Thorium(IV) and Uranium(IV) Phosphaazaallenes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bates, J.I.; Gates, D.P. Diphosphiranium (P2C) or Diphosphetanium (P2C2) Cyclic Cations: Different Fates for the Electrophile-Initiated Cyclodimerization of a Phosphaalkene. J. Am. Chem. Soc. 2006, 128, 15998–15999. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Tham, F.S.; Baceiredo, A.; Bertrand, G. Synthesis of extended polyphosphacumulenes. Chem. Eur. J. 2006, 12, 8444–8450. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.I.; Kennepohl, P.; Gates, D.P. Abnormal reactivity of an N-heterocyclic carbene (NHC) with a phosphaalkene: A route to a 4-phosphino-substituted NHC. Angew. Chem. Int. Ed. 2009, 48, 9844–9847. [Google Scholar] [CrossRef] [PubMed]
- Serin, S.C.; Pick, F.S.; Dake, G.R.; Gates, D.P. Copper(I) Complexes of Pyridine-Bridged Phosphaalkene-Oxazoline Pincer Ligands. Inorg. Chem. 2016, 55, 6670–6678. [Google Scholar] [CrossRef] [PubMed]
- Dugal-Tessier, J.; Dake, G.R.; Gates, D.P. Chiral ligand design: A bidentate ligand incorporating an acyclic phosphaalkene. Angew. Chem. Int. Ed. 2008, 47, 8064–8067. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Rawe, B.W.; Adachi, K.; Gates, D.P. Phosphorus-Containing Block Copolymers from the Sequential Living Anionic Copolymerization of a Phosphaalkene with Methyl Methacrylate. Chem. Eur. J. 2018, 24, 18012–18019. [Google Scholar] [CrossRef] [PubMed]
- Serin, S.C.; Dake, G.R.; Gates, D.P. Addition-Isomerization Polymerization of Chiral Phosphaalkenes: Observation of Styrene-Phosphaalkene Linkages in a Random Copolymer. Macromolecules 2016, 49, 4067–4075. [Google Scholar] [CrossRef]
- Siu, P.W.; Serin, S.C.; Krummenacher, I.; Hey, T.W.; Gates, D.P. Isomerization Polymerization of the Phosphaalkene MesP=CPh2: An Alternative Microstructure for Poly(methylenephosphine)s. Angew. Chem. Int. Ed. 2013, 52, 6967–6970. [Google Scholar] [CrossRef]
- Rawe, B.W.; Gates, D.P. Poly(p-phenylenediethynylene phosphane): A Phosphorus-Containing Macromolecule that Displays Blue Fluorescence Upon Oxidation. Angew. Chem. Int. Ed. 2015, 54, 11438–11442. [Google Scholar] [CrossRef] [PubMed]
- Dueck, K.; Rawe, B.W.; Scott, M.R.; Gates, D.P. Polymerization of 1-Phosphaisoprene: Synthesis and Characterization of a Chemically Functional Phosphorus Version of Natural Rubber. Angew. Chem. Int. Ed. 2017, 56, 9507–9511. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, J.M.; Zozulin, A.J.; Wrobleski, D.A.; Ryan, R.R.; Wasserman, H.J.; Moody, D.C.; Paine, R.T. An organothorium-nickel phosphido complex with a short thorium-nickel distance. The structure of Th(η5-C5Me5)2(μ-PPh2)2Ni(CO)2. J. Am. Chem. Soc. 1985, 107, 501–503. [Google Scholar] [CrossRef]
- Hay, P.J.; Ryan, R.R.; Salazar, K.V.; Wrobleski, D.A.; Sattelberger, A.P. Synthesis and x-ray structure of (C5Me5)2Th(μ-PPh2)2Pt(PMe3): A complex with a thorium-platinum bond. J. Am. Chem. Soc. 1986, 108, 313–315. [Google Scholar] [CrossRef]
- Wrobleski, D.A.; Ryan, R.R.; Wasserman, H.J.; Salazar, K.V.; Paine, R.T.; Moody, D.C. Synthesis and characterization of bis(diphenylphosphido)bis(pentamethylcyclopentadienyl)thorium(IV), [(η5-C5(CH3)5]2Th(PPh2)2. Organometallics. 1986, 5, 90–94. [Google Scholar] [CrossRef]
- Hall, S.W.; Huffman, J.C.; Miller, M.M.; Avens, L.R.; Burns, C.J.; Sattelberger, A.P.; Arney, D.S.J.; England, A.F. Synthesis and characterization of bis(pentamethylcyclopentadienyl)uranium(IV) and -thorium(IV) compounds containing the bis(trimethylsilyl)phosphide ligand. Organometallics 1993, 12, 752–758. [Google Scholar] [CrossRef]
- Edwards, P.G.; Harman, M.; Hursthouse, M.B.; Parry, J.S. The synthesis and crystal structure of the thorium tetraphosphido complex, Th[P(CH2CH2PMe2)2]4, an actinide complex with only metal-phosphorus ligand bonds. J. Chem. Soc. Chem. Commun. 1992, 19, 1469–1470. [Google Scholar] [CrossRef]
- Behrle, A.C.; Castro, L.; Maron, L.; Walensky, J.R. Formation of a Bridging Phosphinidene Thorium Complex. J. Am. Chem. Soc. 2015, 137, 14846–14849. [Google Scholar] [CrossRef] [PubMed]
- Wildman, E.P.; Balazs, G.; Wooles, A.J.; Scheer, M.; Liddle, S.T. Thorium-phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions. Nat. Commun. 2016, 7, 12884. [Google Scholar] [CrossRef]
- Rookes, T.M.; Gardner, B.M.; Balazs, G.; Gregson, M.; Tuna, F.; Wooles, A.J.; Scheer, M.; Liddle, S.T. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew. Chem. Int. Ed. 2017, 56, 10495–10500. [Google Scholar] [CrossRef] [PubMed]
- Rookes, T.M.; Wildman, E.P.; Balazs, G.; Gardner, B.M.; Wooles, A.J.; Gregson, M.; Tuna, F.; Scheer, M.; Liddle, S.T. Actinide–Pnictide (An–Pn) Bonds Spanning Non-Metal, Metalloid, and Metal Combinations (An = U, Th; Pn = P, As, Sb, Bi). Angew. Chem. Int. Ed. 2018, 57, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hou, G.; Zi, G.; Ding, W.; Walter, M.D. A Base-Free Terminal Actinide Phosphinidene Metallocene: Synthesis, Structure, Reactivity, and Computational Studies. J. Am. Chem. Soc. 2018, 140, 14511–14525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hou, G.; Zi, G.; Ding, W.; Walter, M.D. An Alkali-Metal Halide-Bridged Actinide Phosphinidiide Complex. Inorg. Chem. 2019, 58, 1571–1590. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, G.; Zi, G.; Walter, M.D. A base-free terminal thorium phosphinidene metallocene and its reactivity toward selected organic molecules. Dalton Trans. 2019, 48, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Y.; Hou, G.; Ding, W.; Zi, G.; Walter, M.D. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans. 2019, 48, 6921–6930. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.G.; Hursthouse, M.B.; Abdul Malik, K.M.; Parry, J.S. Direct conversion of carbon monoxide to a coordinated secondary alcohol derivative by a thorium phosphido complex. J. Chem. Soc. Chem. Commun. 1994, 10, 1249–1250. [Google Scholar] [CrossRef]
- Behrle, A.C.; Walensky, J.R. Insertion of tBuNC into thorium-phosphorus and thorium-arsenic bonds: Phosphaazaallene and arsaazaallene moieties in f element chemistry. Dalton Trans. 2016, 45, 10042–10049. [Google Scholar] [CrossRef] [PubMed]
- Rungthanaphatsophon, P.; Barnes, C.L.; Kelley, S.P.; Walensky, J.R. Four-electron reduction chemistry using a uranium(III) phosphido complex. Dalton Trans. 2018, 47, 8189–8192. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, S.P.; Tarlton, M.L.; Barnes, C.L.; Walensky, J.R. Double insertion of benzophenone into thorium-phosphorus bonds. J. Organomet. Chem. 2018, 857, 159–163. [Google Scholar] [CrossRef]
- Vilanova, S.P.; del Rosal, I.; Tarlton, M.L.; Maron, L.; Walensky, J.R. Functionalization of Carbon Monoxide and tert-Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angew. Chem. Int. Ed. 2018, 57, 16748–16753. [Google Scholar] [CrossRef] [PubMed]
- Rungthanaphatsophon, P.; del Rosal, I.; Ward, R.J.; Vilanova, S.P.; Kelley, S.P.; Maron, L.; Walensky, J.R. Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido-Methyl Complexes. Organometallics 2019, 38, 1733–1740. [Google Scholar] [CrossRef]
- Garner, M.E.; Parker, B.F.; Hohloch, S.; Bergman, R.G.; Arnold, J. Thorium metallacycle facilitates catalytic alkyne hydrophosphination. J. Am. Chem. Soc. 2017, 139, 12935–12938. [Google Scholar] [CrossRef]
- Rungthanaphatsophon, P.; Duignan, T.J.; Myers, A.J.; Vilanova, S.P.; Barnes, C.L.; Autschbach, J.; Batista, E.R.; Yang, P.; Walensky, J.R. Influence of Substituents on the Electronic Structure of Mono- and Bis(phosphido) Thorium(IV) Complexes. Inorg. Chem. 2018, 57, 7270–7278. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski-Guillaume, S.M.; Ephritikhine, M. Bispentamethylcyclopentadienyl uranium diphenylphosphide compounds. J. Organomet. Chem. 1999, 577, 161–166. [Google Scholar] [CrossRef]
- Garner, M.E.; Arnold, J. Reductive elimination of diphosphine from a thorium-NHC-bis(phosphide) complex. Organometallics 2017, 36, 4511–4514. [Google Scholar] [CrossRef]
- Frey, A.S.P.; Cloke, F.G.N.; Hitchcock, P.B.; Green, J.C. Activation of P4 by U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)(THF); the x-ray structure of [U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)]2(μ-η2:η2-P4). New J. Chem. 2011, 35, 2022–2026. [Google Scholar] [CrossRef]
- Patel, D.; Tuna, F.; McInnes, E.J.L.; Lewis, W.; Blake, A.J.; Liddle, S.T. An Actinide Zintl Cluster: A Tris(triamidouranium)μ3-η2:η2:η2-Heptaphosphanortricyclane and Its Diverse Synthetic Utility. Angew. Chem. Int. Ed. 2013, 52, 13334–13337. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.M.; Balazs, G.; Scheer, M.; Tuna, F.; McInnes, E.J.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Triamidoamine-Uranium(IV)-Stabilized Terminal Parent Phosphide and Phosphinidene Complexes. Angew. Chem. Int. Ed. 2014, 53, 4484–4488. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.A.; Ploeger, M.; Pringle, P.G. Mono-, Di-, and Triborylphosphine Analogues of Triarylphosphines. Inorg. Chem. 2014, 53, 7763–7769. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.; Marks, T.J. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds. J. Am. Chem. Soc. 1981, 103, 6650–6667. [Google Scholar] [CrossRef]
- Bruker AXS Inc. APEX2 Suite; Bruker AXS Inc.: Madison, WI, USA, 2006. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Bond Distance (Å)/Angle (deg) | 3, An = Th | 4, An = U | (C5Me5)2Th(CNtBu)[N(tBu)C=PTipp] |
---|---|---|---|
An–N2 | 2.346(6) | 2.273(2) | 2.346(5) |
An–C26 | 2.458(7) | 2.383(3) | 2.430(6) |
N2–C26 | 1.367(9) | 1.343(4) | 1.348(8) |
C26–P1 | 1.714(7) | 1.733(3) | 1.691(6) |
An–C21 | 2.650(8) | 2.568(3) | 2.643(6) |
N2–C26–P1 | 130.9(6) | 130.4(2) | 152.1(5) |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
CCDC deposit number | 1826995 | 1826996 | 1826999 | 1827000 |
Empirical formula | C38H58P2Si2Th | C38H58P2Si2U | C36H53N2PTh | C36H53N2PU |
Formula weight (g/mol) | 865.00 | 870.99 | 776.81 | 782.80 |
Crystal habit, color | prism, red | plate, brown | prism, yellow | plate, brown |
Temperature (K) | 100(2) | 100(2) | 100(2) | 100(2) |
Space group | P 43 21 2 | P 43 21 2 | P21/c | P21/c |
Crystal system | Tetragonal | Tetragonal | Monoclinic | Monoclinic |
Volume (Å3) | 3988.1(9) | 3927.8(8) | 3516.2(6) | 3469.4(2) |
a (Å) | 12.1642(12) | 12.0767(11) | 10.0829(10) | 10.0337(4) |
b (Å) | 12.1642(12) | 12.0767(11) | 33.981(3) | 33.6762(14) |
c (Å) | 26.953(3) | 26.931(3) | 10.7807(11) | 10.7644(4) |
α (°) | 90 | 90 | 90 | 90 |
β (°) | 90 | 90 | 107.8389(17) | 107.477(1) |
γ (°) | 90 | 90 | 90 | 90 |
Z | 4 | 4 | 4 | 4 |
Calculated density (mg/m3) | 1.441 | 1.473 | 1.467 | 1.499 |
Absorption coefficient (mm−1) | 3.903 | 4.299 | 4.311 | 4.750 |
Final R indices [I > 2σ(I)] | R = 0.0203; wR2 = 0.0424 | R = 0.0166; wR2 = 0.0330 | R = 0.0594; wR2 = 0.1147 | R = 0.0264; wR2 = 0.0459 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungthanaphatsophon, P.; Fajen, O.J.; Kelley, S.P.; Walensky, J.R. Thorium(IV) and Uranium(IV) Phosphaazaallenes. Inorganics 2019, 7, 105. https://doi.org/10.3390/inorganics7090105
Rungthanaphatsophon P, Fajen OJ, Kelley SP, Walensky JR. Thorium(IV) and Uranium(IV) Phosphaazaallenes. Inorganics. 2019; 7(9):105. https://doi.org/10.3390/inorganics7090105
Chicago/Turabian StyleRungthanaphatsophon, Pokpong, O. Jonathan Fajen, Steven P. Kelley, and Justin R. Walensky. 2019. "Thorium(IV) and Uranium(IV) Phosphaazaallenes" Inorganics 7, no. 9: 105. https://doi.org/10.3390/inorganics7090105
APA StyleRungthanaphatsophon, P., Fajen, O. J., Kelley, S. P., & Walensky, J. R. (2019). Thorium(IV) and Uranium(IV) Phosphaazaallenes. Inorganics, 7(9), 105. https://doi.org/10.3390/inorganics7090105