of photo/electrocatalyst. Rare Met. 2022, 41, 1160–1175. [Google Scholar] [CrossRef]
- Feng, A.; Yang, M.; Zhang, Z.; Xia, H.; Jin, W.; Shen, B.; Hu, Y.; Li, Q. Electrocatalytic hydrogen evolution coupled with dye hydrogenation reactions for sustainable wastewater treatment using transition-metal (Fe, Co, Ni, Cu) nanoparticles with ZnO nanowire supports. Chem. Eng. J. 2024, 496, 153751. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Xu, B.; Xing, B.; Yi, G.; Huang, G.; Zhang, C.; Liu, J. Microbial degradation of organic pollutants in groundwater related to underground coal gasification. Energy Sci. Eng. 2019, 7, 2098–2111. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhu, X.; Ruan, Q.; Li, D.; Huang, C.; Peng, Q.; Zhu, S.; Gao, X.; Wang, B.; et al. Halogen-doped ultrathin Bi2WO6 for promoted separation of photogenerated carriers and efficient photocatalysis. Colloids Surf. A 2024, 695, 134113. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions. Acta Phys. Chim. Sin. 2023, 39, 2209037. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Sun, Y.; Sun, S.; Ge, L. Photogenerated charge carriers’ regulation strategies: Structure design, mechanism, and characterization technology. Int. J. Hydrogen Energy 2024, 69, 1341–1365. [Google Scholar] [CrossRef]
- Ali, Y.; Azzouz, A.; Ahrouch, M.; Lamaoui, A.; Raza, N.; Lahcen, A. Molecular imprinting technology for next-generation water treatment via photocatalysis and selective pollutant adsorption. J. Environ. Chem. Eng. 2024, 12, 112768. [Google Scholar]
- Lei, H.; Wu, M.; Mo, F.; Ji, S.; Dong, X.; Wu, Z.; Gao, J.; Yang, Y.; Jia, Y. Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy 2020, 78, 105290. [Google Scholar] [CrossRef]
- Gaur, A.; Moharana, A.; Porwal, C.; Chauhan, V.; Vaish, R. Degradation of organic dyes by utilizing CaCu3Ti4O12 (CCTO) nanoparticles via tribocatalysis process. J. Ind. Eng. Chem. 2024, 129, 341–351. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, W.; Qiu, J.; Jin, H.; Ma, H.; Li, Z.; Cang, D. Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process. J. Clean. Prod. 2018, 197, 297–305. [Google Scholar] [CrossRef]
- Xiong, H.; Zou, D.; Zhou, D.; Dong, S.; Wang, J.; Rittmann, B. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem. Eng. J. 2017, 316, 7–14. [Google Scholar] [CrossRef]
- Klauson, D.; Poljakova, A.; Pronina, N.; Krichevskaya, M.; Moiseev, A.; Dedova, T.; Preis, S. Aqueous photocatalytic oxidation of doxycycline. J. Adv. Oxid. Technol. 2013, 16, 234–243. [Google Scholar] [CrossRef]
- Boro, B.; Samdarshi, B.; Rajbongshi, S. Synthesis and fabrication of TiO2–ZnO nanocomposite based solid state dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 2016, 27, 9929–9940. [Google Scholar] [CrossRef]
- Bolobajev, J.; Trapido, M.; Goi, A. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition. Chemosphere 2016, 153, 220–226. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, K.; Chen, B.; Chang, C. Graphene/TiO2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity. Appl. Surf. Sci. 2016, 362, 329–334. [Google Scholar] [CrossRef]
- Ada, K.; Gökgöz, M.; Önal, M.; Sarıkaya, Y. Preparation and characterization of a ZnO powder with the hexagonal plate particles. Powder Technol. 2008, 181, 285–291. [Google Scholar] [CrossRef]
- Kumar, S.; Kavitha, R. Lanthanide ions doped ZnO based photocatalysts. Sep. Purif. Technol. 2021, 274, 118853. [Google Scholar] [CrossRef]
- Eaimsumang, S.; Wongkasemjit, S.; Pongstabodee, S.; Smith, S.M.; Ratanawilai, S.; Chollacoop, N.; Luengnaruemitchai, A. Effect of synthesis time on morphology of CeO2 nanoparticles and Au/CeO2 and their activity in oxidative steam reforming of methanol. J. Rare Earths 2019, 37, 819–828. [Google Scholar] [CrossRef]
- Qu, G.; Fan, G.; Zhou, M.; Rong, X.; Li, T.; Zhang, R.; Sun, J.; Chen, D. Graphene-Modified ZnO Nanostructures for Low-Temperature NO2 Sensing. ACS Omega 2019, 4, 4221–4232. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Li, A.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceram. Int. 2021, 47, 24218–24226. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Duan, L.; Shen, H.; Liu, R. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. J. Photochem. Photobiol. A 2020, 392, 112156. [Google Scholar] [CrossRef]
- Peleš, A.; Pavlović, V.P.; Filipović, S.; Obradović, N.; Mančić, L.; Krstić, J.; Mitrić, M.; Vlahović, B.; Rašić, G.; Kosanović, D.; et al. Structural investigation of mechanically activated ZnO powder. J. Alloys Compd. 2015, 648, 971–979. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, R.; Zhang, Y.; Zhou, B.; Sun, P.; Dong, X. Unveiling the Mechanism of Frictional Catalysis in Water by Bi(12)TiO(20): A Charge Transfer and Contaminant Decomposition Path Study. Langmuir 2022, 38, 14153–14161. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, Z.; Luo, W.; Zheng, Y.; Jia, Y.; Wang, L.; Huang, H. High pyrocatalytic properties of pyroelectric BaTiO3 nanofibers loaded by noble metal under roomtemperature thermal cycling. Ceram. Int. 2018, 44, 21835–21841. [Google Scholar] [CrossRef]
- Al Abri, R.; Al Marzouqi, F.; Kuvarega, A.T.; Meetani, M.A.; Al Kindy, S.M.Z.; Karthikeyan, S.; Kim, Y.; Selvaraj, R. Nanostructured cerium-doped ZnO for photocatalytic degradation of pharmaceuticals in aqueous solution. J. Photochem. Photobiol. A 2019, 384, 112065. [Google Scholar] [CrossRef]
- Lei, H.; Cui, X.; Jia, X.; Qi, J.; Wang, Z.; Chen, W. Enhanced Tribocatalytic Degradation of Organic Pollutants by ZnO Nanoparticles of High Crystallinity. Nanomaterials 2023, 13, 46. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 2018, 193, 1143–1148. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Liu, M.; He, G.; Li, X. Enhanced tribocatalytic degradation performance of organic pollutants by Cu1.8S/CuCo2S4 p-n junction. J. Colloid Interface Sci. 2024, 655, 187–198. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Xiang, R.; Zhou, C.; Liu, Y.; Qin, T.; Li, D.; Dong, X.; Muddassir, M.; Zhong, A. A new type Co(II)-based photocatalyst for the nitrofurantoin antibiotic degradation. J. Mol. Struct. 2024, 1312, 138501. [Google Scholar] [CrossRef]
- Pourmoslemi, S.; Mohammadi, A.; Kobarfard, F.; Amini, M. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: A comparison between UV-C and visible light. Water Sci. Technol. 2016, 74, 1658–1670. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
Sample Powders | 100 rpm | 300 rpm | 500 rpm | |||
---|---|---|---|---|---|---|
k, h−1 | D, % | k, h−1 | D, % | k, h−1 | D, % | |
ZnO | 0.0296 | 49 | 0.0483 | 67 | 0.0725 | 80 |
ZnO/Ce | 0.0119 | 24 | 0.0168 | 30 | 0.0352 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, D.; Kolev, H.; Stefanov, B.I.; Kaneva, N. ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics 2024, 12, 244. https://doi.org/10.3390/inorganics12090244
Ivanova D, Kolev H, Stefanov BI, Kaneva N. ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics. 2024; 12(9):244. https://doi.org/10.3390/inorganics12090244
Chicago/Turabian StyleIvanova, Dobrina, Hristo Kolev, Bozhidar I. Stefanov, and Nina Kaneva. 2024. "ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic" Inorganics 12, no. 9: 244. https://doi.org/10.3390/inorganics12090244
APA StyleIvanova, D., Kolev, H., Stefanov, B. I., & Kaneva, N. (2024). ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics, 12(9), 244. https://doi.org/10.3390/inorganics12090244