Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Syntheses of New Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azad Malik, M.; O’Brien, P. III–V and Related Semiconductor Materials. In The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities; Wiley: Hoboken, NJ, USA, 2011; pp. 612–653. [Google Scholar]
- Jegier, J.A.; Gladfelter, W.L. The use of aluminum and gallium hydrides in materials science. Coord. Chem. Rev. 2000, 206–207, 631–650. [Google Scholar] [CrossRef]
- Power, P.P. Homonuclear multiple bonding in heavier main group elements. J. Chem. Soc. Dalton Trans. 1998, 2939–2951. [Google Scholar] [CrossRef]
- Fischer, R.C.; Power, P.P. Pi-Bonding and the Lone Pair Effect in Multiple Bonds Involving Heavier Main Group Elements: Developments in the New Millennium. Chem. Rev. 2010, 110, 3877–3923. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, K.M.; Hope, H.; Power, P.P. Synthesis and Structure of [MeAlN(2,6-iPr2C6H3)]3: An Aluminum-Nitrogen Analogue of Borazine. Angew. Chem. Int. Ed. Engl. 1988, 27, 1699–1700. [Google Scholar] [CrossRef]
- Wehmschulte, R.J.; Power, P.P. Reactions of (H2AlMes*)2 (Mes* = 2,4,6-(t-Bu)3C6H2) with H2EAr (E = N, P, or As; Ar = aryl): Characterization of the Ring Compounds (Mes*AlNPh)2 and (Mes*AlEPh)3 (E = P or As). J. Am. Chem. Soc. 1996, 118, 791–797. [Google Scholar] [CrossRef]
- Laubengayer, A.W.; Smith, J.D.; Ehrlich, G.G. Aluminum-Nitrogen Polymers by Condensation Reactions 1. J. Am. Chem. Soc. 1961, 83, 542–546. [Google Scholar] [CrossRef]
- Amirkhalili, S.; Hitchcock, P.B.; Smith, J.D. Complexes of organoaluminium compounds. Part 10. Crystal and molecular structures of the cage compounds bis-µ-methylamido-hexa-µ3-methylimido-bis(dimethylaluminium)-hexakis(methylaluminium) and bis-µ-methylamido-hexa-µ3-methylimido-bis(dimethylgallium)-hexakis-(methylgallium). J. Chem. Soc. Dalton Trans. 1979, 7, 1206–1212. [Google Scholar]
- Cesari, M.; Perego, G.; Del Piero, G.; Cucinella, S.; Cernia, E. The chemistry and the stereochemistry of poly(N-alkyliminoalanes): II. The crystal and molecular structure of the hexamer, (HAlN-i-Pr)6. J. Organometal. Chem. 1974, 78, 203–213. [Google Scholar] [CrossRef]
- Del Piero, G.; Cesari, M.; Dossi, G.; Mazzei, A. The chemistry and the stereochemistry of poly(n-alkyliminoalanes): X. The crystal and molecular structure of the tetramers (HAlN-i-Pr)4 and (MeAlN-i-Pr)4. J. Organometal. Chem. 1977, 129, 281–288. [Google Scholar] [CrossRef]
- Del Piero, G.; Cesari, M.; Perego, G.; Cucinella, S.; Cernia, E. The chemistry and the stereochemistry of poly (N-alkyliminoalanes): XI. The crystal and molecular structure of the hexamer (HAlN-n-Pr)6 and the octamer (HAlN-n-Pr)8. J. Organometal. Chem. 1977, 129, 289–298. [Google Scholar] [CrossRef]
- Belgardt, T.; Waezsada, S.D.; Roesky, H.W.; Gornitzka, H.; Haeming, L.; Stalke, D. Synthesis and Characterization of (Pentafluorophenyl)amino-Based Amino- and Iminometallanes. Crystal Structures of (MeAlNC6F5)4 and NHC6F5Ga(MesGa)3(µ3-NC6F5)4 (Mes = 2,4,6-Me3C6H2). Inorg. Chem. 1994, 33, 6247–6251. [Google Scholar] [CrossRef]
- Schulz, S.; Häming, L.; Herbst-Irmer, R.; Roesky, H.W.; Sheldrick, G.M. Synthesis and Structure of the First Dimeric Iminoalane Containing an Al2N2 Heterocycle. Angew. Chem. Int. Ed. Engl. 1994, 33, 969–970. [Google Scholar] [CrossRef]
- Schulz, S.; Voigt, A.; Roesky, H.W.; Häming, L.; Herbst-Irmer, R. Synthesis of Dimeric Iminoalanes by Oxidative Addition of Azides to (Cp*Al)4: Structural Characterization of (Cp*AlNSitBu3)2 (Cp* = C5Me5). Organometallics 1996, 15, 5252–5253. [Google Scholar] [CrossRef]
- Fisher, J.D.; Shapiro, P.J.; Yap, G.P.A.; Rheingold, A.L. [CpAlN(2,6-i-Pr2C6H3)]2: A Dimeric Iminoalane Obtained by Alkane Elimination. Inorg. Chem. 1996, 35, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, T.P.; Shaikh, A.W. Theoretical Study of the Dimerization of Multiply-Bonded Aluminum−Nitrogen Compounds. Inorg. Chem. 1997, 36, 754–755. [Google Scholar] [CrossRef]
- Cui, C.; Roesky, H.W.; Schmidt, H.-G.; Noltemeyer, M. [HC{(CMe)(NAr)}2]Al[(NSiMe3)2N2] (Ar = 2,6-iPr2C6H3): The First Five-Membered AlN4 Ring System. Angew. Chem. Int. Ed. 2000, 39, 4531–4533. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, Z.; Magull, J.; Roesky, H.W.; Schmidt, H.-G.; Noltemeyer, M. Syntheses and Structural Characterization of a LAl(N3)N[μ-Si(N3)(tBu)]2NAl(N3)L and a Monomeric Aluminum Hydride Amide LAlH(NHAr) (L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3). Organometallics 2005, 24, 6420–6425. [Google Scholar] [CrossRef]
- Hardman, N.J.; Cui, C.M.; Roesky, H.W.; Fink, W.H.; Power, P.P. Stable, monomeric imides of aluminum and gallium: Synthesis and characterization of {HC(MeCDippN)2)}MN-2,6-Trip2C6H3 (M = Al or Ga; Dipp = 2,6-iPr2C6H3; Trip = 2,4,6-iPr3C6H2). Angew. Chem. Int. Ed. 2001, 40, 2172–2174. [Google Scholar] [CrossRef]
- Zhu, H.; Chai, J.; Chandrasekhar, V.; Roesky, H.W.; Magull, J.; Vidovic, D.; Schmidt, H.-G.; Noltemeyer, M.; Power, P.P.; Merrill, W.A. Two Types of Intramolecular Addition of an Al−N Multiple-Bonded Monomer LAlNAr‘ Arising from the Reaction of LAl with N3Ar‘ (L = HC[(CMe)(NAr)]2, Ar‘ = 2,6-Ar2C6H3, Ar = 2,6-iPr2C6H3). J. Am. Chem. Soc. 2004, 126, 9472–9473. [Google Scholar] [CrossRef]
- Li, J.F.; Li, X.F.; Huang, W.; Hu, H.F.; Zhang, J.Y.; Cui, C.M. Synthesis, Structure, and Reactivity of a Monomeric Imino-alane. Chem. Eur. J. 2012, 18, 15263–15266. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Anker, M.D.; Lein, M.; Coles, M.P. Reduction vs. Addition: The Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. Angew. Chem. Int. Ed. Engl. 2018, 58, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Anker, M.D.; Schwamm, R.J.; Coles, M.P. Synthesis and reactivity of a terminal aluminium–imide bond. Chem. Commun. 2020, 56, 2288–2291. [Google Scholar] [CrossRef] [PubMed]
- Coles, M.P.; Evans, M.J. The emerging chemistry of the aluminyl anion. Chem. Commun. 2022, 59, 503–519. [Google Scholar] [CrossRef]
- Coles, M.P. Aluminyl Anions. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, NJ, USA, 2024; pp. 1–23. [Google Scholar]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 2018, 557, 92–95. [Google Scholar] [CrossRef]
- Heilmann, A.; Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Carbon Monoxide Activation by a Molecular Aluminium Imide: C−O Bond Cleavage and C−C Bond Formation. Angew. Chem. Int. Ed. Engl. 2020, 59, 4897–4901. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew. Chem. Int. Ed. Engl. 2020, 60, 1702–1713. [Google Scholar] [CrossRef]
- Heilmann, A.; Vasko, P.; Hicks, J.; Goicoechea, J.M.; Aldridge, S. An Aluminium Imide as a Transfer Agent for the [NR]2−Function via Metathesis Chemistry. Chem.–A Eur. J. 2023, 29, e202300018. [Google Scholar] [CrossRef]
- Heilmann, A.; Saddington, A.M.; Goicoechea, J.M.; Aldridge, S. Aluminium and Gallium Silylimides as Nitride Sources. Chem.–A Eur. J. 2023, 29, e202302512. [Google Scholar] [CrossRef]
- Queen, J.D.; Irvankoski, S.; Fettinger, J.C.; Tuononen, H.M.; Power, P.P. A Monomeric Aluminum Imide (Iminoalane) with Al–N Triple-Bonding: Bonding Analysis and Dispersion Energy Stabilization. J. Am. Chem. Soc. 2021, 143, 6351–6356. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Coles, M.P.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Rajabi, N.A.; Wilson, A.S.S. A Stable Calcium Alumanyl. Angew. Chem. Int. Ed. 2020, 59, 3928–3932. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Hill, M.S.; Liu, H.; Mahon, M.F.; McMullin, C.L.; Rajabi, N.A. Seven-Membered Cyclic Potassium Diamidoalumanyls. Chem.–A Eur. J. 2021, 27, 14971–14980. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Hill, M.S.; Mahon, M.F. Diverse reactivity of an Al(I)-centred anion towards ketones. Chem. Commun. 2022, 58, 6938–6941. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Schwamm, R.J. Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C–H Activation of Arenes. Organometallics 2023, 42, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Mahon, M.F.; Hill, M.S. Aluminum–Boron Bond Formation by Boron Ester Oxidative Addition at an Alumanyl Anion. Inorg. Chem. 2023, 62, 15310–15319. [Google Scholar] [CrossRef]
- Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Neale, S.E.; Pearce, K.G.; Schwamm, R.J. White Phosphorus Reduction and Oligomerization by a Potassium Diamidoalumanyl. Z. Anorg. Allg. Chem. 2022, 648, e202200224. [Google Scholar] [CrossRef]
- Zhu, L.; Kinjo, R. Reactions of main group compounds with azides forming organic nitrogen-containing species. Chem. Soc. Rev. 2023, 52, 5563–5606. [Google Scholar] [CrossRef]
- Uhl, W.; Gerding, R.; Pohl, S.; Saak, W. Reactions of R2Al-AlR2 (R = CH(SiMe3)2) with trimethylsilyl azide. Insertion into the Al-Al bond and formation of a trimeric dialkylaluminum azide. Chem. Ber. 1995, 128, 81–85. [Google Scholar] [CrossRef]
- Fischer, R.A.; Miehr, A.; Sussek, H.; Pritzkow, H.; Herdtweck, E.; Müller, J.; Ambacher, O.; Metzger, T. Structures of (C5H5N)3Al(N3)3, [Me2N(CH2)3]2Al(N3) and Me2(N3)Al(H2NBut). Low-temperature OMVPE of AlN in the absence of ammonia. Chem. Commun. 1996, 23, 2685–2686. [Google Scholar] [CrossRef]
- Sussek, H.; Stowasser, F.; Pritzkow, H.; Fischer, R.A. Tetraazido Complexes of Aluminium, Gallium, and Indium. Eur. J. Inorg. Chem. 2000, 2000, 455–461. [Google Scholar] [CrossRef]
- Knabel, K.; Nöth, H. Synthesis and Structures of Some Aluminum Pseudohalides. Z. Naturforschung Sect. B-A J. Chem. Sci. 2005, 60, 155–163. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Al1-N1 | 1.8595(14) | 1.8948(10) | 1.8343(12) | 1.8288(13) | 1.8199(9) |
Al1-N2 | 1.8580(13) | 1.9108(10) | 1.8215(12) | 1.8388(13) | 1.8336(9) |
Al1-N3 | 1.8926(14) | - | 1.7040(13) | 1.8561(15) | 1.8416(10) |
Al1-N4 | 1.9092(13) | - | - | 1.8908(15) | 1.8876(8) v |
N3-N4 | 1.3731(19) | 1.3760(13) a | 1.352(2) h | 1.191(2) m | 1.2002(15) |
N4-N5 | 1.271(2) | 1.2688(19) b | - | 1.192(2) n | 1.1421(18) |
N5-N6 | 1.387(2) | - | - | 1.142(2) | - |
K1-N4 | 2.7463(14) | 2.7647(10) c | 2.7285(13) i | 3.0330(16) o | - |
K1-N5 | 3.0370(15) | - | - | 2.9954(16) p,q,r | - |
N1-Al1-N2 | 112.90(6) | 101.21(6) d | 114.69(6) | 118.75(6) | 116.76(4) |
N3-Al1-N6 | 81.32(6) | 81.93(6) e | 118.31(6) j | 95.26(7) s | 96.45(4) w |
Al1-N3-N4 | 113.56(11) | 112.33(7) f | 126.90(6) k | - | 134.96(9) |
N3-N4-N5 | 116.75(14) | 116.70(5) g | 154.44(11) l | 175.6(2) t | 175.96(16) |
N4-N5-N6 | 115.08(13) | - | - | 176.8(2) u | - |
N5-N6-Al1 | 113.24(11) | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-Y.; Schwamm, R.J.; Kenar, J.; Mahon, M.F.; Hill, M.S. Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand. Inorganics 2025, 13, 25. https://doi.org/10.3390/inorganics13010025
Liu H-Y, Schwamm RJ, Kenar J, Mahon MF, Hill MS. Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand. Inorganics. 2025; 13(1):25. https://doi.org/10.3390/inorganics13010025
Chicago/Turabian StyleLiu, Han-Ying, Ryan J. Schwamm, Jakub Kenar, Mary F. Mahon, and Michael S. Hill. 2025. "Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand" Inorganics 13, no. 1: 25. https://doi.org/10.3390/inorganics13010025
APA StyleLiu, H.-Y., Schwamm, R. J., Kenar, J., Mahon, M. F., & Hill, M. S. (2025). Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand. Inorganics, 13(1), 25. https://doi.org/10.3390/inorganics13010025