Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hirshfeld Surface Analysis
2.2. DFT Optimization of Structures
2.3. QTAIM Analysis
2.4. Protein and DNA Binding Properties of Complexes
3. Materials and Methods
3.1. Hirshfeld Surface Analysis
3.2. Quantum-Chemical Analysis
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barone, G.; Terenzi, A.; Lauria, A.; Almerico, A.M.; Leal, J.M.; Busto, N.; García, B. DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships. Coord. Chem. Rev. 2013, 257, 2848–2862. [Google Scholar] [CrossRef]
- Jamieson, E.R.; Lippard, S.J. Structure, Recognition, and Processing of Cisplatin–DNA Adducts. Chem. Rev. 1999, 99, 2467–2498. [Google Scholar] [CrossRef] [PubMed]
- Todd, R.C.; Lippard, S.J. Inhibition of transcription by platinum antitumor compounds. Metallomics 2009, 1, 280. [Google Scholar] [CrossRef] [PubMed]
- Busto, N.; Valladolid, J.; Martínez-Alonso, M.; Lozano, H.J.; Jalón, F.A.; Manzano, B.R.; Rodríguez, A.M.; Carrión, M.C.; Biver, T.; Leal, J.M.; et al. Anticancer Activity and DNA Binding of a Bifunctional Ru(II) Arene Aqua-Complex with the 2,4-Diamino-6-(2-pyridyl)-1,3,5-triazine Ligand. Inorg. Chem. 2013, 52, 9962–9974. [Google Scholar] [CrossRef]
- Sigel, A.; Sigel, H.; Sigel, R.K.O. (Eds.) Nickel and Its Surprising Impact in Nature; Wiley: Hoboken, NJ, USA, 2007; ISBN 9780470016718. [Google Scholar]
- Alper, P.; Erkisa, M.; Genckal, H.M.; Sahin, S.; Ulukaya, E.; Ari, F. Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J. Mol. Struct. 2019, 1196, 783–792. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, J.; Bai, Y.; Pan, G.; Wang, H.; Shu, X. Synthesis, structure, DNA-binding properties and antioxidant activity of a nickel(II) complex with bis(N-allylbenzimidazol-2-ylmethyl)benzylamine. J. Photochem. Photobiol. B Biol. 2012, 107, 65–72. [Google Scholar] [CrossRef]
- Maia, D.O.; Santos, V.F.; Barbosa, C.R.S.; Fróes, Y.N.; Muniz, D.F.; Santos, A.L.E.; Santos, M.H.C.; Silva, R.R.S.; Silva, C.G.L.; Souza, R.O.S.; et al. Nickel(II) chloride schiff base complex: Synthesis, characterization, toxicity, antibacterial and leishmanicidal activity. Chem. Biol. Interact. 2022, 351, 109714. [Google Scholar] [CrossRef]
- Alomar, K.; Landreau, A.; Allain, M.; Bouet, G.; Larcher, G. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: Unsymmetrical coordination mode of nickel complex. J. Inorg. Biochem. 2013, 126, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral Activity of Thiosemicarbazone Metal Complexes. J. Med. Chem. 2010, 53, 8765–8769. [Google Scholar] [CrossRef]
- Talib, J.; Harman, D.G.; Dillon, C.T.; Aldrich-Wright, J.; Beck, J.L.; Ralph, S.F. Does the metal influence non-covalent binding of complexes to DNA? Dalt. Trans. 2009, 3, 504–513. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jovanović, L.S.; Jevtović, V.S.; Pelosi, G.; Bisceglie, F. Transition metal complexes with thiosemicarbazide-based ligand—Part LV: Synthesis and X-ray structural study of novel Ni(II) complexes with pyridoxal semicarbazone and pyridoxal thiosemicarbazone. Polyhedron 2007, 26, 2971–2978. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jevtović, V.S.; Jovanović, L.S.; Bogdanović, G.A. Metal complexes with schiff-base ligands—Pyridoxal and semicarbazide-based derivatives. J. Serbian Chem. Soc. 2005, 70, 393–422. [Google Scholar] [CrossRef]
- West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. Thiosemicarbazone complexes of copper(II): Structural and biological studies. Coord. Chem. Rev. 1993, 123, 49–71. [Google Scholar] [CrossRef]
- Lobana, T.S.; Butcher, R.J. Metal—Thiosemicarbazone interactions. Synthesis of an iodo-bridged dinuclear [diiodobis(pyrrole-2-carbaldehydethiosemicarbazone)dicopper(I)] complex. Transit. Met. Chem. 2004, 29, 291–295. [Google Scholar]
- Jevtovic, V.; Golubović, L.; Alshammari, B.; Alshammari, M.R.; Rajeh, S.Y.; Alreshidi, M.A.; Alshammari, O.A.O.; Rakić, A.; Dimić, D. Crystal Structure, Theoretical Analysis, and Protein/DNA Binding Activity of Iron(III) Complex Containing Differently Protonated Pyridoxal–S-Methyl-Isothiosemicarbazone Ligands. Int. J. Mol. Sci. 2024, 25, 7058. [Google Scholar] [CrossRef]
- Jevtovic, V.; Alshamari, A.K.; Milenković, D.; Dimitrić Marković, J.; Marković, Z.; Dimić, D. The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int. J. Mol. Sci. 2023, 24, 11910. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jovanović, L.S.; Divjaković, V.; Pevec, A.; Leban, I.; Armbruster, T. Transition metal complexes with thiosemicarbazide-based ligands. Part LIV. Nickel(II) complexes with pyridoxal semi- (PLSC) and thiosemicarbazone (PLTSC). Crystal and molecular structure of [Ni(PLSC)(H2O)3](NO3)2 and [Ni(PLTSC-H)py]NO3. Polyhedron 2007, 26, 49–58. [Google Scholar] [CrossRef]
- Jevtovic, V.; Vidovic, D. Synthesis, characterization and X-Ray crystal structure of the tri aqua (3-Hydroxy-5-Hydroxymethyl-2-Methylpyridine-4-Carboxaldehyde-3-Methylisotiosemicarbazone: K3, O3, N7, N10) Ni(II) nitrate. J. Chem. Crystallogr. 2010, 40, 794–798. [Google Scholar] [CrossRef]
- Jevtovic, V.; Alshammari, N.; Latif, S.; Alsukaibi, A.K.D.; Humaidi, J.; Alanazi, T.Y.A.; Abdulaziz, F.; Matalka, S.I.; Pantelić, N.Đ.; Marković, M.; et al. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Molecules 2022, 27, 6322. [Google Scholar] [CrossRef]
- Ferrari Belicchi, M.; Fava Gasparri, G.; Leporati, E.; Pelizzi, C.; Tarasconi, P.; Tosi, G. Thiosemicarbazones as co-ordinating agents. Solution chemistry and X-ray structure of pyridoxal thiosemicarbazone trihydrate and spectroscopic properties of its metal complexes. J. Chem. Soc. Dalt. Trans. 1986, 3, 2455–2461. [Google Scholar]
- Leovac, V.M.; Marković, S.; Divjaković, V.; Szécsényi, K.M.; Joksović, M.D.; Lebanc, I. Structural and DFT studies on molecular structure of Ni(II) chloride complex with pyridoxal semicarbazone (PLSC). Unusual coordination mode of PLSC. Acta Chim. Slov. 2008, 55, 850–860. [Google Scholar]
- Jevtovic, V.; Alhar, M.S.O.; Milenković, D.; Marković, Z.; Dimitrić Marković, J.; Dimić, D. Synthesis, Structural Characterization, Cytotoxicity, and Protein/DNA Binding Properties of Pyridoxylidene-Aminoguanidine-Metal (Fe, Co, Zn, Cu) Complexes. Int. J. Mol. Sci. 2023, 24, 14745. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, O.A.O.; Maisara, S.; Alshammari, B.; Alshammari, M.R.; Rakic, V.; Dimitrić Marković, J.; Jevtovic, V.; Dimić, D. Theoretical Insights into Different Complexation Modes of Dioxovanadium(V) Compounds with Pyridoxal Semicarbazone/Thiosemicarbazone/S-Methyl-iso-thiosemicarbazone Ligands. Molecules 2024, 29, 1213. [Google Scholar] [CrossRef] [PubMed]
- Gak Simić, K.; Đorđević, I.; Lazić, A.; Radovanović, L.; Petković-Benazzouz, M.; Rogan, J.; Trišović, N.; Janjić, G. On the supramolecular outcomes of fluorination of cyclohexane-5-spirohydantoin derivatives. CrystEngComm 2021, 23, 2606–2622. [Google Scholar] [CrossRef]
- Gall, M.; Breza, M. QTAIM study of transition metal complexes with cyclophosphazene-based multisite ligands I: Zinc(II) and nickel(II) complexes. Polyhedron 2009, 28, 521–524. [Google Scholar] [CrossRef]
- Karaush, N.N.; Baryshnikov, G.V.; Minaeva, V.A.; Minaev, B.F. A DFT and QTAIM study of the novel d-block metal complexes with tetraoxa[8]circulene-based ligands. New J. Chem. 2015, 39, 7815–7821. [Google Scholar] [CrossRef]
- Caramori, G.F.; Parreira, R.L.T.; Ferreira, A.M.D.C. Isatin-Schiff base copper(II) complexes—A DFT study of the metal-ligand bonding situation. Int. J. Quantum Chem. 2012, 112, 625–646. [Google Scholar] [CrossRef]
- Pitchumani Violet Mary, C.; Shankar, R.; Vijayakumar, S. Theoretical insights into the metal chelating and antimicrobial properties of the chalcone based Schiff bases. Mol. Simul. 2019, 45, 636–645. [Google Scholar] [CrossRef]
- Kargar, H.; Ashfaq, M.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K.S.; Tahir, M.N. Unsymmetrical Ni(II) Schiff base complex: Synthesis, spectral characterization, crystal structure analysis, Hirshfeld surface investigation, theoretical studies, and antibacterial activity. J. Mol. Struct. 2022, 1265, 133381. [Google Scholar] [CrossRef]
- Guelai, A.; Brahim, H.; Guendouzi, A.; Boumediene, M.; Brahim, S. Structure, electronic properties, and NBO and TD-DFT analyses of nickel(II), zinc(II), and palladium(II) complexes based on Schiff-base ligands. J. Mol. Model. 2018, 24, 301. [Google Scholar] [CrossRef]
- Dikmen, G.; Kani, İ. Synthesis, spectroscopic characterization (FT-IR, Raman, UV-VIS, XRD), DFT studies and DNA binding properties of [Ni(C6H5CH2COO)(C12H8N2)2](ClO4)(CH3OH) compound. J. Mol. Struct. 2020, 1209, 127955. [Google Scholar] [CrossRef]
- Kasalović, M.P.; Jelača, S.; Milanović, Ž.; Maksimović-Ivanić, D.; Mijatović, S.; Lađarević, J.; Božić, B.; Marković, Z.; Dunđerović, D.; Rüffer, T.; et al. Novel triphenyltin(iv) compounds with carboxylato N -functionalized 2-quinolones as promising potential anticancer drug candidates: In vitro and in vivo evaluation. Dalt. Trans. 2024, 53, 8298–8314. [Google Scholar] [CrossRef]
- Soliman, S.M.; Albering, J.; Abu-Youssef, M.A.M. Structural analyses of two new highly distorted octahedral copper(II) complexes with quinoline-type ligands; Hirshfeld, AIM and NBO studies. Polyhedron 2017, 127, 36–50. [Google Scholar] [CrossRef]
- Lepetit, C.; Vabre, B.; Canac, Y.; Alikhani, M.E.; Zargarian, D. Pentacoordinated, square pyramidal cationic PCP Ni(II) pincer complexes: ELF and QTAIM topological analyses of nickel–triflate interactions. Theor. Chem. Acc. 2018, 137, 141. [Google Scholar] [CrossRef]
- Bianchi, R.; Gervasio, G.; Marabello, D. Experimental Electron Density Analysis of Mn 2 (CO) 10: Metal–Metal and Metal–Ligand Bond Characterization. Inorg. Chem. 2000, 39, 2360–2366. [Google Scholar] [CrossRef]
- Sánchez-Coronilla, A.; Sánchez-Márquez, J.; Zorrilla, D.; Martín, E.I.; de los Santos, D.M.; Navas, J.; Fernández-Lorenzo, C.; Alcántara, R.; Martín-Calleja, J. Convergent study of Ru–ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes. Mol. Phys. 2014, 112, 2063–2077. [Google Scholar] [CrossRef]
- Uribe, E.A.; Daza, M.C.; Villaveces, J.L.; Delgado, S.A. On the nature of copper–hydrogen bonding: AIM and NBO analysis of CuHn (1 ≤ n ≤ 6) complexes. Int. J. Quantum Chem. 2010, 110, 524–531. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Slee, T.S.; Cremer, D.; Kraka, E. Description of conjugation and hyperconjugation in terms of electron distributions. J. Am. Chem. Soc. 1983, 105, 5061–5068. [Google Scholar] [CrossRef]
- Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life (Int. Union Biochem. Mol. Biol. Life) 2005, 57, 787–796. [Google Scholar] [CrossRef]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497–503. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; Byrom, P.G. A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- Abdulaziz, F.; Alabbosh, K.F.; Alshammari, O.A.O.; Bin Tuwalah, W.M.; Alanazi, T.Y.A.; Rakić, A.; Barić, M.; Marković, M.; Jevtovic, V.; Dimić, D. Crystallographic Structure and Quantum-Chemical Analysis of Biologically Active Co(III)-Pyridoxal–Isothiosemicarbazone Complex. Inorganics 2023, 11, 466. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Macit, M.; Tanak, H.; Orbay, M.; Özdemir, N. Synthesis, crystal structure, spectroscopic characterization and DFT studies of bis[(1Z,2E)-N-(2,6-diethylphenyl)-N′-hydroxy-2-(hydroxyimino)acetimidamidato]nickel(II). Inorg. Chim. Acta 2017, 459, 36–44. [Google Scholar] [CrossRef]
- Genc, Z.K.; Tekin, S.; Sandal, S.; Sekerci, M.; Genc, M. Synthesis and DFT studies of structural and some spectral parameters of nickel(II) complex with 2-(2-hydroxybenzoyl)-N-(1-adamantyl) hydrazine carbothioamide. Res. Chem. Intermed. 2015, 41, 4477–4488. [Google Scholar] [CrossRef]
- Rahnamaye Aliabad, H.A.; Chahkandi, M. Optoelectronic and structural studies of a Ni(II) complex including bicyclic guanidine ligands: DFT calculations. Comput. Theor. Chem. 2017, 1122, 53–61. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. TK Gristmill Software. AIMAll (Version 19.10.12), Overland Park, KS, USA, 2019. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct 2020, 15, 12. [Google Scholar] [CrossRef]
- Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin. Anatomy of drug site I. J. Biol. Chem. 2001, 276, 22804–22809. [Google Scholar] [CrossRef]
- Drewt, H.R.; Wingtt, R.M.; Takanot, T.; Brokat, C.; Tanakat, S.; Itakuraii, K.; Dickersont, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981, 78, 2179–2183. [Google Scholar]
Contact | [Ni(PLSC)(H2O)3]∙2NO3− | [Ni(PLTSC)2]∙2NO3−∙H2O | [Ni(PLITSC)(H2O)3]∙2NO3− |
---|---|---|---|
O∙∙∙H | 49.7 | 36.3 | 43.8 |
H∙∙∙H | 31.5 | 27.4 | 36.1 |
N∙∙∙H | 3.4 | 4.7 | 2.4 |
C∙∙∙H | 5.5 | 9.7 | 3.9 |
O∙∙∙N | 1.9 | 1.8 | 0.5 |
O∙∙∙O | 1.7 | 0.6 | / |
O∙∙∙C | 4.1 | 1.3 | 4.0 |
N∙∙∙C | 1.4 | 0.5 | / |
S∙∙∙H | / | 10.4 | 2.2 |
S∙∙∙C | / | 2.8 | 2.0 |
S∙∙∙O | / | 0.3 | 1.8 |
S∙∙∙N | / | 0.9 | 1.0 |
Complex Cation | BE [kJ mol−1] | Electron Configuration Ni | Charge Ni | Charge Oarom | Charge Nazomethine | Charge X | Charge Owater |
---|---|---|---|---|---|---|---|
[Ni(PLSC)(H2O)3]2+ | −981 | 4s0.23 3d8.27 4p0.40 | 1.096 | −0.710 | −0.300 | −0.668 (O) | −0.906/−0.891/−0.906 |
[Ni(PLTSC)(H2O)3]2+ | −854 | 4s0.27 3d8.32 4p0.51 | 0.899 | −0.697 | −0.287 | −0.053 (S) | −0.900/−0.890/−0.900 |
[Ni(PLITSC)(H2O)3]2+ | −850 | 4s0.24 3d8.28 4p0.43 | 1.045 | −0.718 | −0.285 | −0.794 (N) | −0.889/−0.898/−0.898 |
[Ni(PLSC)2]2+ | −2122 | 4s0.26 3d8.29 4p0.44 | 1.003 | −0.676/−0.675 | −0.280/−0.279 | −0.637/−0.637 (O) | / |
[Ni(PLTSC)2]2+ | −2082 | 4s0.33 3d8.39 4p0.64 | 0.639 | −0.656/0.654 | −0.264/−0.261 | −0.024/−0.024 (S) | / |
[Ni(PLITSC)2]2+ | −2150 | 4s0.28 3d8.31 4p0.49 | 0.916 | −0.667/−0.667 | −0.267/−0.267 | −0.736/−0.736 (N) | / |
Bond | ρ(r) [a.u.] | ∇2ρ(r) [a.u.] | G(r) [kJ mol−1] | V(r) [kJ mol−1] | H(r) [kJ mol−1] | −G(r)/V(r) | Ebond [kJ mol−1] | H(r) [a.u.]/ρ(r) [a.u.] |
---|---|---|---|---|---|---|---|---|
[Ni(PLSC)(H2O)3]2+ | ||||||||
Ni–Oaliph | 0.059 | 0.404 | 250.8 | −236.4 | 14.4 | 1.1 | −118.2 | 0.09 |
[Ni(PLTSC)(H2O)3]2+ | ||||||||
Ni–S | 0.054 | 0.190 | 134.9 | −144.7 | −9.9 | 0.9 | −72.4 | −0.07 |
[Ni(PLITSC)(H2O)3]2+ | ||||||||
Ni–Namino | 0.071 | 0.398 | 271.7 | −282.0 | −10.2 | 1.0 | −141.0 | −0.05 |
[Ni(PLSC)2]2+ | ||||||||
Ni–Oaliph 1 | 0.052 | 0.347 | 210.1 | −192.4 | 17.7 | 1.1 | −96.2 | 0.13 |
Ni–Oaliph 2 | 0.052 | 0.347 | 210.2 | −192.5 | 17.7 | 1.1 | −96.2 | 0.13 |
[Ni(PLTSC)2]2+ | ||||||||
Ni–S 1 | 0.047 | 0.168 | 114.8 | −119.2 | −4.4 | 1.0 | −590.5 | −0.04 |
Ni–S 2 | 0.047 | 0.167 | 114.3 | −118.7 | −4.4 | 1.0 | −59.3 | −0.04 |
[Ni(PLITSC)2]2+ | ||||||||
Ni–Namino 1 | 0.060 | 0.344 | 224.1 | −222.3 | 1.9 | 1.0 | −111.1 | 0.01 |
Ni–Namino 2 | 0.060 | 0.344 | 224.1 | −222.2 | 1.9 | 1.0 | −111.1 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevtovic, V.; Rakić, A.; Alshammari, O.A.O.; Alhar, M.S.; Alenezi, T.; Rakic, V.; Dimić, D. Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems. Inorganics 2024, 12, 251. https://doi.org/10.3390/inorganics12090251
Jevtovic V, Rakić A, Alshammari OAO, Alhar MS, Alenezi T, Rakic V, Dimić D. Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems. Inorganics. 2024; 12(9):251. https://doi.org/10.3390/inorganics12090251
Chicago/Turabian StyleJevtovic, Violeta, Aleksandra Rakić, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Alenezi, Violeta Rakic, and Dušan Dimić. 2024. "Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems" Inorganics 12, no. 9: 251. https://doi.org/10.3390/inorganics12090251
APA StyleJevtovic, V., Rakić, A., Alshammari, O. A. O., Alhar, M. S., Alenezi, T., Rakic, V., & Dimić, D. (2024). Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems. Inorganics, 12(9), 251. https://doi.org/10.3390/inorganics12090251