Synthesis, Characterization, and Cytotoxicity Research of Sulfur-Containing Metal Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Analyses of Complexes (I)–(III)
2.2. IR Analyses of Complexes (I)–(III)
2.3. UV–Vis Spectral Analyses of Complexes (I)–(III)
2.4. NMR Spectroscopy of Complex (III)
2.5. Electrospray Mass Spectrum Analysis
2.6. Thermogravimetric Analysis for Complexes (I) to (III)
2.7. Cytotoxicity Assays of Complexes (I)–(III)
3. Experimental
3.1. Materials and Methods
3.2. Synthesis of Complex (I)
3.3. Synthesis of Complex (II)
3.4. Synthesis of Complex (III)
3.5. X-Ray Structure
3.6. Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aziz, K.N.; Ahmed, K.M.; Omer, R.A.; Qader, A.F.; Abdulkareem, E.I. Organometallic complexes and reaction methods for synthesis: A review. Rev. Inorg. Chem. 2024, 44, 685–698. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Khaksar, S.; Aliabadi, A.; Panjehpour, A.; Motieiyan, E.; Marabello, D.; Faraji, M.H.; Beihaghi, M. Cytotoxicity and mechanism of action of metal complexes: An overview. Toxicology 2023, 492, 153516. [Google Scholar] [CrossRef]
- Marakina, E.I.; Andrienko, O.S.; Sachkov, V.I.; Medvedev, R.; Amelichkin, I.; Shcherbakov, P.S. Transition metals in the process of complexation with organic ligands containing heteroatoms in the structure. J. Phys. Conf. Ser. 2021, 1989, 012027. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, T.; Huang, Y. A review: Biological activities of novel cyanopyridine derivatives. Arch. Pharm. 2023, 356, 2300067. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Arriaga, J.M. Recent advances in biological and catalytic applications of metal complexes. Inorganics 2024, 12, 249. [Google Scholar] [CrossRef]
- Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev. 2018, 357, 144–172. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Dev. Ther. 2017, 11, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.C.; Lo, K.K.W. Shining new light on biological systems: Luminescent transition metal complexes for bioimaging and biosensing applications. Chem. Rev. 2024, 124, 8825–9014. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shi, W.J.; Hou, L. Coordination polymers of copper(I) halides and neutral heterocyclic thiones with new coordination modes. Inorg. Chem. 2005, 44, 3907–3913. [Google Scholar] [CrossRef]
- Pósa, V.; Hajdu, B.; Tóth, G.; Dömötör, O.; Kowol, C.R.; Keppler, B.K.; Spengler, G.; Gyurcsik, B.; Enyedy, É.A. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 2022, 231, 111786. [Google Scholar] [CrossRef]
- Cascajosa-Lira, A.; Andreo-Martínez, P.; Prieto, A.I.; Baños, A.; Guillamón, E.; Jos, A.; Cameán, A.M. In vitro toxicity studies of bioactive organosulfur compounds from Allium spp. with potential application in the agri-food industry: A review. Foods 2022, 11, 2620. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Di Gioia, F.; Ntatsi, G. Vegetable organosulfur compounds and their health promoting effects. Curr. Pharm. Des. 2017, 23, 2850–2875. [Google Scholar] [CrossRef]
- Bhattacherjee, D.; Raina, K.; Mandal, T.K.; Thummer, R.P.; Bhabak, K.P. Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free Radic. Biol. Med. 2022, 191, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, S.; Ansari, M.A.; Ghazwani, M.; Hani, U.; Jamous, Y.F.; Alali, Z.; Wahab, S.; Ahmad, W.; Weir, S.A.; Alomary, M.N.; et al. Prospective epigenetic actions of organo-sulfur compounds against cancer: Perspectives and molecular mechanisms. Cancers 2023, 15, 697. [Google Scholar] [CrossRef]
- Samaei, N.M.; Yazdani, Y.; Alizadeh-Navaei, R.; Azadeh, H.; Farazmandfar, T. Promoter methylation analysis of WNT/β-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer. J. Biomed. Sci. 2014, 21, 73. [Google Scholar] [CrossRef]
- Debnath, T.; Deb Nath, N.C.; Kim, E.K.; Lee, K.G. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct. 2017, 8, 3432–3442. [Google Scholar] [CrossRef]
- Soltani, S.; Amin, G.R.; Salehi-Sourmaghi, M.H.; Schneider, B.; Lorenz, S.; Iranshahi, M. Sulfur-containing compounds from the roots of Ferula latisecta and their cytotoxic activities. Fitoterapia 2018, 124, 108–112. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Duraisamy, S.; Kasi, M.; Kandasamy, S.; Sarkar, R.; Kumarasamy, A. Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands. Heliyon 2019, 5, e01687. [Google Scholar] [CrossRef]
- Yekke-Ghasemi, Z.; Ramezani, M.; Mague, J.T.; Takjoo, R. Synthesis, characterization and bioactivity studies of new dithiocarbazate complexes. New J. Chem. 2020, 44, 8878–8889. [Google Scholar] [CrossRef]
- Singh, A.; Barman, P.; Gogoi, H.P. Thioether-based novel transition metal complexes: Synthesis, DNA interaction, in vitro biological assay, DFT calculations, and molecular docking studies. Bioorg. Chem. 2023, 132, 106343. [Google Scholar] [CrossRef] [PubMed]
- Czylkowska, A.; Pitucha, M.; Lanka, S.; Raducka, A.; Rogalewicz, B.; Szczesio, M.; Świątkowski, M.; Żarczyński, A.; Klepacz-Smółka, A.; Szczytko, J.; et al. Triazole-based Mn(II), Fe(II), Ni(II), Cu(II) and Zn(II) complexes as potential anticancer agents—Physicochemical properties, in silico predictions and in vitro activity. Polyhedron 2024, 261, 117106. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, J.C.; Yin, H.; Wang, C.M.; Morris-Natschke, S.; Lee, K.H. One-step templated synthesis of chiral organometallic salicyloxazoline complexes. BMC Chem. 2019, 13, 51. [Google Scholar] [CrossRef]
- Kim, G.; Na, C.W.; Myung, Y. Facile one-pot synthesis of nickel nanoparticles by hydrothermal method. Materials 2022, 16, 76. [Google Scholar] [CrossRef]
- Cepus, V.; Borth, M.; Seitz, M. IR spectroscopic characterization of lignite as a tool to predict the product range of catalytic decomposition. Int. J. Clean Coal Energy 2016, 5, 13–22. [Google Scholar] [CrossRef]
- İlkimen, H.; Salün, S.G.; Gülbandılar, A.; Sarı, M. The new salt of 2-amino-3-methylpyridine with dipicolinic acid and its metal complexes: Synthesis, characterization and antimicrobial activity studies. J. Mol. Struct. 2022, 1270, 133961. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Chen, C.; Wang, W.; Dang, W. Effect of sulfuric acid concentration on morphology of calcium sulfate hemihydrate crystals. Mater. Res. Express 2020, 7, 105501. [Google Scholar] [CrossRef]
- Yadav, V.; Niluroutu, N.; Bhat, S.D.; Kulshrestha, V. Sulfonated poly(ether sulfone) based sulfonated molybdenum sulfide composite membranes: Proton transport properties and direct methanol fuel cell performance. Mater. Adv. 2020, 1, 820–829. [Google Scholar] [CrossRef]
- Mabrouk, W.; Charradi, K.; Maghraoui-Meherzi, H.; Alhussein, A.; Keshk, S.M.A.S. Proton conductivity amelioration of sulfonated poly ether sulfone octyl sulfonamide via the incorporation of montmorillonite. J. Electron. Mater. 2022, 51, 6369–6378. [Google Scholar] [CrossRef]
- Kumar, D.; Kapoor, I.P.S.; Singh, G.; Fröhlich, R. Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2′-bipyridine ligand. Thermochim. Acta 2012, 545, 67–74. [Google Scholar] [CrossRef]
- Sakthivel, R.V.; Sankudevan, P.; Vennila, P.; Venkatesh, G.; Kaya, S.; Serdaroğlu, G. Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J. Mol. Struct. 2021, 1233, 130097. [Google Scholar] [CrossRef]
- Aravindan, P.; Sivaraj, K.; Kamal, C.; Vennila, P.; Venkatesh, G. Synthesis, molecular structure, spectral characterization, molecular docking and biological activities of (E)-N-(2-methoxy benzylidene) anthracene-2-amine and Co(II), Cu(II) and Zn(II) complexes. J. Mol. Struct. 2021, 1229, 129488. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, Z.; Bao, Y.; Zhao, Y.; Liu, X.; Zhang, H. Investigation of novel carbazole-functionalized coumarin derivatives as organic luminescent materials. Dyes Pigments 2017, 147, 260–269. [Google Scholar] [CrossRef]
- Gaikwad, K.D.; Ubale, P.; Khobragade, R.; Deodware, S.; Dhale, P.; Asabe, M.R.; Ovhal, R.M.; Singh, P.; Vishwanath, P.; Shivamallu, C.; et al. Preparation, characterization and in vitro biological activities of new diphenylsulphone derived schiff base ligands and their Co(II) complexes. Molecules 2022, 27, 8576. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tan, J.; Lan, T.; Huo, H.; Sun, L.; Jiang, Y.; Zhang, N.; Li, C.; Wang, J. Effect of ligand structure on ethylene oligomerization over salicylaldehyde imine nickel complexes: Experiments and calculations. Appl. Organomet. Chem. 2023, 37, e7276. [Google Scholar] [CrossRef]
- Mosbah, H.K.; Ibrahim, A.B.M.; Zidan, A.S.A.; Aly, A.A.M.; Saber, S.H. La(III), Ce(III), Pr(III) and Eu(III) complexes with fenamic acid based ligands: Preparation, spectral and thermal analysis and evaluation of their cytotoxicity in MDA-MB-231 breast cancer cells. J. Iran. Chem. Soc. 2024, 21, 1681–1689. [Google Scholar] [CrossRef]
- Ambika, S.; Manojkumar, Y.; Arunachalam, S.; Gowdhami, B.; Sundaram, K.K.M.; Solomon, R.V.; Venuvanalingam, P.; Akbarsha, M.A.; Sundararaman, M. Biomolecular Interaction, Anti-Cancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes. Sci. Rep. 2019, 9, 2721. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.A. Synthesis of some new polyfunctionalized pyridines. J. Heterocycl. Chem. 2017, 55, 297–301. [Google Scholar] [CrossRef]
- Dyachenko, I.V.; Dyachenko, V.D.; Dorovatovsky, P.V.; Khrustalev, V.N.; Nenajdenko, V.G. One-pot synthesis of thieno[2,3-b]pyridine and pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine derivatives. Russ. J. Org. Chem. 2020, 56, 974–982. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, H.; Zhang, J.C.; Luo, M.; Meng, X.G. Synthesis, crystal structure and anticancer activity of 4-chloro-2-methoxybenzoic acid transition metal complexes. J. Mol. Struct. 2024, 1316, 139080. [Google Scholar] [CrossRef]
D-H···A | d(D-H)/Å | d(H···A)/Å | d(D···A)/Å | ∠(DHA)/° | |
---|---|---|---|---|---|
Complex (I) | O(5)-H(5B)···O(2)#2 | 0.87 | 1.91 | 2.7145(14) | 152.6 |
O(6)-H(6B)···O(3)#4 | 0.87 | 1.92 | 2.7392(15) | 156.5 | |
Complex (II) | C(8)-H(8)···O(2)#1 | 0.95 | 2.55 | 3.144(7) | 120.9 |
N(1)-H(1A)···O(9)#3 | 0.91 | 2.16 | 3.048(7) | 166.5 | |
O(4)-H(4A)···O(3)#2 | 0.87 | 2.13 | 2.926(6) | 152.4 | |
Complex (III) | N(1)-H(1A)···N(2)#2 | 0.91 | 2.12 | 3.025(3) | 176.0 |
N(2)-H(2A)···O(2)#3 | 0.88 | 2.27 | 3.068(2) | 150.4 | |
N(1)-H(1B)···Cl(1)#4 | 0.91 | 2.57 | 3.4355(18) | 159.2 | |
C(2)-H(2)···Cl(1)#4 | 0.95 | 3.22 | 3.986(2) | 139.3 | |
C(3)-H(3)···O(1)#5 | 0.95 | 2.66 | 3.254(3) | 121.5 | |
C(6)-H(6)···N(2)#2 | 0.95 | 3.05 | 3.630(3) | 120.5 |
Complex | A549 | SMMC-7721 | MDA-MB-231 | SW480 | ||||
---|---|---|---|---|---|---|---|---|
Cell Inhibition (%) | ||||||||
Average | SD | Average | SD | Average | SD | Average | SD | |
I | 10.49 | 0.74 | 7.86 | 1.87 | - | - | - | - |
II | 15.51 | 0.37 | 6.86 | 0.76 | 22.87 | 1.52 | 18.68 | 0.44 |
III | 15.88 | 0.90 | 3.52 | 0.90 | 19.89 | 1.20 | 18.68 | 0.89 |
Complex | I | II | III | |
---|---|---|---|---|
Empirical formula | C4 H18CuO12S2 | S8 | C12 H18 N4 Ni O11 S | C24 H24 Cl2 N4 O4 S2 Zn |
Formula weight | 385.84 | 256.48 | 485.07 | 632.86 |
Temperature | 200(2) K | 200(1) K | 102(2) K | 200(2) K |
Wavelength | 1.34139 | 1.34139 | 1.34139 | 1.34139 |
Crystal system | Orthorhombic | Orthorhombic | Monoclinic | Monoclinic |
Space group | Pbca | Fddd | P21/n | P2/n |
a/Å | 9.7657(8) | 10.4397(12) | 12.7468(6) | 12.0055(7) |
b/Å | 7.3279(7) | 12.8489(12) | 7.6955(4) | 5.0078(3) |
c/Å | 19.7608(17) | 24.482(3) | 19.1076(12) | 22.2135(14) |
α/° | 90 | 90 | 90 | 90 |
β/° | 90 | 90 | 104.886(2) | 98.700(2) |
γ/° | 90 | 90 | 90 | 90 |
Volume | 1414.6(2) | 3284.0(6) | 1811.42(17) | 1320.13(14) |
Z | 4 | 16 | 4 | 2 |
Dcalcd g/cm3 | 1.812 | 2.075 | 1.779 | 1.592 |
μ (mm−1) | 10.521 | 12.841 | 6.977 | 3.288 |
F(000) | 796 | 2048 | 1000 | 648 |
2θ range (°) | 11.08–144.54 | 10.004–103.808 | 3.277–61.972 | 3.442–56.749 |
Reflections collected | 17,501 | 1176 | 25,756 | 16,456 |
Independent reflections | 2104 | 529 | 25,756 | 2615 |
Final R indices [I >= 2σ(I)] | R1 = 0.0291, wR2 = 0.843 | R1 = 0.1015, wR2 = 0.2766 | R1 = 0.0663, wR2 = 0.1605 | R1 = 0.0354,wR2 = 0.0993 |
Final R indices [all data] | R1 = 0.0321, wR2 = 0.0870 | R1 = 0.1295, wR2 = 0.3736 | R1 = 0.0913, wR2 = 0.1708 | R1 = 0.0450, wR2 = 0.1030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, D.; Luo, M. Synthesis, Characterization, and Cytotoxicity Research of Sulfur-Containing Metal Complexes. Inorganics 2025, 13, 26. https://doi.org/10.3390/inorganics13010026
Yang Y, Li D, Luo M. Synthesis, Characterization, and Cytotoxicity Research of Sulfur-Containing Metal Complexes. Inorganics. 2025; 13(1):26. https://doi.org/10.3390/inorganics13010026
Chicago/Turabian StyleYang, Yanting, Danqin Li, and Mei Luo. 2025. "Synthesis, Characterization, and Cytotoxicity Research of Sulfur-Containing Metal Complexes" Inorganics 13, no. 1: 26. https://doi.org/10.3390/inorganics13010026
APA StyleYang, Y., Li, D., & Luo, M. (2025). Synthesis, Characterization, and Cytotoxicity Research of Sulfur-Containing Metal Complexes. Inorganics, 13(1), 26. https://doi.org/10.3390/inorganics13010026