Unique Hydrogen Desorption Properties of LiAlH4/h-BN Composites
Abstract
:1. Introduction
- Melting:LiAlH4(s) → LiAlH4(l) Endothermic (150–175 °C)
- Decomposition in the first step:3LiAlH4(l) → Li3AlH6(s) + 2Al + 3H2 Exothermic (150–200 °C, 5.3 mass % H2)
- Decomposition in the second step:Li3AlH6(s) → 3LiH + Al + 3/2H2 Endothermic (200–270 °C, 2.6 mass % H2)
2. Results
3. Discussion
4. Materials and Methods
4.1. Synthesis of LiAlH4/X Composites
4.2. Characterization
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Lai, Q.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E.; Thornton, A.W.; Hill, M.R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H.K.; et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art. ChemSusChem 2015, 8, 2789–2825. [Google Scholar] [CrossRef] [PubMed]
- Ley, M.B.; Jensen, L.H.; Lee, Y.S.; Cho, Y.W.; Bellosta von Colbe, J.M.; Dornheim, M.; Rokni, M.; Jensen, J.O.; Sloth, M.; Filinchuk, Y.; et al. Complex hydrides for hydrogen storage—New perspectives. Mater. Today 2014, 17, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Orimo, S.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.W.; Shim, J.H.; Cho, Y.W.; Lee, B.J. Thermodynamic calculation of LiH ↔ Li3AlH6 ↔ LiAlH4 reactions. J. Alloys Compd. 2006, 420, 286–290. [Google Scholar] [CrossRef]
- Wu, H. Strategies for the improvement of the hydrogen storage properties of metal hydride materials. ChemPhysChem 2008, 9, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997, 253–254, 1–9. [Google Scholar] [CrossRef]
- Sandrock, G.; Gross, K.; Thomas, G. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J. Alloys Compd. 2002, 339, 299–308. [Google Scholar] [CrossRef]
- Gremaud, R.; Borgschulte, A.; Lohstroh, W.; Schreuders, H.; Züttel, A.; Dam, B.; Griessen, R. Ti-catalyzed Mg(AlH4)2: A reversible hydrogen storage material. J. Alloys Compd. 2005, 404–406, 775–778. [Google Scholar] [CrossRef]
- Easton, D.S.; Schneibel, J.H.; Speakman, S.A. Factors affecting hydrogen release from lithium alanate (LiAlH4). J. Alloys Compd. 2005, 398, 245–248. [Google Scholar] [CrossRef]
- Amama, P.B.; Grant, J.T.; Shamberger, P.J.; Voevodin, A.A.; Fisher, T.S. Improved dehydrogenation properties of Ti-doped LiAlH4: Role of Ti precursors. J. Phys. Chem. C 2012, 116, 21886–21894. [Google Scholar] [CrossRef]
- Isobe, S.; Ikarashi, Y.; Yao, H.; Hino, S.; Wang, Y.; Hashimoto, N.; Ohnuki, S. Additive effects of TiCl3 on dehydrogenation reaction of LiAlH4. Mater. Trans. 2014, 55, 1138–1140. [Google Scholar] [CrossRef]
- Wang, L.; Aguey-Zinsou, K.F. Synthesis of LiAlH4 nanoparticles leading to a single hydrogen release step upon Ti coating. Inorganics 2017, 5, 38. [Google Scholar] [CrossRef]
- Liu, X.; McGrady, G.S.; Langmi, H.W.; Jensen, C.M. Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. J. Am. Chem. Soc. 2009, 131, 5032–5033. [Google Scholar] [CrossRef]
- Graetz, J.; Wegrzyn, J.; Reilly, J.J. Regeneration of lithium aluminum hydride. J. Am. Chem. Soc. 2008, 130, 17790–17794. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ebner, A.D.; Ritter, J.A. Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J. Am. Chem. Soc. 2006, 128, 5949–5954. [Google Scholar] [CrossRef] [PubMed]
- Neiner, D.; Karkamkar, A.; Linehan, J.C.; Arey, B.; Autrey, T.; Kauzlarich, S.M. Promotion of hydrogen release from ammonia borane with mechanically activated hexagonal boron nitride. J. Phys. Chem. C 2009, 113, 1098–1103. [Google Scholar] [CrossRef]
- Tu, G.; Xiao, X.; Qin, T.; Jiang, Y.; Li, S.; Ge, H.; Chen, L. Significantly improved de/rehydrogenation properties of lithium borohydride modified with hexagonal boron nitride. RSC Adv. 2015, 5, 51110–51115. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Cai, W.; Liu, J.; Ouyang, L.; Zhu, M. The milled LiBH4/h-BN composites exhibiting unexpected hydrogen storage kinetics and reversibility. Int. J. Hydrog. Energy 2017, 42, 15790–15798. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.F.; Yao, J.; Guo, Z.X. Reaction paths between LiNH2 and LiH with effects of nitrides. J. Phys. Chem. B 2007, 111, 12531–12536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Isobe, S.; Matsuo, M.; Orimo, S.; Wang, Y.; Hashimoto, N.; Ohnuki, S. Effect of lithium ion conduction on hydrogen desorption of LiNH2−LiH composite. ACS Catal. 2015, 5, 1552–1555. [Google Scholar] [CrossRef]
- Ares, J.R.; Aguey-Zinou, K.F.; Porcu, M.; Sykes, J.M.; Dornheim, M.; Klassen, T.; Bormann, R. Thermal and mechanically activated decomposition of LiAlH4. Mater. Res. Bull. 2008, 43, 1263–1275. [Google Scholar] [CrossRef]
- D’Anna, V.; Spyratou, A.; Sharma, M.; Hagemann, H. FT-IR spectra of inorganic borohydrides. Spectrochim. Acta Part A 2014, 128, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Miyaoka, H.; Ichikawa, T.; Fujii, H.; Kojima, Y. Hydrogen desorption reaction between hydrogen-containing functional groups and lithium hydride. J. Phys. Chem. C 2010, 114, 8668–8674. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Andreasen, A.; Vegge, T.; Pedersen, A.S. Dehydrogenation kinetics of as-received and ball-milled LiAlH4. J. Solid State Chem. 2005, 178, 3672–3678. [Google Scholar] [CrossRef]
- Wang, L.; Rawal, A.; Quadir, M.Z.; Aguey-Zinsou, K.F. Nanoconfined lithium aluminum hydride (LiAlH4) and hydrogen reversibility. Int. J. Hydrog. Energy 2017, 42, 14144–14153. [Google Scholar] [CrossRef]
- Oguchi, H.; Matsuo, M.; Sato, T.; Takaumura, H.; Maekawa, H.; Kuwano, H.; Orimo, S. Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6. J. Appl. Phys. 2010, 107, 096104. [Google Scholar] [CrossRef]
- Maekawa, H.; Matsuo, M.; Takamura, H.; Ando, M.; Noda, Y.; Karahashi, T.; Orimo, S. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 2009, 131, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Takamura, H.; Maekawa, H.; Li, H.W.; Orimo, S. Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition. Appl. Phys. Lett. 2009, 94, 084103. [Google Scholar] [CrossRef]
- Oguchi, H.; Matsuo, M.; Hummelshøj, J.S.; Vegge, T.; Nørskov, J.K.; Sato, T.; Miura, Y.; Takamura, H.; Maekawa, H.; Orimo, S. Experimental and computational studies on structural transitions in the LiBH4−LiI pseudobinary system. Appl. Phys. Lett. 2009, 94, 141912. [Google Scholar] [CrossRef] [Green Version]
- Mosegaard, L.; Møller, B.; Jørgensen, J.E.; Filinchuk, Y.; Cerenius, Y.; Hanson, J.C.; Dimasi, E.; Besenbacher, F.; Jensen, T.R. Reactivity of LiBH4: In situ synchrotron radiation power X-ray diffraction study. J. Phys. Chem. C 2008, 112, 1299–1303. [Google Scholar] [CrossRef]
- Rude, L.H.; Groppo, E.; Arnbjerg, L.M.; Ravnsbæk, D.B.; Malmkjær, R.A.; Filinchuk, Y.; Baricco, M.; Besenbacher, F.; Jensen, T.R. Iodide substitution in lithium borohydride, LiBH4−LiI. J. Alloys Compd. 2011, 509, 8299–8305. [Google Scholar] [CrossRef]
- Langmi, H.W.; McGrady, G.S.; Liu, X.; Jensen, C.M. Modification of the H2 desorption properties of LiAlH4 through doping with Ti. J. Phys. Chem. C 2010, 114, 10666–10669. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Wan, Q.; Zhai, F.; Liu, Z.; Zhao, K.; Wang, L.; Lü, S.; Zou, L.; Qu, X.; et al. Dehydrogenation improvement of LiAlH4 catalyzed by Fe2O3 and Co2O3 nanoparticles. J. Phys. Chem. C 2013, 117, 18343–18352. [Google Scholar] [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Dou, S.X. Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int. J. Hydrog. Energy 2010, 35, 2361–2367. [Google Scholar] [CrossRef]
- Atakli, Z.Ö.K.; Callini, E.; Kato, S.; Mauron, P.; Orimo, S.; Züttel, A. The catalyzed hydrogen sorption mechanism in alkali alanates. Phys. Chem. Chem. Phys. 2015, 17, 20932. [Google Scholar] [CrossRef] [PubMed]
- Hoang, K.; Janotti, A; Van de Walle, C.G. Decomposition mechanism and the effects of metal additives on the kinetics of lithium alanate. Phys. Chem. Chem. Phys. 2012, 14, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functional hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Mochalin, V.N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; He, L.; Lei, W.; Klika, K.D.; Kong, L.; Chen, Y. Multifunctional polymer/porous boron nitride nanosheet membranes for superior trapping emulsified oils and organic molecules. Adv. Mater. Interfaces 2015, 2, 1500228. [Google Scholar] [CrossRef]
- Hu, S.; Lozada-Hidalgo, M.; Wang, F.C.; Mishchenko, A.; Schedin, F.; Nair, R.R.; Hill, E.W.; Boukhvalov, D.W.; Katsnelson, M.I.; Dryfe, R.A.W.; et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Zhang, H.; Wu, Y.; Zhang, B.; Liu, D.; Qin, S.; Liu, Z.; Liu, L.; Ma, Y.; Chen, Y. Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 2014, 6, 219–224. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, Y.; Isobe, S.; Ohki, T.; Hashimoto, N. Unique Hydrogen Desorption Properties of LiAlH4/h-BN Composites. Inorganics 2017, 5, 71. https://doi.org/10.3390/inorganics5040071
Nakagawa Y, Isobe S, Ohki T, Hashimoto N. Unique Hydrogen Desorption Properties of LiAlH4/h-BN Composites. Inorganics. 2017; 5(4):71. https://doi.org/10.3390/inorganics5040071
Chicago/Turabian StyleNakagawa, Yuki, Shigehito Isobe, Takao Ohki, and Naoyuki Hashimoto. 2017. "Unique Hydrogen Desorption Properties of LiAlH4/h-BN Composites" Inorganics 5, no. 4: 71. https://doi.org/10.3390/inorganics5040071
APA StyleNakagawa, Y., Isobe, S., Ohki, T., & Hashimoto, N. (2017). Unique Hydrogen Desorption Properties of LiAlH4/h-BN Composites. Inorganics, 5(4), 71. https://doi.org/10.3390/inorganics5040071