Microstructure and Hydrogen Storage Properties of Ti1V0.9Cr1.1 Alloy with Addition of x wt % Zr (x = 0, 2, 4, 8, and 12)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure Analysis
2.2. Structural Characterization
2.3. Activation Process
2.4. XRD Patterns after Hydrogenation
2.5. Air Exposure Effect
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jena, P. Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2011, 2, 206–211. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Züttel, A. Hydrogen storage and distribution systems. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 343–365. [Google Scholar] [CrossRef]
- Gambini, M.; Manno, M.; Vellini, M. Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. Int. J. Hydrog. Energy 2008, 33, 6178–6187. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrog. Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Akiba, E.; Iba, H. Hydrogen absorption by laves phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Kuriiwa, T.; Tamura, T.; Amemiya, T.; Fuda, T.; Kamegawa, A.; Takamura, H.; Okada, M. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compd. 1999, 293, 433–436. [Google Scholar] [CrossRef]
- Okada, M.; Kuriiwa, T.; Tamura, T.; Takamura, H.; Kamegawa, A. Ti–V–Cr BCC Alloys with high protium content. J. Alloys Compd. 2002, 330, 511–516. [Google Scholar] [CrossRef]
- Tamura, T.; Kazumi, T.; Kamegawa, A.; Takamura, H.; Okada, M. Protium absorption properties and protide formations of Ti–Cr–V alloys. J. Alloys Compd. 2003, 356, 505–509. [Google Scholar] [CrossRef]
- Itoh, H.; Arashima, H.; Kubo, K.; Kabutomori, T. The influence of microstructure on hydrogen absorption properties of Ti–Cr–V alloys. J. Alloys Compd. 2002, 330, 287–291. [Google Scholar] [CrossRef]
- Fruchart, D.; De Rango, P.; Charbonnier, J.; Miraglia, S.; Rivoirard, S.; Skryabina, N.; Jehan, M. Nanocrystalline Composite for Storage of Hydrogen. U.S. Patent No. 8,012,452, 6 September 2011. [Google Scholar]
- Bibienne, T.; Bobet, J.-L.; Huot, J. Crystal structure and hydrogen storage properties of body centered cubic 52Ti–12V–36Cr alloy doped with Zr7Ni10. J. Alloys Compd. 2014, 607, 251–257. [Google Scholar] [CrossRef]
- Martínez, A.; dos Santos, D.S. Hydrogen absorption/desorption properties in the TiCrV based alloys. Mater. Res. 2012, 15, 809–812. [Google Scholar] [CrossRef]
- Miraglia, S.; de Rango, P.; Rivoirard, S.; Fruchart, D.; Charbonnier, J.; Skryabina, N. Hydrogen sorption properties of compounds based on BCC Ti1 − xV1 − yCr1 + x + y alloys. J. Alloys Compd. 2012, 536, 1–6. [Google Scholar] [CrossRef]
- Skryabina, N.; Fruchart, D.; Medvedeva, N.A.; de Rango, P.; Mironova, A.A. Correlation between the hydrogen absorption properties and the vanadium concentration of Ti–V–Cr based alloys. Solid State Phenom. 2017, 257, 165–172. [Google Scholar] [CrossRef]
- Bellon, D.; Martinez, A.; Barreneche, D.; dos Santos, D. A structural study of the hydrogen absorption properties by replacing vanadium with zirconium in metal alloys. J. Phys. Conf. Ser. 2016, 687, 012057. [Google Scholar] [CrossRef]
- Kamble, A.; Sharma, P.; Huot, J. Effect of doping and particle size on hydrogen absorption properties of BCC solid solution 52Ti-12V-36Cr. Int. J. Hydrog. Energy 2017, 42, 11523–11527. [Google Scholar] [CrossRef]
- Shashikala, K.; Banerjee, S.; Kumar, A.; Pai, M.; Pillai, C. Improvement of hydrogen storage properties of TiCrV alloy by Zr substitution for Ti. Int. J. Hydrog. Energy 2009, 34, 6684–6689. [Google Scholar] [CrossRef]
- Yoo, J.-H.; Shim, G.; Yoon, J.-S.; Cho, S.-W. Effects of substituting Al for Cr in the Ti0.32Cr0.43V0.25 alloy on its microstructure and hydrogen storage properties. Int. J. Hydrog. Energy 2009, 34, 1463–1467. [Google Scholar] [CrossRef]
- Edalati, K.; Shao, H.; Emami, H.; Iwaoka, H.; Akiba, E.; Horita, Z. Activation of titanium–vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion. Int. J. Hydrog. Energy 2016, 41, 8917–8924. [Google Scholar] [CrossRef]
- Banerjee, S.; Kumar, A.; Ruz, P.; Sengupta, P. Influence of laves phase on microstructure and hydrogen storage properties of Ti–Cr–V based alloy. Int. J. Hydrog. Energy 2016, 41, 18130–18140. [Google Scholar] [CrossRef]
- Huot, J.; Tousignant, M. Hydrogen sorption enhancement in cold-rolled and ball-milled CaNi5. J. Mater. Sci. 2017, 52, 11911–11918. [Google Scholar] [CrossRef]
- Tousignant, M.; Huot, J. Hydrogen sorption enhancement in cold rolled LaNi5. J. Alloys Compd. 2014, 595, 22–27. [Google Scholar] [CrossRef]
- Bruker, A.X.S. TOPAS V3: General profile and structure analysis software for powder diffraction data. In User’s Manual; Bruker AXS: Karlsruhe, Germany, 2005. [Google Scholar]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, 25–30. [Google Scholar] [CrossRef] [PubMed]
Sample | Ti (at %) | V (at %) | Cr (at %) | Zr (at %) | |
---|---|---|---|---|---|
x = 0 | Nominal composition | 33 | 30 | 37 | 0 |
Measurement | 34.0(2) | 29.8 (3) | 36.2 (3) | 0.0 | |
x = 2 | Nominal composition | 32.6 | 29.7 | 36.6 | 1.1 |
Measurement | 32.8 (2) | 29.4 (2) | 36.4 (3) | 1.4 (1) | |
x = 4 | Nominal composition | 32.3 | 29.3 | 36.2 | 2.2 |
Measurement | 34.0 (3) | 28.2 (1) | 35.2 (3) | 2.6 (1) | |
x = 8 | Nominal composition | 31.6 | 28.7 | 35.4 | 4.3 |
Measurement | 32.3 (2) | 27.7 (2) | 34.5(3) | 5.5 (1) | |
x = 12 | Nominal composition | 30.9 | 28.1 | 34.7 | 6.3 |
Measurement | 31.7 (2) | 26.2 (2) | 33.9 (2) | 8.2 (1) |
Sample | Ti (at %) | V (at %) | Cr (at %) | Zr (at %) |
---|---|---|---|---|
x = 0 | 27.8 | 33.8 | 38.4 | 0.0 |
x = 2 | 27.4 | 33.4 | 38.9 | 0.3 |
x = 4 | 25.8 | 35.0 | 38.9 | 0.3 |
x = 8 | 29.3 | 31.6 | 38.2 | 0.9 |
x = 12 | 28.5 | 31.7 | 38.9 | 0.9 |
Sample | Ti (at %) | V (at %) | Cr (at %) | Zr (at %) |
---|---|---|---|---|
x = 2 | 64.0 | 7.0 | 6.2 | 22.8 |
x = 4 | 64.0 | 6.7 | 6.2 | 23.1 |
x = 8 | 58.3 | 6.8 | 4.6 | 30.3 |
x = 12 | 55.8 | 7.2 | 5.1 | 32.0 |
Sample | Ti (at %) | V (at %) | Cr (at %) | Zr (at %) |
---|---|---|---|---|
x = 2 | 33.7 | 12.3 | 38.0 | 16.0 |
x = 4 | 32.8 | 12.3 | 37.9 | 17.0 |
x = 8 | 32.8 | 15.5 | 33.6 | 18.1 |
x = 12 | 28.5 | 14.8 | 36.5 | 20.2 |
Sample | Ti (at %) | V (at %) | Cr (at %) | Zr (at %) |
---|---|---|---|---|
x = 0 | 87.7 | 7.0 | 5.3 | 0.0 |
x = 2 | 88.2 | 3.3 | 2.0 | 6.5 |
x = 4 | 79.6 | 6.8 | 5.6 | 8.0 |
Sample | Phase | Lattice Parameter (Å) | Crystallite Size (nm) | Phase Abundance (%) | Bright Area Abundance (%) |
---|---|---|---|---|---|
x = 0 | BCC Ti | 3.0379 (9) a = 2.961 (4) c = 4.773 (1) | 24 (2) 13 (2) | 97 (3) 3 (3) | 0 |
x = 2 | BCC C15 C14 | 3.0479 (5) 7.172 (7) a = 5.903 (9) c = 7.26 (2) | 22 (1) 14 (7) 8 (2) | 92 (2) 2 (1) 6 (2) | 4 |
x = 4 | BCC C15 C14 | 3.0470 (7) 7.153 (5) a = 5.935 (1) c = 8.09 (4) | 23 (2) 20 (8) 5 (1) | 89 (3) 3 (1) 8 (3) | 12 |
x = 8 | BCC C15 C14 | 3.0452 (1) 7.180 (5) a = 5.849 (7) c = 8.109 (2) | 38 (9) 6 (1) 6 (1) | 68 (5) 21(4) 11 (2) | 26 |
x = 12 | BCC C15 C14 | 3.0310 (1) 6.099 (7) a = 5.815 (2) c = 8.01 (1) | 8 (3) 10 (1) 3 (1) | 66 (4) 22 (2) 12 (2) | 35 |
Sample | Phase | Lattice Parameter (Å) | Crystallite Size (nm) | Phase Abundance (%) |
---|---|---|---|---|
x = 0 | BCC Ti | 3.0375 (4) a = 2.9622 (2) c = 4.773 (6) | 20 (5) 11 (3) | 93 (8) 7 (3) |
x = 2 | FCC C15 C14 | 4.2856 (6) 7.413 (1) a = 6.141 (7) c = 7.262 (2) | 34 (3) 4 (2) 6 (3) | 80 (2) 10 (2) 10 (1) |
x = 4 | BCC FCC C14 | 3.1443 (1) 4.2912 (2) a = 5.809 (2) c = 8.03 (4) | 25 (5) 42 (2) 11 (3) | 56 (4) 41 (4) 3 (1) |
x = 8 | FCC C15 | 4.2875(2) 7.605(7) | 16 (2) 8 (3) | 72 (6) 28 (3) |
x = 12 | FCC C15 | 4.289 (2) 7.646 (4) | 12 (2) 12 (1) | 56 (6) 44 (6) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleiman, S.; Huot, J. Microstructure and Hydrogen Storage Properties of Ti1V0.9Cr1.1 Alloy with Addition of x wt % Zr (x = 0, 2, 4, 8, and 12). Inorganics 2017, 5, 86. https://doi.org/10.3390/inorganics5040086
Sleiman S, Huot J. Microstructure and Hydrogen Storage Properties of Ti1V0.9Cr1.1 Alloy with Addition of x wt % Zr (x = 0, 2, 4, 8, and 12). Inorganics. 2017; 5(4):86. https://doi.org/10.3390/inorganics5040086
Chicago/Turabian StyleSleiman, Salma, and Jacques Huot. 2017. "Microstructure and Hydrogen Storage Properties of Ti1V0.9Cr1.1 Alloy with Addition of x wt % Zr (x = 0, 2, 4, 8, and 12)" Inorganics 5, no. 4: 86. https://doi.org/10.3390/inorganics5040086
APA StyleSleiman, S., & Huot, J. (2017). Microstructure and Hydrogen Storage Properties of Ti1V0.9Cr1.1 Alloy with Addition of x wt % Zr (x = 0, 2, 4, 8, and 12). Inorganics, 5(4), 86. https://doi.org/10.3390/inorganics5040086