Reactions of 1-Alkyl-3-phenylbenzimidazolium Salts with Ag2O: The Formation of a Ring-Opening Formamide Derivative and a Ag Complex with an N-heterocyclic Carbene Ligand
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Notes
4.2. General Procedure for Reaction of Benzimidazolium Salt with Ag2O to Give Ring-Opening Formamide Product
4.3. General Procedure for Reaction of Benzimidazolium Salt with Ag2O to Give NHC–Ag Complex Product
4.4. Procedure for Preparation of NHC–Au Complex 2c
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.; Meng, G.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. ItOct (ItOctyl)-pushing the limits of ItBu: Highly hindered electron-rich N-aliphatic N-heterocyclic carbenes. Chem. Sci. 2023, 14, 5141–5147. [Google Scholar] [CrossRef]
- Jayaraj, A.; Raveedran, A.; Latha, A.; Priyadarshini, D.; Swamy, P. Coordination Versatility of NHC-metal Topologies in Asymmetric Catalysis: Synthetic Insights and Recent Trends. Coord. Chem. Rev. 2023, 478, 214922. [Google Scholar] [CrossRef]
- Neshat, A.; Mastrorilli, P.; Mobarakeh, A. Recent Advances in Catalysis Involving Bidentate N-Heterocyclic Carbene Ligands. Molecules 2022, 27, 95. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, E.; Malan, F.; Landman, M. Multidentate NHC complexes of group IX metals featuring carbon-based tethers: Synthesis and applications. Coord. Chem. Rev. 2021, 430, 213731. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, G.; Nolan, S.; Szostak, M. N-Heterocyclic Carbene Complexes in C-H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. [Google Scholar] [CrossRef]
- Mukherjee, N.; Mondal, B.; Saha, T.; Maity, R. Palladium, iridium, and rhodium complexes bearing chiral N-heterocyclic carbene ligands applied in asymmetric catalysis. Appl Organomet. Chem. 2024, 38, e6794. [Google Scholar] [CrossRef]
- Foster, D.; Borhanuddin, S.; Dorta, R. Designing successful monodentate N-heterocyclic carbene ligands for asymmetric metal catalysis. Dalton Trans. 2021, 50, 17467–17477. [Google Scholar] [CrossRef]
- Budagumpi, S.; Keri, R.; Achar, G.; Brinda, K. Coinage Metal Complexes of Chiral N-Heterocyclic Carbene Ligands: Syntheses and Applications in Asymmetric Catalysis. Adv. Synth. Catal. 2020, 362, 970–997. [Google Scholar] [CrossRef]
- Fliedel, C.; Labande, A.; Manoury, E.; Poli, R. Chiral N-heterocyclic carbene ligands with additional chelating group(s) applied to homogeneous metal-mediated asymmetric catalysis. Coord. Chem. Rev. 2019, 394, 65–103. [Google Scholar] [CrossRef]
- Tulloch, A.; Danopoulos, A.; Winston, S.; Kleinhenz, S.; Eastham, G. N-Functionalised heterocyclic carbene complexes of silver. J. Chem. Soc. Dalton Trans. 2000, 4499–4506. [Google Scholar] [CrossRef]
- Garrison, J.; Youngs, W. Ag(I) N-heterocyclic carbene complexes: Synthesis, structure, and application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef]
- de Frémont, P.; Scott, N.; Stevens, E.; Ramnial, T.; Lightbody, O.; Macdonald, C.; Clyburne, J.; Abernethy, C.; Nolan, S. Synthesis of well-defined N-heterocyclic carbene silver(I) complexes. Organometallics 2005, 24, 6301–6309. [Google Scholar] [CrossRef]
- Newman, C.; Clarkson, G.; Rourke, J. Silver(I) N-heterocyclic carbene halide complexes: A new bonding motif. J. Organomet. Chem. 2007, 692, 4962–4968. [Google Scholar] [CrossRef]
- Flahaut, A.; Roland, S.; Mangeney, P. Allylic alkylation and amination using mixed (NHC)(phosphine) palladium complexes under biphasic conditions. J. Organomet. Chem. 2007, 692, 5754–5762. [Google Scholar] [CrossRef]
- Hayes, J.; Viciano, M.; Peris, E.; Ujaque, G.; Lledós, A. Mechanism of formation of silver N-heterocyclic carbenes using silver oxide: A theoretical study. Organometallics 2007, 26, 6170–6183. [Google Scholar] [CrossRef]
- Ogle, J.; Zhang, J.; Reibenspies, J.; Abboud, K.; Miller, S. Synthesis of electronically diverse tetraarylimidazolylidene carbenes via catalytic aldimine coupling. Org. Lett. 2008, 10, 3677–3680. [Google Scholar] [CrossRef]
- Budagumpi, S.; Haque, R.; Endud, S.; Rehman, G.; Salman, A. Biologically Relevant Silver(I)-N-Heterocyclic Carbene Complexes: Synthesis, Structure, Intramolecular Interactions, and Applications. Eur. J. Inorg. Chem. 2013, 2013, 4367–4388. [Google Scholar] [CrossRef]
- Saif, M.; Flower, K. A general method for the preparation of N-heterocyclic carbene-silver(I) complexes in water. Transition Met. Chem. 2013, 38, 113–118. [Google Scholar] [CrossRef]
- Gök, Y.; Akkoç, S.; Albayrak, S.; Akkurt, M.; Tahir, M. N-Phenyl-substituted carbene precursors and their silver complexes: Synthesis, characterization and antimicrobial activities. Appl. Organometal. Chem. 2014, 28, 244–251. [Google Scholar] [CrossRef]
- Caytan, E.; Roland, S. Structure of Silver-N-Heterocyclic Carbenes in Solution: Evidence of Equilibration in DMSO at Very Different Time Scales by 1H NMR Experiments. Organometallics 2014, 33, 2115–2118. [Google Scholar] [CrossRef]
- Kaloglu, M.; Kaloglu, N.; Özdemir, I.; Günal, S.; Özdemir, I. Novel benzimidazol-2-ylidene carbene precursors and their silver(I) complexes: Potential antimicrobial agents. Bioorg. Med. Chem. 2016, 24, 3649–3656. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, G.; Montes-Tolentino, P.; Villaseñor-Granados, T.; Flores-Parra, A. New silver imidazol-2-ylidene complexes with pendant N-β-chloroethyl and N-vinyl groups. Cl⋅⋅⋅N and C-H⋅⋅⋅Ag weak interactions. J. Organomet. Chem. 2017, 848, 166–174. [Google Scholar] [CrossRef]
- Kaloglu, N.; Özdemir, I.; Günal, S.; Özdemir, I. Synthesis and antimicrobial activity of bulky 3,5-di-tert-butyl substituent-containing silver-N-heterocyclic carbene complexes. Appl. Organometal. Chem. 2017, 31, e3803. [Google Scholar] [CrossRef]
- Mather, J.; Wyllie, J.; Hamilton, A.; da Costa, T.; Barnard, P. Antibacterial silver and gold complexes of imidazole and 1,2,4-triazole derived N-heterocyclic carbenes. Dalton Trans. 2022, 51, 12056–12070. [Google Scholar] [CrossRef]
- Wang, H.; Lin, I. Facile synthesis of silver(I)-carbene complexes. Useful carbene transfer agents. Organometallics 1998, 17, 972–975. [Google Scholar] [CrossRef]
- Lin, I.; Vasam, C. Silver(I) N-heterocyclic carbenes. Comments Inorg. Chem. 2004, 25, 75–129. [Google Scholar] [CrossRef]
- Lin, I.; Vasam, C. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 2007, 251, 642–670. [Google Scholar] [CrossRef]
- Lin, J.; Huang, R.; Lee, C.; Bhattacharyya, A.; Hwang, W.; Lin, I. Coinage Metal-N-Heterocyclic Carbene Complexes. Chem. Rev. 2009, 109, 3561–3598. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Kawakami, M.; O’Neill, J.; Yoo, K.S.; Jung, K.W. Tridentate, anionic tethered N-heterocyclic carbene of Pd(II) complexes. J. Organomet. Chem. 2010, 695, 195–200. [Google Scholar] [CrossRef]
- Kamisue, R.; Sakaguchi, S. Synthesis and characterization of amide-functionalized N-heterocyclic carbene-Pd complexes. J. Organomet. Chem. 2011, 696, 1910–1915. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Yoo, K.S.; O’Neill, J.; Lee, J.H.; Stewart, T.; Jung, K.W. Chiral Palladium(II) Complexes Possessing a Tridentate N-Heterocyclic Carbene Amidate Alkoxide Ligand: Access to Oxygen-Bridging Dimer Structures. Angew. Chem. Int. Ed. 2008, 47, 9326–9329. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.S.; O’Neill, J.; Sakaguchi, S.; Giles, R.; Lee, J.H.; Jung, K.W. Asymmetric Intermolecular Boron Heck-Type Reactions via Oxidative Palladium(II) Catalysis with Chiral Tridentate NHC-Amidate-Alkoxide Ligands. J. Org. Chem. 2010, 75, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, H.; Kawakami, M.; Yamada, H.; Arakawa, R.; Sakaguchi, S. Highly tunable anionic tethered N-heterocyclic carbene of Pd(II) complexes for asymmetric allylic alkylation reaction. J. Organomet. Chem. 2013, 726, 46–55. [Google Scholar] [CrossRef]
- Tao, S.; Guo, C.; Liu, N.; Dai, B. Counteranion-Controlled Ag2O-Mediated Benzimidazolium Ring Opening and Its Application in the Synthesis of Palladium Pincer-Type Complexes. Organometallics 2017, 36, 4432–4442. [Google Scholar] [CrossRef]
- Chen, J.; Lin, I. Palladium complexes containing a hemilabile pyridylcarbene ligand. Organometallics 2000, 19, 5113–5121. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Bu, Q.; Dai, B.; Liu, N. In Situ Ring-Closing Strategy for Direct Synthesis of N-Heterocyclic Carbene Nickel Complexes and Their Application in Coupling of Allylic Alcohols with Aryl Boronic Acids. Adv. Synth. Catal. 2020, 362, 2930–2940. [Google Scholar] [CrossRef]
- Inoue, H.; Ishisone, T.; Shitagaki, S.; Hamada, T.; Hara, T. A novel phosphorescent organometallic complex emitting blue light having high emission efficiency, high heat resistance, high color purity, and a novel light-emitting element, a novel light-emitting device, a novel electronic device, and a novel lighting device. U.S. Patent US20160254461, 2016. CAN: 165:373613. [Google Scholar]
- Akiyama, S.; Kawamura, Y. Preparation of transition metal complexes useful for luminescent materials from easy-to-prepare reactants. Japan Patent JP2007045742, 2007. CAN: 146:251979. [Google Scholar]
- Liang, Z.; Li, Y.; Xu, Y. Transition metal complex, polymer, mixture, composition, and OLED. China Patent CN113004336, 2021. CAN: 176:190608. [Google Scholar]
- Pzharskii, A.F.; Kuzmenko, V.V.; Kashparov, I.S.; Sokolov, Z.I.; Medvedeva, M.M. Interaction of N-Heteroaromatic Cations with Alkali-Metal Amides. Khim. Geterotsikl. Soedin. 1976, 356–364. [Google Scholar]
- Akkoç, S.; Gök, Y. Catalytic activities in direct arylation of novel palladium N-heterocyclic carbene complexes. Appl. Organometal. Chem. 2014, 28, 854–860. [Google Scholar] [CrossRef]
- Unger, Y.; Meyer, D.; Molt, O.; Schildknecht, C.; Münster, I.; Wagenblast, G.; Strassner, T. Green-Blue Emitters: NHC-Based Cyclometalated [Pt(C∧C*)(acac)] Complexes. Angew. Chem. Int. Ed. 2010, 49, 10214–10216. [Google Scholar] [CrossRef]
- Hudson, Z.; Blight, B.; Wang, S. Efficient and High Yield One-Pot Synthesis of Cyclometalated Platinum(II) β-Diketonates at Ambient Temperature. Org. Lett. 2012, 14, 1700–1703. [Google Scholar] [CrossRef]
- Li, D.; Ollevier, T. Mechanism studies of oxidation and hydrolysis of Cu(I)-NHC and Ag-NHC in solution under air. J. Organomet. Chem. 2020, 906, 121025. [Google Scholar] [CrossRef]
- Smith, M.B.; March, J. March’s Advanced Organic Chemistry, 5th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2001; pp. 1331–1332. [Google Scholar]
- Engl, P.; Senn, R.; Otth, E.; Togni, A. Synthesis and Characterization of N-Trifluoromethyl N-Heterocyclic Carbene Ligands and Their Complexes. Organometallics 2015, 3, 1384–1395. [Google Scholar] [CrossRef]
- Yilmaz, Ü.; Küçükbay, H.; Deniz, S.; Sireci, N. Synthesis, Characterization and Microwave-Promoted Catalytic Activity of Novel N-phenylbenzimidazolium Salts in Heck-Mizoroki and Suzuki-Miyaura Cross-Coupling Reactions under Mild Conditions. Molecules 2013, 18, 2501–2517. [Google Scholar] [CrossRef]
- Tennyson, A.; Rosen, E.; Collins, M.; Lynch, V.; Bielawski, C. Bimetallic N-Heterocyclic Carbene-Iridium Complexes: Investigating Metal-Metal and Metal-Ligand Communication via Electrochemistry and Phosphorescence Spectroscopy. Inorg. Chem. 2009, 48, 6924–6933. [Google Scholar] [CrossRef]
- Liu, B.; Jabed, M.; Guo, J.; Xu, W.; Brown, S.; Ugrinov, A.; Hobbie, E.; Kilina, S.; Qin, A.; Sun, W. Neutral Cyclometalated Iridium(III) Complexes Bearing Substituted N-Heterocyclic Carbene (NHC) Ligands for High-Performance Yellow OLED Application. Inorg. Chem. 2019, 58, 14377–14388. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Yang, Z.; Tang, X.; Yuan, Y.; Su, W.; Chen, C.; Verpoort, F. Efficient and phosphine-free bidentate N-heterocyclic carbene/ruthenium catalytic systems for the dehydrogenative amidation of alcohols and amines. Org. Chem. Front. 2019, 6, 563–570. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, Y.; Zhao, W.; Dong, J.; Li, L.; Chen, H.; Xu, J. Efficient NIR electrochemiluminescent dyes based on ruthenium(ii) complexes containing an N-heterocyclic carbene ligand. Chem. Commun. 2021, 57, 1254–1257. [Google Scholar] [CrossRef]
- Gatus, M.; Pernik, I.; Tompsett, J.; Binding, S.; Peterson, M.; Messerle, B. Simple and reactive Ir(I) N-heterocyclic carbene complexes for alkyne activation. Dalton Trans. 2019, 48, 4333–4340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakaguchi, S.; Higashino, T.; Tasaki, Y.; Ichihara, R.; Yajima, T. Reactions of 1-Alkyl-3-phenylbenzimidazolium Salts with Ag2O: The Formation of a Ring-Opening Formamide Derivative and a Ag Complex with an N-heterocyclic Carbene Ligand. Inorganics 2025, 13, 18. https://doi.org/10.3390/inorganics13010018
Sakaguchi S, Higashino T, Tasaki Y, Ichihara R, Yajima T. Reactions of 1-Alkyl-3-phenylbenzimidazolium Salts with Ag2O: The Formation of a Ring-Opening Formamide Derivative and a Ag Complex with an N-heterocyclic Carbene Ligand. Inorganics. 2025; 13(1):18. https://doi.org/10.3390/inorganics13010018
Chicago/Turabian StyleSakaguchi, Satoshi, Takashi Higashino, Yudai Tasaki, Ryo Ichihara, and Tatsuo Yajima. 2025. "Reactions of 1-Alkyl-3-phenylbenzimidazolium Salts with Ag2O: The Formation of a Ring-Opening Formamide Derivative and a Ag Complex with an N-heterocyclic Carbene Ligand" Inorganics 13, no. 1: 18. https://doi.org/10.3390/inorganics13010018
APA StyleSakaguchi, S., Higashino, T., Tasaki, Y., Ichihara, R., & Yajima, T. (2025). Reactions of 1-Alkyl-3-phenylbenzimidazolium Salts with Ag2O: The Formation of a Ring-Opening Formamide Derivative and a Ag Complex with an N-heterocyclic Carbene Ligand. Inorganics, 13(1), 18. https://doi.org/10.3390/inorganics13010018