Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Approaches
2.2. Crystal Structure Description
2.2.1. [(Mn(5MeSalen))2OAc]PF6 (2)
2.2.2. [Mn(3MeOSalen)(H2O)2][Mn(3MeOSalen)H2O(MeCN)](Ph4B)2·5MeCN (6)
2.2.3. Ph4P[Mn(3MeOSalen)(H2O)2]2[Re(CN)7]·6H2O (3)
2.2.4. [{(Mn(5MeSalen))6(H2O)2Re(CN)7}2Re(CN)7]Cl2(PF6)·H2O (4)
2.2.5. [Mn(5MeSalen)(H2O)i-PrOH][(Mn(5MeSalen))5H2O(i-PrOH)2Re(CN)7](PF6)2(OAc)H2O(i-PrOH)2 (5)
2.3. Crystal Structure Summary
3. Conclusions
4. Experimental Section
4.1. Single-Crystal X-ray Diffraction
4.2. Synthetic Details
4.2.1. Synthesis of Complex 2, [(Mn5MeSalen)2(OAc)]PF6
4.2.2. Synthesis of Complex 3, Ph4P[Mn(3MeOSalen)(H2O)2]2[Re(CN)7]·6H2O
4.2.3. Synthesis of Complex 4, [{(Mn5MeSalen)6(H2O)2Re(CN)7}2Re(CN)7]Cl2·PF6·H2O
4.2.4. [Mn(5MeSalen)H2O(i-PrOH)][(Mn(5MeSalen))5H2O(i-PrOH)2Re(CN)7](PF6)2(OAc)·2i-PrOH, 5
4.2.5. Synthesis of Complex 6, [Mn(3MeOSalen)(H2O)2][Mn(3MeOSalen)(H2O)MeCN](Ph4B)2·5MeCN
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Q.R.; Xue, L.W.; Zhao, G.Q. Manganese(III) complexes derived from bis-Schiff Bases: Synthesis, structures, and antimicrobial activity. Rus. J. Coord. Chem. 2014, 40, 757–763. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, D.; Singh, C.P.; Kumar, A.; Rana, V.B. Synthesis, physical characterization and antimicrobial activity of trivalent metal Schiff base complexes. J. Serb. Chem. Soc. 2010, 75, 629–637. [Google Scholar] [CrossRef]
- Singh, D.P.; Kumar, K.; Sharma, C.; Aneja, K.R. Template synthesis, spectroscopic, antibacterial, and antifungal studies of trivalent transition metal ion macrocyclic complexes. J. Enzyme Inhib. Med. Chem. 2010, 25, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Surati, K.R. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic beta-diketone with various primary amine and 2,2′-bipyridyl. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2011, 79, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Signorella, S.; Hureau, C. Bioinspired functional mimics of the manganese catalases. Coord. Chem. Rev. 2012, 256, 1229–1245. [Google Scholar] [CrossRef]
- Baleizao, C.; Garcia, H. Chiral salen complexes: An overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem. Rev. 2006, 106, 3987–4043. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.C.; Sutar, A.K.; Lin, C.-C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 2009, 253, 1926–1946. [Google Scholar] [CrossRef]
- Cozzi, P.G. Metal–Salen Schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev. 2004, 33, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Saitoh, A.; Abec, S. Magnetic assemblies based on Mn(III) salen analogues. Coord. Chem. Rev. 2007, 251, 2622–2664. [Google Scholar] [CrossRef]
- Kachi-Terajima, C.; Mori, E.; Eiba, T.; Saito, T.; Kanadani, C.; Kitazawa, T.; Miyasaka, H. MnIII Salen-type single-molecule magnet fixed in a two-dimensional network. Chem. Lett. 2010, 39, 94–95. [Google Scholar] [CrossRef]
- Pedersen, K.S.; Bendix, J.; Clérac, R. Single-molecule magnet engineering: Building block approaches. Chem. Commun. 2014, 50, 4396–4415. [Google Scholar] [CrossRef] [PubMed]
- Clemente-León, M.; Coronado, E.; López-Jordà, M. 2D, 3D bimetallic oxalate-based ferromagnets prepared by insertion of MnIII-salen type complexes. Dalton Trans. 2013, 42, 5100–5110. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lim, K.S.; Ryu, D.W.; Lee, W.R.; Yoon, S.W.; Suh, B.J.; Hong, C.S. Synthesis, crystal structures, and magnetic properties of cyanide-bridged WVMnIII anionic coordination polymers containing divalent cationic moieties: Slow magnetic relaxations and spin crossover phenomenon. Inorg. Chem. 2014, 53, 10437–10442. [Google Scholar] [CrossRef] [PubMed]
- Samsonenko, D.G.; Paulsen, C.; Lhotel, E.; Mironov, V.S.; Vostrikova, K.E. [MnIII(Schiff base)]3[ReIV(CN)7], highly anisotropic 3D coordination framework: Synthesis, crystal structure, magnetic investigations, and theoretical analysis. Inorg. Chem. 2014, 53, 10217–10231. [Google Scholar] [CrossRef] [PubMed]
- Rams, M.; Peresypkina, E.V.; Mironov, V.S.; Wernsdorfer, W.; Vostrikova, K.E. Magnetic Relaxation of 1D Coordination Polymers (X)2[Mn(acacen)Fe(CN)6], X = Ph4P+, Et4N+. Inorg. Chem. 2014, 53, 10291–10300. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Gatteschi, D.; Sessoli, R.; Barra, A.L.; Brunel, L.C.; Guillot, M. Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(CH3COO)16(H2O)4]∙2CH3COOH∙4H2O. J. Am. Chem. Soc. 1991, 113, 5873–5874. [Google Scholar] [CrossRef]
- Lis, T. Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallogr. Sect. B. 1980, 36, 2042–2046. [Google Scholar] [CrossRef]
- Gerritsen, H.J.; Sabinsky, E.S. Paramagnetic Resonance of Trivalent Manganese in Rutile (TiO2). Phys. Rev. 1963, 132, 1507–1512. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Murray, K.S. Magnetic properties and zero-field splitting in high-spin Mn(III) complexes. 1. Mononuclear and polynuclear Schiff-base chelates. Inorg. Chem. 1985, 24, 1552–1557. [Google Scholar] [CrossRef]
- Zhang, C.-G.; Tian, G.-H.; Ma, Z.-F.; Yan, D.-Y. Synthesis, crystal structure and properties of a novel di-μ2-aqua bridged binuclear manganese(III) Schiff base complex [Mn(vanen)(H2O)2]2(ClO4)2·2H2O. Trans. Met. Chem. 2000, 25, 270–273. [Google Scholar] [CrossRef]
- Peresypkina, E.V.; Vostrikova, K.E. 2[Mn(acacen)]+ + 1[Fe(CN)5NO]2− polynuclear heterobimetallic coordination compounds of different dimensionality in the solid state. Dalton Trans. 2012, 41, 4100–4106. [Google Scholar] [CrossRef] [PubMed]
- Peresypkina, E.V.; Samsonenko, D.G.; Vostrikova, K.E. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates. J. Solid State Chem. 2015, 224, 107–114. [Google Scholar] [CrossRef]
- Peresypkina, E.V.; Majcher, A.; Rams, M.; Vostrikova, K.E. A single chain magnet involving hexacyanoosmate. Chem. Commun. 2014, 50, 7150–7153. [Google Scholar] [CrossRef] [PubMed]
- Vostrikova, K.E. Homoleptic Osmium Cyanide Complexes: Synthesis and Perspective Application in Molecular Magnetism. In Osmium: Synthesis Characterization and Applications; Wise, G., Ed.; Nova Science Publishers: New York, NY, USA, 2015; pp. 43–78. ISBN 978-1-63483-517-6. [Google Scholar]
- Re, N.; Gallo, E.; Floriani, C.; Miyasaka, H.; Matsumoto, N. Magnetic properties of a one-dimensional ferromagnet containing a Mn(III)−NC−Fe(III) linkage: Synthesis and crystal structure of a chainlike [Mn(acacen)Fe(CN)6]n2n–polyanion. Inorg. Chem. 1996, 35, 6004–6008. [Google Scholar] [CrossRef]
- Bennett, M.V.; Long, J.R. New Cyanometalate Building Units: Synthesis and Characterization of [Re(CN)7]3− and [Re(CN)8]3−. J. Am. Chem. Soc. 2003, 125, 2394–2395. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Okawa, H.; Miyazaki, A.; Enoki, T. Synthesis, crystal and network structures, and magnetic properties of a hybrid compound: [K(18-cr)(2-PrOH)2][{Mn(acacen)}2{Fe(CN)6}] (18-cr = 18-Crown-6-ether, acacen = N,N′-ethylenebis(acetylacetonylideneiminate)). Inorg. Chem. 1998, 37, 4878–4883. [Google Scholar] [CrossRef] [PubMed]
- Kou, H.-Z.; Ni, Z.-H.; Zhou, B.C.; Wang, R.-J. A cyano-bridged molecule-based magnet containing manganese(III) Schiff base and octacyanotungstate(V) building blocks. Inorg. Chem. Commun. 2004, 7, 1150–1153. [Google Scholar] [CrossRef]
- Miyasaka, H.; Matsumoto, N.; Okawa, H.; Re, N.; Gallo, E.; Floriani, C. The 2-fimensional network structure and metamagnetic properties of the 2:1 complex of [Mn(3-MeOsalen)(H2O)]ClO4 and K3[Fe(CN)6]. Angew. Chem. Int. Ed. Engl. 1995, 34, 1446–1448. [Google Scholar] [CrossRef]
- Miyasaka, H.; Matsumoto, N.; Okawa, H.; Re, N.; Gallo, E.; Floriani, C. Complexes derived from the reaction of manganese(III) Schiff base complexes and hexacyanoferrate(III): Syntheses, multidimensional network structures, and magnetic properties. J. Am. Chem. Soc. 1996, 118, 981–994. [Google Scholar] [CrossRef]
- Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Synthesis, crystal structure, and magnetic properties of a ferrimagnetic layered compound NEt4[Mn(5Clsalen)]2[Fe(CN)6], NEt4 = tetraethylammonium, 5-Cl-salen = N,N′-ethylenebis((5-chlorosalicylidene)aminato). Inorg. Chem. 1997, 36, 670–676. [Google Scholar] [CrossRef]
- Miyasaka, H.; Ieda, H.; Matsumoto, N.; Sugiura, K.; Yamashita, M. Structure and magnetic properties of the two-dimensional ferrimagnet (NEt4)[{Mn(salen)}2Fe(CN)6]: Investigation of magnetic anisotropy on a single crystal. Inorg. Chem. 2003, 42, 3509–3515. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-B.; Wang, J.; Wang, H.-S.; Xu, Y.-L.; Song, X.-J.; Song, Y.; You, X.-Z. Synthesis, structure, and magnetic properties of three 1D chain complexes based on high-spin metal–cyanide clusters: [MnIII6MIII] (M = Cr, Fe, Co). Inorg. Chem. 2011, 50, 6868–6877. [Google Scholar] [CrossRef] [PubMed]
- Pinkowicz, D.; Southerland, H.I.; Avendaño, C.; Prosvirin, A.; Sanders, C.; Wernsdorfer, W.; Pedersen, K.S.; Dreiser, J.; Clérac, R.; Nehrkorn, J.; et al. Cyanide single-molecule magnets exhibiting solvent dependent reversible “on” and “off” exchange bias behavior. J. Am. Chem. Soc. 2015, 137, 14406–14422. [Google Scholar] [CrossRef] [PubMed]
- Sukhikh, T.S.; Vostrikova, K.E. CSD Communication 2017, CCDC 1566469; the Cambridge Structural Database. Available online: http://www.ccdc.cam.ac.uk/products/csd/ (accessed on 3 August 2017). [CrossRef]
- Sukhikh, T.S.; Vostrikova, K.E. CSD Communication 2017, CCDC 1566470; the Cambridge Structural Database. Available online: http://www.ccdc.cam.ac.uk/products/csd/ (accessed on 3 August 2017). [CrossRef]
- Sukhikh, T.S.; Vostrikova, K.E. CSD Communication 2017, CCDC 1567014; the Cambridge Structural Database. Available online: http://www.ccdc.cam.ac.uk/products/csd/ (accessed on 5 August 2017). [CrossRef]
- Sukhikh, T.S.; Vostrikova, K.E. CSD Communication 2017, CCDC 1567013; the Cambridge Structural Database. Available online: http://www.ccdc.cam.ac.uk/products/csd/ (accessed on 5 August 2017). [CrossRef]
- Zhang, W.-X.; Breedlove, B.; Ishikawa, R.; Yamashita, M. Single-chain magnets: Beyond the Glauber model. RSC Adv. 2013, 3, 3772–3798. [Google Scholar] [CrossRef]
- Miyasaka, H.; Madanbashi, T.; Saitoh, A.; Motokawa, N.; Ishikawa, R.; Yamashita, M.; Bahr, S.; Wernsdorfer, W.; Clérac, R. Cyano-Bridged MnIIIMIII Single-Chain Magnets with MIII = CoIII, FeIII, MnIII, and CrIII. Chem. Eur. J. 2012, 18, 3942–3954. [Google Scholar] [CrossRef] [PubMed]
- Przychodzeń, P.; Lewiński, K.; Bałanda, M.; Pełka, R.; Rams, M.; Wasiutyński, T.; Guyard-Duhayon, C.; Sieklucka, B. Crystal structures and magnetic properties of two low-dimensional materials constructed from [MnIII(salen) H2O]+ and [M(CN)8]3−/4− (M = Mo or W) Precursors. Inorg. Chem. 2004, 43, 2967–2974. [Google Scholar] [CrossRef] [PubMed]
- Kani, Y.; Ohba, S.; Yu, N. μ-Acetato-O:O′-bis{[bis(salicylidene)ethylenediaminato]manganese(III)} perchlorate. Acta Cryst. C Cryst. Str. Comm. 2000, 56, e194. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Muetterties, E.L.; Guggenberger, L.J. Idealized polytopal forms. Description of real molecules referenced to idealized polygons or polyhedra in geometric reaction path form. J. Am. Chem. Soc. 1974, 96, 1748–1756. [Google Scholar] [CrossRef]
- Dreyer, E.B.; Lam, C.T.; Lippard, S.J. Higher coordinate cyanide and isocyanide complexes. 8. Synthesis and structure of diiododicarbonyltris(tert-butyl isocyanide)tungsten(II), an example of the 4:3 piano stool seven-coordinate geometry. Inorg. Chem. 1979, 18, 1904–1908. [Google Scholar] [CrossRef]
- Shen, X.; Li, B.; Zou, J.; Xu, Z.; Yu, Y.; Liu, S. Crystal structure of a cyanide-bridged heptanuclear manganese(III)–chromium(III) complex with a ground state S = 21/2. Trans. Met. Chem. 2002, 27, 372–376. [Google Scholar] [CrossRef]
- Shen, X.; Li, B.; Zou, J.; Hu, H.; Xu, Z. The first cyano-bridged heptanuclear Mn(III)6Fe(III) cluster: Crystal structure and magnetic properties of [{Mn(salen)H2O}6Fe(CN)6][Fe(CN)6]·6H2O. J. Mol. Struct. 2003, 657, 325–331. [Google Scholar] [CrossRef]
- Nastase, S.; Maxim, C.; Duhayon, C.; Sutter, J.-P.; Andruh, M. Synthesis and crystal structure of two new cyanidobridged [MnIII5MoIV] and [MnIII2AuI] heterometallic complexes. Rev. Roum. Chim. 2013, 58, 355–363. [Google Scholar]
- Martínez, D.; Motevallia, M.; Watkinson, M. Is there really a diagnostically useful relationship between the carbon–oxygen stretching frequencies in metal carboxylate complexes and their coordination mode? Dalton Trans. 2010, 39, 446–455. [Google Scholar] [CrossRef] [PubMed]
- SADABS, Version 2.11; Bruker Advanced X-ray Solutions: Madison, WI, USA, 2004.
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
Compound | 2 | 6 | 3 | 4 | 5 |
---|---|---|---|---|---|
Empirical formula | C38H39F6 Mn2N4O6P | C96H100B2 Mn2N10O11 | C67H64Mn2 N11O18PRe | C237H224Cl2F6 Mn12N45O30PRe3 | C133H160F12Mn6 N19O20P2Re |
CCDC number* | 1567008 | 1567011 | 1567010 | 1567009 | 1567012 |
Formula weight | 902.58 | 1701.35 | 1638.34 | 5616.35 | 3150.57 |
Crystal system | triclinic | monoclinic | triclinic | triclinic | monoclinic |
SG | P–1 | P21/c | P–1 | P–1 | P21/n |
Unit cell a, Å | 11.3880(4) | 15.9891(18) | 14.2002(9) | 13.8130(3) | 23.7380(7) |
b, Å | 11.8845(4) | 27.544(3) | 15.7993(9) | 15.0609(3) | 20.5122(6) |
C, Å | 15.3829(5) | 21.779(2) | 18.0470(11) | 30.1361(7) | 29.8804(9) |
α (°) | 75.0794(12) | 84.638(3) | 94.4470(10) | ||
β (°) | 75.9749(13) | 108.762(4) | 82.694(4) | 93.2230(10) | 93.370(2) |
γ (°) | 84.3937(13) | 65.057(3) | 94.1440(10) | ||
V, Å 3 | 1950.38(12) | 9081.7(17) | 3637.9(4) | 6222.1(2) | 14524.2(7) |
Z | 2 | 4 | 2 | 1 | 4 |
dcalc., g/cm3 | 1.537 | 1.244 | 1.496 | 1.499 | 1.437 |
T, (°) | 150(2) | 200(2) | 200(2) | 200(2) | 298 |
F(000) | 924 | 3576 | 1654 | 2829 | 6424 |
Absorption coef., mm−1 | 0.768 | 0.342 | 2.098 | 2.143 | 6.609 |
Crystal size, mm3 | 0.30 × 0.15 × 0.03 | 0.33 × 0.08 × 0.08 | 0.30 × 0.15 × 0.13 | 0.24 × 0.1 × 0.04 | 0.17 × 0.17 × 0.13 |
2θmax (°) | 59.48 | 50.05 | 57.8 | 50.16 | 80.6 |
Index range | −15 ≤ h ≤ 15 −14 ≤ k ≤ 16 −21 ≤ l ≤ 21 | −19 ≤ h ≤ 19 −32 ≤ k ≤ 32 −25 ≤ l ≤ 25 | −19 ≤ h ≤ 19 −21 ≤ k ≤ 21 −24 ≤ l ≤ 24 | −19 ≤ h ≤ 19 −21 ≤ k ≤ 21 −24 ≤ l ≤ 24 | −19 ≤ h ≤ 16 −11 ≤ k ≤ 17 −24 ≤ l ≤ 25 |
Reflections: | |||||
collected | 27,193 | 125,931 | 43,543 | 53,423 | 41,496 |
independent | 10,872 | 16,018 | 18,851 | 22,053 | 8642 |
I ≥ 2σ(I) | 9134 | 9349 | 16,297 | 13,745 | 5302 |
Parameters | 520 | 1143 | 909 | 1593 | 1053 |
Complet., % | 97.7 | 100 | 98.5 | 99.7 | 96.2 |
GoF | 1.022 | 1.021 | 1.120 | 0.978 | 1.075 |
Fin. R indices (I > 2σ(I)) | R1 = 0.0319, wR2 = 0.0780 | R1 = 0.0563, wR2 = 0.1282 | R1 = 0.0394, wR2 = 0.0944 | R1 = 0.0570, wR2 = 0.1131 | R1 = 0.1082, wR2 = 0.1959 |
∆>max, ∆>min, (e Å−3) | −0.417, 0.422 | −0.336, 0.707 | −0.784, 2.182 | −1.186, 1.416 | −0.646, 0.871 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhikh, T.S.; Vostrikova, K.E. Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV). Inorganics 2017, 5, 59. https://doi.org/10.3390/inorganics5030059
Sukhikh TS, Vostrikova KE. Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV). Inorganics. 2017; 5(3):59. https://doi.org/10.3390/inorganics5030059
Chicago/Turabian StyleSukhikh, Taisiya S., and Kira E. Vostrikova. 2017. "Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV)" Inorganics 5, no. 3: 59. https://doi.org/10.3390/inorganics5030059
APA StyleSukhikh, T. S., & Vostrikova, K. E. (2017). Assembly of Mn(III) Schiff Base Complexes with Heptacyanorhenate (IV). Inorganics, 5(3), 59. https://doi.org/10.3390/inorganics5030059