Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Tests
2.2. Nitrogen Physisorption
2.3. X-ray Diffraction
2.4. Transmission Electron Microscopy Investigation
2.5. X-ray Photoelectron Spectroscopy
2.6. Oxygen Temperature-Programmed Desorption and Temperature-Programmed Reduction by Propane
2.7. Fourier Transform Infrared Spectroscopy
3. Materials and Methods
3.1. Catalyst Sample Synthesis
3.2. Characterization Techniques
3.3. Catalytic Activity Investigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tokode, O.; Radhakrishna, P.; Lawton, L.A.; Robertson, P.K. Controlled periodic illumination in semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 2016, 319–320, 96–106. [Google Scholar] [CrossRef]
- Bethi, B.; Shirish, H.; Sonawane, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process. Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Sudha, D.; Sivakumar, P. Review on the photocatalytic activity of various composite catalysts. Chem. Eng. Process. Process Intensif. 2015, 97, 112–133. [Google Scholar] [CrossRef]
- Chang, X.; Li, Z.; Zhai, X.; Sun, S.; Gu, D.; Dong, L.; Yin, Y.S.; Yanqiu, Z. Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Mater. Des. 2016, 98, 324–332. [Google Scholar] [CrossRef]
- Hemalatha, P.; Karthick, S.N.; Hemalatha, K.V.; Yi, M.; Kim, H.-J.; Alagar, M. La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J. Mater. Sci. Mater. Electron. 2016, 27, 2367–2378. [Google Scholar] [CrossRef]
- McAleer, J.F.; Moseley, P.T.; Norris, J.O.W.; Williams, D.E. Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations. J. Chem. Soc. Faraday Trans. 1 1987, 83, 1323–1346. [Google Scholar] [CrossRef]
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Torres-Hernández, J.R.; Ramírez-Morales, E.; Rojas-Blanco, L.; Pantoja-Enriquez, J.; Oskam, G.; Paraguay-Delgado, F.; Escobar-Morales, B.; Acosta-Alejandro, M.; Díaz-Flores, L.L.; Pérez-Hernández, G. Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 2015, 37, 87–92. [Google Scholar] [CrossRef]
- Divya, N.K.; Pradyumnan, P.P. Solid state synthesis of erbium doped ZnO with excellent photocatalytic activity and enhanced visible light emission. Mater. Sci. Semicond. Process. 2016, 41, 428–435. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M.; Keller, V.; Qamar Khan, W.; Khalid, N.R. Rare earth co-doped ZnO photocatalysts: Solution combustion synthesis and environmental applications. Sep. Purif. Technol. 2020, 237, 116328. [Google Scholar] [CrossRef]
- Pandey, P.; Kurchania, R.; Haque, F.Z. Rare earth ion (La, Ce, and Eu) doped ZnO nanoparticles synthesized via sol-gel method: Application in dye sensitized solar cells. Opt. Spectrosc. 2015, 119, 666–671. [Google Scholar] [CrossRef]
- Kumawat, A.; Misra, K.P.; Chattopadhyay, S. Band Gap Engineering and Relationship with Luminescence in Rare-Earth Elements Doped ZnO: An Overview. Mat. Technol. 2022, 37, 1595–1610. [Google Scholar] [CrossRef]
- Kaneva, N.; Bojinova, A.; Papazova, K.; Dimitrov, D. Photocatalytic Purification of Dye Contaminated Sea Water by Lanthanide (La3+, Ce3+, Eu3+) modified ZnO. Catal. Today 2015, 252, 113–119. [Google Scholar] [CrossRef]
- Kuzhalosai, V.; Subash, B.; Shanthi, M. A novel sunshine active cerium loaded zinc oxide photocatalyst for the effective degradation of AR 27 dye. Mater. Sci. Semicond. Process. 2014, 27, 924–933. [Google Scholar] [CrossRef]
- Khatamian, M.; Khandar, A.A.; Divband, B.; Haghighi, M.; Ebrahimiasl, S.J. Synthesis and Characterization of Dysprosium-Doped ZnO Nanoparticles for Photocatalysis of a Textile Dye under Visible Light Irradiation. Mol. Catal. A Chem. 2012, 365, 120–127. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, E.; Zafar, F.; Khalid, N.; Niaz, N.; Hafeez, A.; Ikram, M.; Ajmal, M.; Hong, K. Enhanced photocatalytic activity of Ce-doped ZnO nanopowders synthesized by combustion method. J. Rare Earth 2015, 33, 255–262. [Google Scholar] [CrossRef]
- Zboray, M.; Bell, A.T.; Iglesia, E. Role of C−H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J. Phys. Chem. C 2009, 113, 12380–12386. [Google Scholar] [CrossRef]
- Deshlahra, P.; Iglesia, E. Reactivity and selectivity descriptors for the activation of C–H bonds in hydrocarbons and oxygenates on metal oxides. J. Phys. Chem. C 2016, 120, 16741–16760. [Google Scholar] [CrossRef]
- Sharma, A.; Rani, A.; Singh, A.; Modi, O.P.; Gupta, G.K. Synthesis of alumina powder by the urea–glycine–nitrate combustion process: A mixed fuel approach to nanoscale metal oxides. Appl. Nanosci. 2014, 4, 315–323. [Google Scholar] [CrossRef]
- Stefanov, P.; Todorova, S.; Naydenov, A.; Tzaneva, B.; Kolev, H.; Atanasova, G.; Stoyanova, D.; Karakirova, Y.; Alexieva, K. On the development of active and stable Pd-Co/γ-Al2O3 catalyst for complete oxidation of methane. Chem. Eng. J. 2015, 266, 329–338. [Google Scholar] [CrossRef]
- Velinova, R.; Todorova, S.; Drenchev, B.; Ivanov, G.; Shipochka, M.; Markov, P.; Nihtianova, D.; Kovacheva, D.; Larine, A.V.; Naydenov, A. Complex study of the activity, stability and sulphur resistance of Pd/La2O3-CeO2-Al2O3 system as monolithic catalyst for abatement of methane. Chem. Eng. J. 2019, 368, 865–876. [Google Scholar] [CrossRef]
- Bernal, S.; Díaz, J.A.; García, R.; Rodríguez-Izquierdo, J.M. Study of some aspects of the reactivity of La2O3 with CO2 and H2O. J. Mater. Sci. 1985, 20, 537–541. [Google Scholar] [CrossRef]
- Poli, A.L.; Batista, Т.; Schmitt, C.C.; Gessner, F.; Neumann, M.G. Effect of sonication on the particle size of montmorillonite clays. J. Coll. Interface Sci. 2008, 325, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250. [Google Scholar] [CrossRef]
- Przekopa, R.E.; Marciniaka, P.; Sztorcha, B.; Czapika, A.; Stodolny, M.; Martyłac, A. One-pot synthesis of Al2O3-La2O2CO3 systems obtained from the metallic precursor by the sol-gel method. J. Non-Cryst. Sol. 2018, 479, 105–112. [Google Scholar] [CrossRef]
- Pappas, G.S.; Liatsi, P.; Kartsonakis, I.A.; Danilidis, I.; Kordas, G. Synthesis and characterization of new SiO2–CaO hollow nanospheres by sol–gel method: Bioactivity of the new system. J. Non-Cryst. Sol. 2008, 354, 755–760. [Google Scholar] [CrossRef]
- Little, L.H. Infrared Spectra of Adsorbed Species; Academic Press Inc.: New York, NY, USA, 1966. [Google Scholar]
- Gehring, A.U.; Hofmeister, A.M. The transformation of lepidocrocite during heating: A magnetic and spectroscopic study. Clays Clay Miner. 1994, 42, 409–415. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Lazaroff, N.; Sigal, W.; Wasserman, A. Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells. Appl. Environ. Microbiol. 1982, 43, 924–938. [Google Scholar] [CrossRef]
- Music, S.; Saric, A.; Popovic, S.; Nomura, K.; Sawada, T. Forced hydrolysis of Fe3+ ions in NH4Fe(SO4)2 solutions containing urotropin. Croat. Chem. Acta 2000, 73, 541–567. Available online: https://hrcak.srce.hr/132070 (accessed on 5 June 2000).
- Weckler, B.; Lutz, H.D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ). Eur. J. Solid State Inorg. Chem. 1998, 35, 531–544. [Google Scholar] [CrossRef]
- Ongun, M.Z. Tuning CO2 sensitivity of HPTS by ZnO and ZnO@Ag nanoparticles. J. Photochem. Photobiol. A 2020, 400, 112664. [Google Scholar] [CrossRef]
- Gomez-Serrano, V.; Gonzalez-Garcia, C.; Gonzalez-Martın, M. Nitrogen adsorption isotherms on carbonaceous materials, comparison of BET and Langmuir surface areas. Powder Technol. 2001, 116, 103–108. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Sample | SBET m2/g | Vt cm3/g | Dav nm |
---|---|---|---|
Pure ZnO | 5.1 | 0.02 | 15 |
La2O3/ZnO | 6.1 | 0.03 | 22 |
Pd/La2O3/ZnO | 5.7 | 0.04 | 27 |
Sample | ZnO (Parameters) Å | ZnO (Size) nm | PdO (Parameters) Å | PdO (Size) nm | La2CO5 (Parameters) Å | La2CO5 (Size) nm |
---|---|---|---|---|---|---|
ZnO | a = 3.24943(3) c = 5.20604(5) | 170 | - | - | - | - |
PdO/ZnO—fresh | a = 3.24978(8) c = 5.2060(1) | 72 | a = 3.046(1) c = 5.439(2) | 16 | - | - |
PdO/ZnO—work | a = 3.24967(7) c = 5.2058(1) | 76 | a = 3.046(1) c = 5.439(2) | 17 | - | - |
La2O3/ZnO | a = 3.24966(6) c = 5.2059(1) | 114 | - | - | a = 4.063(5) c = 13.42(2) | 5.7 |
Pd/La2O3/ZnO—fresh | a = 3.24996(10) c = 5.2060(1) | 86 | a = 3.040(2) c = 5.45(1) | 12 | a = 4.069(5) c = 13.43(3) | 5.5 |
Pd/La2O3/ZnO—work | a = 3.24977(9) c = 5.2055(2) | 95 | a = 3.040(3) c = 5.45(1) | 11 | a = 4.065(5) c = 13.42(2) | 5.8 |
Element/ Sample | O at. % | Zn at. % | Pd at. % | La at. % |
---|---|---|---|---|
Pd/La2O3/ZnO—fresh | 42.01 | 57.07 | 0.62 | 0.29 |
Pd/La2O3/ZnO—work | 44.38 | 54.58 | 0.94 | 0.10 |
Sample | Pd0 % | Pd2+ % | Pd4+ % |
---|---|---|---|
Pd/La2O3/ZnO—fresh | 4.2 | 86.3 | 9.5 |
Pd/La2O3/ZnO—work | 8.4 | 82.8 | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velinova, R.; Kaneva, N.; Ivanov, G.; Kovacheva, D.; Spassova, I.; Todorova, S.; Atanasova, G.; Naydenov, A. Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane. Inorganics 2025, 13, 17. https://doi.org/10.3390/inorganics13010017
Velinova R, Kaneva N, Ivanov G, Kovacheva D, Spassova I, Todorova S, Atanasova G, Naydenov A. Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane. Inorganics. 2025; 13(1):17. https://doi.org/10.3390/inorganics13010017
Chicago/Turabian StyleVelinova, Ralitsa, Nina Kaneva, Georgi Ivanov, Daniela Kovacheva, Ivanka Spassova, Silviya Todorova, Genoveva Atanasova, and Anton Naydenov. 2025. "Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane" Inorganics 13, no. 1: 17. https://doi.org/10.3390/inorganics13010017
APA StyleVelinova, R., Kaneva, N., Ivanov, G., Kovacheva, D., Spassova, I., Todorova, S., Atanasova, G., & Naydenov, A. (2025). Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane. Inorganics, 13(1), 17. https://doi.org/10.3390/inorganics13010017