Next Article in Journal
Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II) Coordination Polymers with 2,4,6-Tris(4-pyridyl)-1,3,5-triazine
Next Article in Special Issue
The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity
Previous Article in Journal
Lewis Base Complexes of Magnesium Borohydride: Enhanced Kinetics and Product Selectivity upon Hydrogen Release
Previous Article in Special Issue
Construction of a Planar Tetrapalladium Cluster by the Reaction of Palladium(0) Bis(isocyanide) with Cyclic Tetrasilane
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Molecular Structures of Enantiomerically-Pure (S)-2-(Triphenylsilyl)- and (S)-2-(Methyldiphenylsilyl)pyrrolidinium Salts

by
Jonathan O. Bauer
and
Carsten Strohmann
*
Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany
*
Author to whom correspondence should be addressed.
Current address: Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
Inorganics 2017, 5(4), 88; https://doi.org/10.3390/inorganics5040088
Submission received: 31 October 2017 / Revised: 1 December 2017 / Accepted: 2 December 2017 / Published: 6 December 2017
(This article belongs to the Special Issue Coordination Chemistry of Silicon)

Abstract

:
Silyl-substituted pyrrolidines have gained increased interest for the design of new catalyst scaffolds. The molecular structures of four enantiomerically-pure 2-silylpyrrolidinium salts are reported. The perchlorate salts of (S)-2-(triphenylsilyl)pyrrolidine [(S)-1·HClO4] and (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2·HClO4], the trifluoroacetate (S)-2·TFA, and the methanol-including hydrochloride (S)-1·HCl·MeOH were elucidated by X-ray crystallography and discussed in terms of hydrogen-bond interactions.

Graphical Abstract

1. Introduction

In 2010, we and others reported on the enantioselective synthesis of 2-silylpyrrolidines as organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefines [1,2]. Since then, some impressive developments in the catalyst design have been achieved, overcoming synthetic challenges and introducing pyrrolidinylsilanols as bifunctional hydrogen bond-directing organocatalysts [3,4]. The stereochemical information of 2-substituted silylpyrrolidines was introduced by asymmetric deprotonation of N-(tert-butoxycarbonyl)pyrrolidine (N-Boc-pyrrolidine) with sec-butyllithium in the presence of (–)-sparteine [5,6], followed by a substitution reaction with a silyl halide or methoxide as the electrophile. Concerning the first successful preparation of enantiomerically-pure (S)-2-(triphenylsilyl)pyrrolidine [(S)-1], we established an indirect synthetic route via intermediate formation of 2-(methoxydiphenylsilyl)-N-Boc-pyrrolidine [1]. Recently, a detailed structural and kinetic investigation gave new insight into the structure-reactivity relation in enamines and iminium ions derived from 2-tritylpyrrolidine [7] and 2-(triphenylsilyl)pyrrolidine [8]. (S)-2-(Triphenylsilyl)pyrrolidine [(S)-1] and (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2] have already been structurally characterized in the form of their hydrochloride [1,2] and their hydrobromide salts [3] (Figure 1).
Herein, we present the molecular structures of enantiomerically-pure (S)-2-(triphenylsilyl)-[(S)-1·HClO4] and (S)-2-(methyldiphenylsilyl)pyrrolidinium perchlorate [(S)-2·HClO4], which were obtained from the respective optically-pure chloride salts [1] by treatment with perchloric acid. In addition, we report on hydrogen-bonding motifs in the new enantiomerically-pure methanol inclusion compound (S)-1·HCl·MeOH and in the enantiomerically-pure trifluoroacetate (S)-2·TFA. Hydrogen bonding in enantiomerically-pure pyrrolidines is worth studying in order to explore new activation modes in organocatalytic transformations.

2. Results and Discussion

Compound (S)-1·HClO4 crystallized in the monoclinic crystal system, space group P21, as colorless plates (Figure 2 and Table 1). The pyrrolidinyl nitrogen atom of (S)-1·HClO4 has been protonated by perchloric acid and is involved in hydrogen bonds to two perchlorate anions via H(1N) and H(2N). The hydrogen bond N–H(1N)···O(1) is slightly stronger [N–H(1N) 0.911 Å, H(1N)···O(1) 1.966 Å, N···O(1) 2.845 Å, N–H(1N)···O(1) 161.79°] than the interaction between H(2N) and O(2) [N–H(2N) 0.773 Å, H(2N)···O(2) 2.230 Å, N···O(2) 2.940 Å, N–H(2N)···O(2) 152.82°]. The C–Si bond lengths of the triphenylsilyl moiety are comparable to those found in the hydrochloride species (S)-1·HCl [1] and in other triphenyl-substituted silanes [9,10]. The C(19)–Si bond between silicon and the heterocyclic carbon atom amounts to 1.9111(15) Å and is in the characteristic range for 2-(triphenylsilyl)pyrrolidines [1] (Figure 2). This significantly longer bond compared to the respective C–C bond in the carbon analogue 2-tritylpyrrolidine was considered a crucial parameter for the higher reactivity of (S)-1 in enamine catalysis [1].
Previously-known single-crystal X-ray diffraction data of compound (S)-1·HCl correspond to the chloroform adduct (S)-1·HCl·CHCl3 [1]. After recrystallization of compound (S)-1·HCl from methanol, single crystals of the methanol including compound (S)-1·HCl·MeOH were obtained (Figure 3 and Table 1). Compound (S)-1·HCl·MeOH crystallized in the orthorhombic crystal system, space group P21 21 21, as colorless needles. The chloride ion is involved in hydrogen bond interactions with H(1N), H(2N), and the methanol hydroxyl group, with the O–H(1O)···Cl hydrogen-bond [O–H(1O) 1.034 Å, H(1O)···Cl 2.071 Å, O···Cl 3.086 Å, O–H(1O)···Cl 166.42°] being essential for the formation of a defined inclusion compound. In addition, a short distance of 3.651 Å between chloride and the phenyl carbon atom C(14) gives a hint for a weak C(14)–H(14)···Cl interaction within the crystal structure of (S)-1·HCl·MeOH (Figure 3).
Compound (S)-2·HClO4 crystallized in the monoclinic crystal system, space group P21, as colorless plates (Figure 4 and Table 1). The asymmetric unit of compound (S)-2·HClO4 contains two independent molecules [(S)-2·HClO4-A and (S)-2·HClO4-B]. The bond lengths between the silyl group and the heterocycle with 1.878(5) Å [C(14)–Si(1), molecule A] and 1.889(5) Å [C(31)–Si(2), molecule B] differ slightly from each other, but are considerably shorter than the respective bond in the 2-triphenylsilyl derivative (S)-1·HClO4 (compare Figure 2 and Figure 4). The C–Si–C angles are in both independent molecules very close to the ideal tetrahedral angle (Figure 4).
Treatment of enantiomerically-enriched (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2] with trifluoroacetic acid in dichloromethane resulted in the formation of the trifluoroacetate (S)-2·TFA. Enantiomerically-pure single crystals of (S)-2·TFA were obtained after recrystallization from acetonitrile. Compound (S)-2·TFA crystallized in the orthorhombic crystal system, space group P21 21 21, as colorless needles (Figure 5 and Table 1). Like in the perchlorate (S)-2·HClO4 (see Figure 4) and in the hydrochloride (S)-2·HCl [1], the asymmetric unit of compound (S)-2·TFA contains two independent molecules [(S)-2·TFA-A and (S)-2·TFA-B]. The fluorine atoms of the trifluoroacetate anions and the pyrrolidine carbon atom C(35) of molecule (S)-2·TFA-B are disordered. Each trifluoroacetate is hydrogen-bonded to two silylpyrrolidinium cations via an N–H···O interaction. The parameters of the found hydrogen-bonds differ from each other, with the N–H distances ranging from 0.847 Å [N(2)–H(4N)] to 1.082 Å [N(2)–H(3N)], and the N–H···O angles ranging from 159.48° [N(1)–H(2N)···O(2)] to 172.31° [N(2)–H(3N)···O(3)], although the N···O distances are quite similar (Figure 5).

3. Experimental Details

3.1. Synthetic Methods

Synthesis and characterization data of compounds (S)-1·HCl and (S)-2·HCl were previously reported by our group [1]. The perchlorate salts (S)-1·HClO4 and (S)-2·HClO4 were prepared by treatment of (S)-1·HCl and (S)-2·HCl, respectively, with excess perchloric acid (60 wt %). Colorless single-crystals were formed overnight under normal atmosphere at room temperature within the remaining solvent. Single crystals of the inclusion compound (S)-1·HCl·MeOH were obtained after recrystallization of (S)-1·HCl from methanol. (S)-2·TFA was prepared by treatment of 800 mg (2.99 mmol) enantiomerically-enriched (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2, e.r. = 89:11] with 341 mg (2.99 mmol) trifluoroacetic acid in 10 mL dichloromethane at room temperature. After removing of all volatiles in vacuo, the residue was dissolved in acetonitrile. Enantiomerically-pure single crystals of (S)-2·TFA were formed under normal atmosphere at room temperature within three months.

3.2. X-ray Crystallography

Single-crystal X-ray diffraction analyses were performed on an Oxford Diffraction Xcalibur S diffractometer (Oxford Diffraction Ltd. (Abingdon, UK)) at 173(2) K using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The crystals were mounted at room temperature. The crystal structures were solved with direct methods (SHELXS-97 [11]) and refined against F2 with the full-matrix least-squares method (SHELXL-97 [12,13]). A multi-scan absorption correction using the implemented CrysAlis RED program (Version 1.171.32.37, Oxford Diffraction Ltd.) was employed. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms H(1N) and H(2N) in compound (S)-1·HClO4, H(1N), H(2N), and H(1O) in compound (S)-1·HCl·MeOH, and H(1N), H(2N), H(3N), H(4N), H(34A), H(34B), H(36A), and H(36B) in compound (S)-2·TFA were located on the difference Fourier map and refined independently. All other hydrogen atoms were placed in geometrically-calculated positions and each was assigned a fixed isotropic displacement parameter based on a riding model. The fluorine atoms F(1)–F(6) and the carbon atom C(35) in (S)-2·TFA are disordered. The absolute configuration of (S)-1·HClO4, (S)-1·HCl·MeOH, (S)-2·HClO4, and (S)-2·TFA was determined by Flack’s method based on resonant scattering [14]. Figure 2, Figure 3, Figure 4 and Figure 5 were created using Mercury (Version 3.3). Crystal and refinement data are collected in Table 1. Crystallographic data of enantiomerically-pure 2-silylpyrrolidinium salts (S)-1·HClO4, (S)-2·HClO4, (S)-1·HCl·MeOH, and (S)-2·TFA have been deposited with The Cambridge Crystallographic Data Centre. CCDC 1582443 [(S)-1·HCl·MeOH], CCDC 1582444 [(S)-2·TFA], CCDC 1582445 [(S)-1·HClO4], and CCDC 1582446 [(S)-2·HClO4] contain the supplementary crystallographic data for this paper (see Supplementary Materials). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: [email protected]).

4. Conclusions

In the context of studies concerning the effect of the counter anion in organocatalytic reactions with polar species involved, we were interested to synthesize salts of optically-pure 2-silylpyrrolidines with different counter anions for further reactivity studies, which might be of interest in terms of hydrogen-bond activation in the initial enamine formation step. By studying the hydrogen-bonding behavior of 2-silylpyrrolidines, interesting information about silicon-specific effects on the basicity of the pyrrolidine nitrogen center may be provided. Future studies will also address the respective salts of the carbon analogue 2-tritylpyrrolidine for comparison.

Supplementary Materials

The following are available online at www.mdpi.com/2304-6740/5/4/88/s1. Cif and cif-checked files.

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG). Jonathan O. Bauer thanks the Alexander von Humboldt Foundation for the award of a Feodor Lynen Return Fellowship.

Author Contributions

Jonathan O. Bauer performed the experiments and wrote the manuscript. Carsten Strohmann was coordinating the project and performed the XRD analyses.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bauer, J.O.; Stiller, J.; Marqués-López, E.; Strohfeldt, K.; Christmann, M.; Strohmann, C. Silyl-modified analogues of 2-tritylpyrrolidine: Synthesis and applications in asymmetric organocatalysis. Chem. Eur. J. 2010, 16, 12553–12558. [Google Scholar] [CrossRef] [PubMed]
  2. Husmann, R.; Jörres, M.; Raabe, G.; Bolm, C. Silylated pyrrolidines as catalysts for asymmetric Michael additions of aldehydes to nitroolefins. Chem. Eur. J. 2010, 16, 12549–12552. [Google Scholar] [CrossRef] [PubMed]
  3. Jentzsch, K.I.; Min, T.; Etcheson, J.I.; Fettinger, J.C.; Franz, A.K. Silyl fluoride electrophiles for the enantioselective synthesis of silylated pyrrolidine catalysts. J. Org. Chem. 2011, 76, 7065–7075. [Google Scholar] [CrossRef] [PubMed]
  4. Min, T.; Fettinger, J.C.; Franz, A.K. Enantiocontrol with a hydrogen-bond directing pyrrolidinylsilanol catalyst. ACS Catal. 2012, 2, 1661–1666. [Google Scholar] [CrossRef]
  5. Kerrick, S.T.; Beak, P. Asymmetric deprotonations: Enantioselective syntheses of 2-substituted (tert-butoxycarbonyl)pyrrolidines. J. Am. Chem. Soc. 1991, 113, 9708–9710. [Google Scholar] [CrossRef]
  6. Strohfeldt, K.; Seibel, T.; Wich, P.; Strohmann, C. Synthesis and reactivity of an enantiomerically pure N-methyl-2-silyl-substituted pyrrolidine. In Organosilicon Chemistry VI: From Molecules to Materials; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; Volume 1, pp. 488–494. [Google Scholar]
  7. Kano, T.; Mii, H.; Maruoka, K. Direct asymmetric benzoyloxylation of aldehydes catalyzed by 2-tritylpyrrolidine. J. Am. Chem. Soc. 2009, 131, 3450–3451. [Google Scholar] [CrossRef] [PubMed]
  8. Erdmann, H.; An, F.; Mayer, P.; Ofial, A.R.; Lakhdar, S.; Mayr, H. Structures and reactivities of 2-trityl- and 2-(triphenylsilyl)pyrrolidine-derived enamines: Evidence for negative hyperconjugation with the trityl group. J. Am. Chem. Soc. 2014, 136, 14263–14269. [Google Scholar] [CrossRef] [PubMed]
  9. Bauer, J.O.; Strohmann, C. tert-Butoxytriphenylsilane. Acta Crystallogr. 2010, E66, o461–o462. [Google Scholar] [CrossRef] [PubMed]
  10. Brendler, E.; Heine, T.; Seichter, W.; Wagler, J.; Witter, R. 29Si NMR shielding tensors in triphenylsilanes—29Si solid state NMR experiments and DFT-IGLO calculations. Z. Anorg. Allg. Chem. 2012, 638, 935–944. [Google Scholar] [CrossRef]
  11. Sheldrick, G.M. SHELXS-97, a Program for the Solution of Crystal Structures; Universität Göttingen: Göttingen, Germany, 1997. [Google Scholar]
  12. Sheldrick, G.M. SHELXL-97, a Program for Crystal Structure Refinement; Universität Göttingen: Göttingen, Germany, 1997. [Google Scholar]
  13. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
  14. Flack, H.D.; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008, 20, 681–690. [Google Scholar] [CrossRef] [PubMed]
Figure 1. (S)-2-(triphenylsilyl)- [(S)-1] and (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2].
Figure 1. (S)-2-(triphenylsilyl)- [(S)-1] and (S)-2-(methyldiphenylsilyl)pyrrolidine [(S)-2].
Inorganics 05 00088 g001
Figure 2. Part of the crystal structure (ORTEP plot) of compound (S)-1·HClO4 in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): C(1)–Si 1.8727(15), C(7)–Si 1.8724(15), C(13)–Si 1.8595(15), C(19)–Si 1.9111(15), C(19)–N 1.5229(19), C(22)–N 1.4999(19), Cl–O(1) 1.4376(12), Cl–O(2) 1.4305(13), Cl–O(3) 1.4316(13), Cl–O(4) 1.4217(12), C(13)–Si–C(7) 111.31(7), C(13)–Si–C(1) 111.55(7), C(7)–Si–C(1) 108.77(7), C(13)–Si–C(19) 108.01(6), C(7)–Si–C(19) 105.67(7), C(1)–Si–C(19) 111.39(6). Hydrogen bond N–H(1N)···O(1): N–H(1N) 0.911, H(1N)···O(1) 1.966, N···O(1) 2.845, N–H(1N)···O(1) 161.79. Hydrogen bond N–H(2N)···O(2): N–H(2N) 0.773, H(2N)···O(2) 2.230, N···O(2) 2.940, N–H(2N)···O(2) 152.82. Symmetry transformations used to generate the equivalent atom O(2), hydrogen-bonded to H(2N): 1 − x, ½ + y, −z.
Figure 2. Part of the crystal structure (ORTEP plot) of compound (S)-1·HClO4 in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): C(1)–Si 1.8727(15), C(7)–Si 1.8724(15), C(13)–Si 1.8595(15), C(19)–Si 1.9111(15), C(19)–N 1.5229(19), C(22)–N 1.4999(19), Cl–O(1) 1.4376(12), Cl–O(2) 1.4305(13), Cl–O(3) 1.4316(13), Cl–O(4) 1.4217(12), C(13)–Si–C(7) 111.31(7), C(13)–Si–C(1) 111.55(7), C(7)–Si–C(1) 108.77(7), C(13)–Si–C(19) 108.01(6), C(7)–Si–C(19) 105.67(7), C(1)–Si–C(19) 111.39(6). Hydrogen bond N–H(1N)···O(1): N–H(1N) 0.911, H(1N)···O(1) 1.966, N···O(1) 2.845, N–H(1N)···O(1) 161.79. Hydrogen bond N–H(2N)···O(2): N–H(2N) 0.773, H(2N)···O(2) 2.230, N···O(2) 2.940, N–H(2N)···O(2) 152.82. Symmetry transformations used to generate the equivalent atom O(2), hydrogen-bonded to H(2N): 1 − x, ½ + y, −z.
Inorganics 05 00088 g002
Figure 3. Part of the crystal structure (ORTEP plot) of compound (S)-1·HCl·MeOH in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): C(1)–Si 1.863(2), C(7)–Si 1.870(2), C(13)–Si 1.873(2), C(19)–Si 1.905(2), C(19)–N 1.498(3), C(22)–N 1.494(3), O–C(23) 1.385(3), C(13)–Si–C(7) 112.48(9), C(13)–Si–C(1) 108.46(9), C(7)–Si–C(1) 110.86(9), C(13)–Si–C(19) 110.34(9), C(7)–Si–C(19) 108.18(9), C(1)–Si–C(19) 106.34(9). Hydrogen bond N–H(1N)···Cl: N–H(1N) 0.870, H(1N)···Cl 2.310, N···Cl 3.125, N–H(1N)···Cl 155.93. Hydrogen bond N–H(2N)···Cl: N–H(2N) 0.913, H(2N)···Cl 2.184, N···Cl 3.062, N–H(2N)···Cl 160.99. Hydrogen bond O–H(1O)···Cl: O–H(1O) 1.034, H(1O)···Cl 2.071, O···Cl 3.086, O–H(1O)···Cl 166.42. C(14)–H(14)···Cl interaction: C(14)···Cl 3.651, C(14)–H(14)···Cl 171.50. Symmetry transformations used to generate the equivalent methanol molecule: x, 1 + y, 1 + z. Symmetry transformations used to generate the equivalent atom Cl, hydrogen-bonded to H(2N): ½ + x, 1.5 − y, 2 − z.
Figure 3. Part of the crystal structure (ORTEP plot) of compound (S)-1·HCl·MeOH in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): C(1)–Si 1.863(2), C(7)–Si 1.870(2), C(13)–Si 1.873(2), C(19)–Si 1.905(2), C(19)–N 1.498(3), C(22)–N 1.494(3), O–C(23) 1.385(3), C(13)–Si–C(7) 112.48(9), C(13)–Si–C(1) 108.46(9), C(7)–Si–C(1) 110.86(9), C(13)–Si–C(19) 110.34(9), C(7)–Si–C(19) 108.18(9), C(1)–Si–C(19) 106.34(9). Hydrogen bond N–H(1N)···Cl: N–H(1N) 0.870, H(1N)···Cl 2.310, N···Cl 3.125, N–H(1N)···Cl 155.93. Hydrogen bond N–H(2N)···Cl: N–H(2N) 0.913, H(2N)···Cl 2.184, N···Cl 3.062, N–H(2N)···Cl 160.99. Hydrogen bond O–H(1O)···Cl: O–H(1O) 1.034, H(1O)···Cl 2.071, O···Cl 3.086, O–H(1O)···Cl 166.42. C(14)–H(14)···Cl interaction: C(14)···Cl 3.651, C(14)–H(14)···Cl 171.50. Symmetry transformations used to generate the equivalent methanol molecule: x, 1 + y, 1 + z. Symmetry transformations used to generate the equivalent atom Cl, hydrogen-bonded to H(2N): ½ + x, 1.5 − y, 2 − z.
Inorganics 05 00088 g003
Figure 4. Molecular structure (ORTEP plot) of compound (S)-2·HClO4 in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): Molecule (S)-2·HClO4-A: C(1)–Si(1) 1.852(6), C(2)–Si(1) 1.855(6), C(8)–Si(1) 1.871(5), C(14)–Si(1) 1.878(5), C(14)–N(1) 1.508(7), C(17)–N(1) 1.508(6), Cl(1)–O(1) 1.416(4), Cl(1)–O(2) 1.413(5), Cl(1)–O(3) 1.426(5), Cl(1)–O(4) 1.413(5), C(1)–Si(1)–C(2) 112.5(3), C(1)–Si(1)–C(8) 109.7(3), C(2)–Si(1)–C(8) 110.6(2), C(1)–Si(1)–C(14) 109.4(3), C(2)–Si(1)–C(14) 106.4(2), C(8)–Si(1)–C(14) 108.1(2). Molecule (S)-2·HClO4-B: C(18)–Si(2) 1.856(6), C(19)–Si(2) 1.875(6), C(25)–Si(2) 1.884(5), C(31)–Si(2) 1.889(5), C(31)–N(2) 1.509(7), C(34)–N(2) 1.510(7), Cl(2)–O(5) 1.400(5), Cl(2)–O(6) 1.405(5), Cl(2)–O(7) 1.365(6), Cl(2)–O(8) 1.431(5), C(18)–Si(2)–C(19) 109.9(3), C(18)–Si(2)–C(25) 111.5(3), C(19)–Si(2)–C(25) 110.1(2), C(18)–Si(2)–C(31) 110.4(3), C(19)–Si(2)–C(31) 106.0(2), C(25)–Si(2)–C(31) 108.8(2).
Figure 4. Molecular structure (ORTEP plot) of compound (S)-2·HClO4 in the crystal, with the displacement ellipsoids set at the 50% probability level. Selected bond lengths (Å) and angles (°): Molecule (S)-2·HClO4-A: C(1)–Si(1) 1.852(6), C(2)–Si(1) 1.855(6), C(8)–Si(1) 1.871(5), C(14)–Si(1) 1.878(5), C(14)–N(1) 1.508(7), C(17)–N(1) 1.508(6), Cl(1)–O(1) 1.416(4), Cl(1)–O(2) 1.413(5), Cl(1)–O(3) 1.426(5), Cl(1)–O(4) 1.413(5), C(1)–Si(1)–C(2) 112.5(3), C(1)–Si(1)–C(8) 109.7(3), C(2)–Si(1)–C(8) 110.6(2), C(1)–Si(1)–C(14) 109.4(3), C(2)–Si(1)–C(14) 106.4(2), C(8)–Si(1)–C(14) 108.1(2). Molecule (S)-2·HClO4-B: C(18)–Si(2) 1.856(6), C(19)–Si(2) 1.875(6), C(25)–Si(2) 1.884(5), C(31)–Si(2) 1.889(5), C(31)–N(2) 1.509(7), C(34)–N(2) 1.510(7), Cl(2)–O(5) 1.400(5), Cl(2)–O(6) 1.405(5), Cl(2)–O(7) 1.365(6), Cl(2)–O(8) 1.431(5), C(18)–Si(2)–C(19) 109.9(3), C(18)–Si(2)–C(25) 111.5(3), C(19)–Si(2)–C(25) 110.1(2), C(18)–Si(2)–C(31) 110.4(3), C(19)–Si(2)–C(31) 106.0(2), C(25)–Si(2)–C(31) 108.8(2).
Inorganics 05 00088 g004
Figure 5. Part of the crystal structure (ORTEP plot) of compound (S)-2·TFA in the crystal, with the displacement ellipsoids set at the 50% probability level. The ellipsoids F(1B), F(2B), and F(3B) of molecule (S)-2·TFA-A, and the ellipsoids F(4B), F(5B), and F(6B) of (S)-2·TFA-B are omitted for clarity. Selected bond lengths (Å) and angles (°): Molecule (S)-2·TFA-A: C(1)–Si(1) 1.849(2), C(2)–Si(1) 1.863(2), C(8)–Si(1) 1.857(2), C(14)–Si(1) 1.889(2), C(14)–N(1) 1.505(2), C(17)–N(1) 1.491(3), C(18)–C(19) 1.520(3), C(18)–O(1) 1.225(3), C(18)–O(2) 1.206(3), C(1)–Si(1)–C(2) 111.77(10), C(1)–Si(1)–C(8) 110.07(10), C(2)–Si(1)–C(8) 108.11(9), C(1)–Si(1)–C(14) 109.69(10), C(2)–Si(1)–C(14) 107.16(10), C(8)–Si(1)–C(14) 109.98(9). Hydrogen bond N(1)–H(1N)···O(1): N(1)–H(1N) 1.050, H(1N)···O(1) 1.680, N(1)···O(1) 2.716, N(1)–H(1N)···O(1) 167.81. Hydrogen bond N(1)–H(2N)···O(2): N(1)–H(2N) 1.010, H(2N)···O(2) 1.769, N(1)···O(2) 2.738, N(1)–H(2N)···O(2) 159.48. Symmetry transformations used to generate the equivalent atom O(2), hydrogen-bonded to H(2N): 1 − x, −½ + y, ½ − z. Molecule (S)-2·TFA-B: C(20)–Si(2) 1.845(2), C(21)–Si(2) 1.850(2), C(27)–Si(2) 1.851(2), C(33)–Si(2) 1.884(2), C(33)–N(2) 1.507(3), C(36)–N(2) 1.491(3), C(37)–C(38) 1.522(3), C(37)–O(3) 1.220(3), C(37)–O(4) 1.205(3), C(20)–Si(2)–C(21) 110.03(11), C(20)–Si(2)–C(27) 110.46(10), C(21)–Si(2)–C(27) 108.38(9), C(20)–Si(2)–C(33) 111.26(11), C(21)–Si(2)–C(33) 110.30(9), C(27)–Si(2)–C(33) 106.30(10). Hydrogen bond N(2)–H(3N)···O(3): N(2)–H(3N) 1.082, H(3N)···O(3) 1.665, N(2)···O(3) 2.740, N(2)–H(3N)···O(3) 172.31. Hydrogen bond N(2)–H(4N)···O(4): N(2)–H(4N) 0.847, H(4N)···O(4) 1.903, N(2)···O(4) 2.728, N(2)–H(4N)···O(4) 164.58. Symmetry transformations used to generate the equivalent trifluoroacetate anion, hydrogen-bonded to H(3N): ½ + x, 1.5 − y, 1 − z. Symmetry transformations used to generate the equivalent atom O(4), hydrogen-bonded to H(4N): 1 + x, y, z.
Figure 5. Part of the crystal structure (ORTEP plot) of compound (S)-2·TFA in the crystal, with the displacement ellipsoids set at the 50% probability level. The ellipsoids F(1B), F(2B), and F(3B) of molecule (S)-2·TFA-A, and the ellipsoids F(4B), F(5B), and F(6B) of (S)-2·TFA-B are omitted for clarity. Selected bond lengths (Å) and angles (°): Molecule (S)-2·TFA-A: C(1)–Si(1) 1.849(2), C(2)–Si(1) 1.863(2), C(8)–Si(1) 1.857(2), C(14)–Si(1) 1.889(2), C(14)–N(1) 1.505(2), C(17)–N(1) 1.491(3), C(18)–C(19) 1.520(3), C(18)–O(1) 1.225(3), C(18)–O(2) 1.206(3), C(1)–Si(1)–C(2) 111.77(10), C(1)–Si(1)–C(8) 110.07(10), C(2)–Si(1)–C(8) 108.11(9), C(1)–Si(1)–C(14) 109.69(10), C(2)–Si(1)–C(14) 107.16(10), C(8)–Si(1)–C(14) 109.98(9). Hydrogen bond N(1)–H(1N)···O(1): N(1)–H(1N) 1.050, H(1N)···O(1) 1.680, N(1)···O(1) 2.716, N(1)–H(1N)···O(1) 167.81. Hydrogen bond N(1)–H(2N)···O(2): N(1)–H(2N) 1.010, H(2N)···O(2) 1.769, N(1)···O(2) 2.738, N(1)–H(2N)···O(2) 159.48. Symmetry transformations used to generate the equivalent atom O(2), hydrogen-bonded to H(2N): 1 − x, −½ + y, ½ − z. Molecule (S)-2·TFA-B: C(20)–Si(2) 1.845(2), C(21)–Si(2) 1.850(2), C(27)–Si(2) 1.851(2), C(33)–Si(2) 1.884(2), C(33)–N(2) 1.507(3), C(36)–N(2) 1.491(3), C(37)–C(38) 1.522(3), C(37)–O(3) 1.220(3), C(37)–O(4) 1.205(3), C(20)–Si(2)–C(21) 110.03(11), C(20)–Si(2)–C(27) 110.46(10), C(21)–Si(2)–C(27) 108.38(9), C(20)–Si(2)–C(33) 111.26(11), C(21)–Si(2)–C(33) 110.30(9), C(27)–Si(2)–C(33) 106.30(10). Hydrogen bond N(2)–H(3N)···O(3): N(2)–H(3N) 1.082, H(3N)···O(3) 1.665, N(2)···O(3) 2.740, N(2)–H(3N)···O(3) 172.31. Hydrogen bond N(2)–H(4N)···O(4): N(2)–H(4N) 0.847, H(4N)···O(4) 1.903, N(2)···O(4) 2.728, N(2)–H(4N)···O(4) 164.58. Symmetry transformations used to generate the equivalent trifluoroacetate anion, hydrogen-bonded to H(3N): ½ + x, 1.5 − y, 1 − z. Symmetry transformations used to generate the equivalent atom O(4), hydrogen-bonded to H(4N): 1 + x, y, z.
Inorganics 05 00088 g005
Table 1. Crystal data and structure refinement of compounds (S)-1·HClO4, (S)-1·HCl·MeOH, (S)-2·HClO4, and (S)-2·TFA.
Table 1. Crystal data and structure refinement of compounds (S)-1·HClO4, (S)-1·HCl·MeOH, (S)-2·HClO4, and (S)-2·TFA.
Compound(S)-1·HClO4(S)-1·HCl·MeOH(S)-2·HClO4(S)-2·TFA
Empirical formulaC22H24ClNO4SiC23H28ClNOSiC17H22ClNO4SiC19H22F3NO2Si
Formula weight [g·mol−1]429.96398.00367.90381.47
Crystal systemMonoclinicOrthorhombicMonoclinicOrthorhombic
Space groupP21P21 21 21P21P21 21 21
a [Å]8.1535(2)7.2981(3)9.6006(6)9.5760(14)
b [Å]7.8737(2)11.7818(5)14.2054(8)9.7100(17)
c [Å]16.9410(4)25.1513(11)13.3890(8)41.176(4)
β [°]100.780(2)9091.537(6)90
Volume [Å3]1068.39(5)2162.63(16)1825.34(19)3828.7(9)
Z2448
Density (calculated) ρ [g·cm−3]1.3371.2221.3391.324
Absorption coefficient μ [mm−1]0.2630.2450.2950.163
F(000)4528487761600
Crystal size [mm3]0.20 × 0.20 × 0.100.40 × 0.30 × 0.200.20 × 0.20 × 0.100.40 × 0.20 × 0.10
Theta range for data collection θ [°]2.45–25.992.37–26.002.56–26.002.18–25.00
Index ranges–10 ≤ h ≤ 10–9 ≤ h ≤ 9–11 ≤ h ≤ 11–11 ≤ h ≤ 11
−9 ≤ k ≤ 9−14 ≤ k ≤ 14−17 ≤ k ≤ 17−11 ≤ k ≤ 10
−20 ≤ l ≤ 20−31 ≤ l ≤ 30−16 ≤ l ≤ 16−47 ≤ l ≤ 48
Reflections collected46,91816,13228,99341,441
Independent reflections4181 (Rint = 0.0369)4244 (Rint = 0.0388)7177 (Rint = 0.0540)6661 (Rint = 0.0425)
Completeness to θ100.0% (θ = 25.99°)99.9% (θ = 26.00°)99.9% (θ = 26.00°)99.3% (θ = 25.00°)
Max. and min. transmission0.9742 and 0.94930.9527 and 0.90850.9711 and 0.94330.9681 and 0.9376
Data/restraints/parameters4181/1/2704244/0/2547177/1/4356661/0/566
Goodness-of-fit on F21.0001.0001.0001.000
Final R indices [I > 2σ(I)]R1 = 0.0237, wR2 = 0.0620R1 = 0.0337, wR2 = 0.0682R1 = 0.0596, wR2 = 0.1683R1 = 0.0340, wR2 = 0.0572
R indices (all data)R1 = 0.0257, wR2 = 0.0624R1 = 0.0459, wR2 = 0.0700R1 = 0.0809, wR2 = 0.1745R1 = 0.0539, wR2 = 0.0592
Absolute structure parameter (Flack parameter)0.01(4)0.01(6)0.08(9)0.02(8)
Largest diff. peak and hole [e·Å−3]0.207 and −0.2280.424 and −0.2520.447 and −0.3090.260 and −0.197

Share and Cite

MDPI and ACS Style

Bauer, J.O.; Strohmann, C. Molecular Structures of Enantiomerically-Pure (S)-2-(Triphenylsilyl)- and (S)-2-(Methyldiphenylsilyl)pyrrolidinium Salts. Inorganics 2017, 5, 88. https://doi.org/10.3390/inorganics5040088

AMA Style

Bauer JO, Strohmann C. Molecular Structures of Enantiomerically-Pure (S)-2-(Triphenylsilyl)- and (S)-2-(Methyldiphenylsilyl)pyrrolidinium Salts. Inorganics. 2017; 5(4):88. https://doi.org/10.3390/inorganics5040088

Chicago/Turabian Style

Bauer, Jonathan O., and Carsten Strohmann. 2017. "Molecular Structures of Enantiomerically-Pure (S)-2-(Triphenylsilyl)- and (S)-2-(Methyldiphenylsilyl)pyrrolidinium Salts" Inorganics 5, no. 4: 88. https://doi.org/10.3390/inorganics5040088

APA Style

Bauer, J. O., & Strohmann, C. (2017). Molecular Structures of Enantiomerically-Pure (S)-2-(Triphenylsilyl)- and (S)-2-(Methyldiphenylsilyl)pyrrolidinium Salts. Inorganics, 5(4), 88. https://doi.org/10.3390/inorganics5040088

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop