Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties
Abstract
:1. Introduction
2. Fundamentals of the Mg-H2 System
2.1. Crystal Structure
2.2. Thermodynamics of the Mg-H2 System
2.3. Kinetics
3. Catalytic Effects
3.1. Transition Metals Catalysts
3.2. Catalytic Effects of Ti-Based Compounds
4. Synthetic Approaches
4.1. Ball Milling
4.2. Thin Film Deposition
4.3. Chemical Methods
5. Mechanisms of Catalysis
5.1. Hydrogen Dissociation
5.2. Surface Penetration
5.3. Accelerating Hydrogen Diffusion
5.4. Nucleation and Growth
6. Kinetic Modeling
6.1. Isothermal Models
6.2. Non-Isothermal Method
6.3. Activation Energies
7. Summary and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harapan, H.; Mudatsir, M.; Yufika, A.; Nawawi, Y.; Wahyuniati, N.; Anwar, S.; Yusri, F.; Haryanti, N.; Wijayanti, N.P.; Rizal, R.; et al. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar]
- Felderhoff, M.; Weidenthaler, C.; von Helmolt, R.; Eberle, U. Hydrogen storage: The remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 2007, 9, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Jollibois, M.P. Sur la formule du derive organo-magnesien et sur l’hydrure de magnesium. Compt. Rend. 1912, 155, 353–355. [Google Scholar]
- Dymova, T.N.; Sterlyadkina, Z.K.; Safronov, V.G. On the preparation of magnesium hydride. Russ. J. Inorg. Chem. 1961, 6, 763–767. [Google Scholar]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Zhou, C.; Fan, P.; Udell, K.S.; Bowman, R.C.; Vajo, J.J.; Purewal, J.J.; Kekelia, B. Metal hydrides based high energy density thermal battery. J. Alloys Compd. 2015, 645, S184–S189. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, B.; Shao, H.; Li, W.; Lin, H. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Sadhasivam, T.; Kim, H.-T.; Jung, S.; Roh, S.-H.; Park, J.-H.; Jung, H.-Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 2012, 48, 7334–7343. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Hu, J.; Gao, M.; Pan, H. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 2010, 3, 526–543. [Google Scholar] [CrossRef]
- de Jongh, P.E.; Adelhelm, P. Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem 2010, 3, 1332–1348. [Google Scholar] [CrossRef]
- Shao, H.; He, L.; Lin, H.; Li, H.-W. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technol. 2018, 6, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.A. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 2015, 84, 96–106. [Google Scholar] [CrossRef]
- Yartys, V.; Lototskyy, M.; Akiba, E.; Albert, R.; Antonov, V.; Ares, J.; Baricco, M.; Bourgeois, N.; Buckley, C.; Von Colbe, J.B.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloy. 2019, 7, 58–71. [Google Scholar] [CrossRef]
- Xie, X.; Chen, M.; Hu, M.; Wang, B.; Yu, R.; Liu, T. Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. Int. J. Hydrogen Energy 2019, 44, 10694–10712. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int. J. Hydrogen Energy 2017, 42, 24247–24255. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Wu, Y.; Guo, X.; Ye, J.; Yuan, B.; Wang, S.; Jiang, L. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 2019, 9, 408–428. [Google Scholar] [CrossRef] [Green Version]
- Stampfer, J.F.; Holley, C.E.; Suttle, J.F. The magnesium-hydrogen system1-3. J. Am. Chem. Soc. 1960, 82, 3504–3508. [Google Scholar] [CrossRef] [Green Version]
- Jain, I.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Hauback, B.C.; Fjellvåg, H.; Kjekshus, A.; Furuseth, S.; Hanfland, M. Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 2006, 73, 224102. [Google Scholar] [CrossRef]
- Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 2007, 56, 841–846. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvag, H. Pressure-induced structural transitions in MgH2. Phys. Rev. Lett. 2002, 89, 175506. [Google Scholar] [CrossRef] [Green Version]
- Varin, R.A.; Czujko, T.; Wronski, Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 2006, 17, 3856–3865. [Google Scholar] [CrossRef]
- Felderhoff, M.; Bogdanović, B. High temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Mol. Sci. 2009, 10, 325–344. [Google Scholar] [CrossRef]
- Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Kohno, T.; Tsuruta, S.; Kanda, M. The hydrogen storage properties of new Mg2Ni alloy. J. Electrochem. Soc. 1996, 143, 198–199. [Google Scholar] [CrossRef]
- Shao, H.; Wang, Y.; Xu, H.; Li, X. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J. Solid State Chem. 2005, 178, 2211–2217. [Google Scholar] [CrossRef]
- Bououdina, M.; Guo, Z.X. Comparative study of mechanical alloying of (Mg+ Al) and (Mg+ Al+ Ni) mixtures for hydrogen storage. J. Alloys Compd. 2002, 336, 222–231. [Google Scholar] [CrossRef]
- Bruzzone, G.; Costa, G.; Ferretti, M.; Olcese, G. Hydrogen storage in Mg51Zn20. Int. J. Hydrogen Energy 1983, 8, 459–461. [Google Scholar] [CrossRef]
- Chaudhary, A.-L.; Sheppard, D.A.; Paskevicius, M.; Webb, C.J.; Gray, E.M.; Buckley, C.E. Mg2Si Nanoparticle Synthesis for High Pressure Hydrogenation. J. Phys. Chem. C 2014, 118, 1240–1247. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.Z.; Lu, J.; Zhang, X. Thermodynamic and kinetic destabilization of magnesium hydride using Mg-In solid solution alloys. J. Am. Chem. Soc. 2013, 135, 10982–10985. [Google Scholar] [CrossRef]
- Si, T.; Cao, Y.; Zhang, Q.; Sun, D.; Ouyang, L.; Zhu, M. Enhanced hydrogen storage properties of a Mg–Ag alloy with solid dissolution of indium: A comparative study. J. Mater. Chem. A 2015, 3, 8581–8589. [Google Scholar] [CrossRef]
- Spassov, T.; Lyubenova, L.; Köster, U.; Baró, M.D. Mg–Ni–RE nanocrystalline alloys for hydrogen storage. Mater. Sci. Eng. A 2004, 375–377, 794–799. [Google Scholar] [CrossRef]
- Asano, K.; Enoki, H.; Akiba, E. Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling. Mater. Trans. 2007, 48, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Akiba, E. Direct synthesis of Mg–Ti–H FCC hydrides from MgH2 and Ti by means of ball milling. J. Alloys Compd. 2009, 481, L8–L11. [Google Scholar] [CrossRef]
- Asano, K.; Enoki, H.; Akiba, E. Synthesis of HCP, FCC and BCC structure alloys in the Mg–Ti binary system by means of ball milling. J. Alloys Compd. 2009, 480, 558–563. [Google Scholar] [CrossRef]
- Asano, K.; Enoki, H.; Akiba, E. Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 2009, 486, 115–123. [Google Scholar] [CrossRef]
- Vermeulen, P.; van Thiel, E.F.; Notten, P.H. Ternary MgTiX-alloys: A promising route towards low-temperature, high-capacity, hydrogen-storage materials. Chemistry 2007, 13, 9892–9898. [Google Scholar] [CrossRef]
- Jain, A.; Miyaoka, H.; Ichikawa, T. Destabilization of lithium hydride by the substitution of group 14 elements: A review. Int. J. Hydrogen Energy 2016, 41, 5969–5978. [Google Scholar] [CrossRef]
- Wagemans, R.W.P.; van Lenthe, J.H.; de Jongh, P.E.; van Dillen, A.J.; de Jong, K.P. Hydrogen storage in magnesium clusters: Quantum chemical study. J. Am. Chem. Soc. 2005, 127, 16675–16680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yan, S.; Qu, H. Stress/strain effects on thermodynamic properties of magnesium hydride: A brief review. Int. J. Hydrogen Energy 2017, 42, 16603–16610. [Google Scholar] [CrossRef]
- Berube, V.; Chen, G.; Dresselhaus, M. Impact of nanostructuring on the enthalpy of formation of metal hydrides. Int. J. Hydrogen Energy 2008, 33, 4122–4131. [Google Scholar] [CrossRef]
- Zhu, M.; Lu, Y.; Ouyang, L.; Wang, H. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review. Materials 2013, 6, 4654–4674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bououdina, M.; Grant, D.; Walker, G. Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int. J. Hydrogen Energy 2006, 31, 177–182. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, C.; Lai, Q.; Liu, W.; Wang, D.-W.; Aguey-Zinsou, K.-F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198. [Google Scholar] [CrossRef]
- Pozzo, M.; Alfè, D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg, 0001, surfaces. Int. J. Hydrogen Energy 2009, 34, 1922–1930. [Google Scholar] [CrossRef] [Green Version]
- Pozzo, M.; Alfe, D.; Amieiro, A.; French, S.; Pratt, A. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg, 0001, surfaces. J. Chem. Phys. 2008, 128, 094703. [Google Scholar] [CrossRef] [Green Version]
- Spatz, P.; Aebischer, H.A.; Krozer, A.; Schlapbach, L. The Diffusion of H in Mg and the Nucleation and Growth of MgH2 in Thin Films*. Z. Phys. Chem. 1993, 181, 393–397. [Google Scholar] [CrossRef]
- Zhou, C. A Study of Advanced Magnesium-Based Hydride and Development of a Metal Hydride Thermal Battery System. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2015. [Google Scholar]
- Jain, A.; Agarwal, S.; Ichikawa, T. Catalytic tuning of sorption kinetics of lightweight hydrides: A review of the materials and mechanism. Catalysts 2018, 8, 651. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Huot, J.; Boily, S.; Neste, A.V.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH–Tm (Tm = Ti, V, Mn, Fe and Ni). J. Alloys Compd. 1999, 292, 247–252. [Google Scholar] [CrossRef]
- Rizo-Acosta, P.; Cuevas, F.; Latroche, M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A 2019, 7, 23064–23075. [Google Scholar] [CrossRef]
- Pasquini, L.; Callini, E.; Brighi, M.; Boscherini, F.; Montone, A.; Jensen, T.R.; Maurizio, C.; Antisari, M.V.; Bonetti, E. Magnesium nanoparticles with transition metal decoration for hydrogen storage. J. Nanopart. Res. 2011, 13, 5727–5737. [Google Scholar] [CrossRef]
- Vincent, S.; Lang, J.; Huot, J. Addition of catalysts to magnesium hydride by means of cold rolling. J. Alloys Compd. 2012, 512, 290–295. [Google Scholar] [CrossRef]
- Ma, L.-P.; Wang, P.; Kang, X.-D.; Cheng, H.-M. Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system. J. Mater. Res. 2011, 22, 1779–1786. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.Z.; Ren, C.; Li, J.; Lu, J. Effect of Ti Intermetallic catalysts on hydrogen storage properties of magnesium hydride. J. Phys. Chem. C 2013, 117, 12973–12980. [Google Scholar] [CrossRef]
- Choi, Y.J.; Choi, J.W.; Sohn, H.Y.; Ryu, T.; Hwang, K.S.; Fang, Z.Z. Chemical vapor synthesis of Mg–Ti nanopowder mixture as a hydrogen storage material. Int. J. Hydrogen Energy 2009, 34, 7700–7706. [Google Scholar] [CrossRef]
- Patelli, N.; Migliori, A.; Pasquini, L. Reversible metal-hydride transformation in Mg-Ti-H nanoparticles at remarkably low temperatures. ChemPhysChem 2019, 20, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.; Song, M.Y. Hydriding and dehydriding features of a titanium-added magnesium hydride composite, materials. Science 2020, 26, 199–204. [Google Scholar]
- Lotoskyy, M.; Denys, R.; Yartys, V.A.; Eriksen, J.; Goh, J.; Nyamsi, S.N.; Sita, C.; Cummings, F. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance dagger. J. Mater. Chem. A 2018, 6, 10740–10754. [Google Scholar] [CrossRef]
- Croston, D.; Grant, D.; Walker, G. The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH2. J. Alloys Compd. 2010, 492, 251–258. [Google Scholar] [CrossRef]
- Cui, J.; Wang, H.; Liu, J.; Ouyang, L.; Zhang, Q.; Sun, D.; Yao, X.; Zhu, M. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 2013, 492, 251–258. [Google Scholar] [CrossRef]
- Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Phys. Chem. Chem. Phys. 2016, 18, 141–148. [Google Scholar] [CrossRef]
- Lu, C.; Zou, J.; Shi, X.; Zeng, X.; Ding, W. Synthesis and hydrogen storage properties of core–shell structured binary Mg@ Ti and ternary Mg@ Ti@ Ni composites. Int. J. Hydrogen Energy 2017, 42, 2239–2247. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lu, J.; Sohn, H.Y.; Fang, Z.Z.; Rönnebro, E. Effect of milling parameters on the dehydrogenation properties of the Mg−Ti−H system. J. Phys. Chem. C 2009, 113, 19344–19350. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lu, J.; Sohn, H.Y.; Fang, Z.Z. Hydrogen storage properties of the Mg–Ti–H system prepared by high-energy–high-pressure reactive milling. J. Power Sources 2008, 180, 491–497. [Google Scholar] [CrossRef]
- Lu, J.; Choi, Y.J.; Fang, Z.Z.; Sohn, H.Y.; Rönnebro, E. Hydrogenation of Nanocrystalline Mg at Room Temperature in the Presence of TiH2. J. Am. Chem. Soc. 2010, 132, 6616–6617. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, C.; Fang, Z.Z.; Bowman, R.C., Jr.; Lu, J.; Ren, C. Isothermal hydrogenation kinetics of ball-milled nano-catalyzed magnesium hydride. Materialia 2019, 5, 100227. [Google Scholar] [CrossRef]
- Li, J.; Fan, P.; Fang, Z.Z.; Zhou, C. Kinetics of isothermal hydrogenation of magnesium with TiH2 additive. Int. J. Hydrogen Energy 2014, 39, 7373–7381. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.; Wang, F.; Li, X. Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature. J. Power Sources 2014, 267, 69–77. [Google Scholar]
- Manivasagam, T.G.; Magusin, P.C.M.M.; Iliksu, M.; Notten, P.H.L. Influence of Nickel and Silicon Addition on the Deuterium Siting and Mobility in fcc Mg–Ti Hydride Studied with2H MAS NMR. J. Phys. Chem. C 2014, 118, 10606–10615. [Google Scholar] [CrossRef] [Green Version]
- Oelerich, W.; Klassen, T.; Bormann, R. Mg-based hydrogen storage materials with improved hydrogen sorption. Mater. Trans. 2001, 42, 1588–1592. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, A.; Zhang, H.; Ding, B.; Hu, Z. Hydrogenation characteristics of Mg–TiO (rutile) composite. J. Alloys Compd. 2000, 313, 218–223. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, X.; Zhang, M.; Liu, M.; Huang, X.; Zheng, J.; Zhang, Y.; Jiang, L.; Chen, L. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride. Int. J. Hydrogen Energy 2019, 44, 1750–1759. [Google Scholar] [CrossRef]
- Jangir, M.; Gattia, D.M.; Peter, A.; Jain, I.P. Effect of Ti-Additives on Hydrogenation/Dehydrogenation Properties of MgH2. In Proceedings of the 15th International Conference on Concentrator Photovoltaic Systems (CPV-15), Fes, Marocco, 25–27 March 2019; AIP Publishing: College Park, MD, USA, 2019; Volume 2145, p. 020006. [Google Scholar]
- Jain, A.; Agarwal, S.; Kumar, S.; Yamaguchi, S.; Miyaoka, H.; Kojima, Y.; Ichikawa, T. How does TiF4 affect the decomposition of MgH2 and its complex variants?—An XPS investigation. J. Mater. Chem. A 2017, 5, 15543–15551. [Google Scholar] [CrossRef]
- Jangir, M.; Jain, A.; Yamaguchi, S.; Ichikawa, T.; Lal, C.; Jain, I. Catalytic effect of TiF4 in improving hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2016, 41, 14178–14183. [Google Scholar] [CrossRef]
- Malka, I.; Czujko, T.; Bystrzycki, J. Catalytic effect of halide additives ball milled with magnesium hydride. Int. J. Hydrogen Energy 2010, 35, 1706–1712. [Google Scholar] [CrossRef]
- Kalisvaart, W.; Harrower, C.; Haagsma, J.; Zahiri, B.; Luber, E.; Ophus, C.; Poirier, E.; Fritzsche, H.; Mitlin, D. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study. Int. J. Hydrogen Energy 2010, 35, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Zahiri, B.; Amirkhiz, B.S.; Mitlin, D. Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti. Appl. Phys. Lett. 2010, 97, 083106. [Google Scholar] [CrossRef]
- Yao, X.; Wu, C.; Du, A.; Zou, J.; Zhu, Z.; Wang, P.; Cheng, H.; Smith, S.C.; Lu, G. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. J. Am. Chem. Soc. 2007, 129, 15650–15654. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.; Wang, H.; Wu, Y. Enhanced hydrogen storage properties of Mg–Ti–V nanocomposite at moderate temperatures. J. Phys. Chem. C 2014, 118, 22419–22425. [Google Scholar] [CrossRef]
- Berlouis, L.E.A.; Honnor, P.; Hall, P.J.; Morris, S.; Dodd, S.B. An investigation of the effect of Ti, Pd and Zr on the dehydriding kinetics of MgH2. J. Mater. Sci. 2006, 41, 6403–6408. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Wang, H.; Liu, T.; Xu, L.; Li, X.I. Improved kinetics of nanoparticle-decorated Mg-Ti-Zr nanocomposite for hydrogen storage at moderate temperatures. Mater. Chem. Phys. 2018, 206, 21–28. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, X.; Wang, X.; Wang, C.; Fan, X.; Tang, Z.; Wang, C.; Wang, Q.; Chen, L. Synergistic catalytic activity of porous rod-like TMTiO3 (TM = Ni and Co) for reversible hydrogen storage of magnesium hydride. J. Phys. Chem. C 2018, 122, 27973–27982. [Google Scholar] [CrossRef]
- Daryani, M.; Simchi, A.; Sadati, M.; Hosseini, H.M.; Targholizadeh, H.; Khakbiz, M. Effects of Ti-based catalysts on hydrogen desorption kinetics of nanostructured magnesium hydride. Int. J. Hydrogen Energy 2014, 39, 21007–21014. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, X.; Zhang, M.; Zheng, J.; Liu, M.; Wang, X.; Jiang, L.; Chen, L. Highly dispersed metal nanoparticles on TiO2 acted as nano redox reactor and its synergistic catalysis on the hydrogen storage properties of magnesium hydride. Int. J. Hydrogen Energy 2019, 44, 15100–15109. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.Z.; Sun, P. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride. J. Power Sources 2015, 278, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Liu, J.; Wang, H.; Ouyang, L.; Sun, D.; Zhu, M.; Yao, X. Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645–9655. [Google Scholar] [CrossRef]
- Lu, J.; Choi, Y.J.; Fang, Z.Z.; Sohn, H.Y.; Rönnebro, E. Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling. J. Am. Chem. Soc. 2009, 131, 15843–15852. [Google Scholar] [CrossRef] [PubMed]
- Ponthieu, M.; Cuevas, F.; Fernández, J.F.; Laversenne, L.; Porcher, F.; Latroche, M. Structural properties and reversible deuterium loading of MgD2–TiD2 nanocomposites. J. Phys. Chem. C 2013, 117, 18851–18862. [Google Scholar] [CrossRef]
- Emery, S.B.; Sorte, E.G.; Bowman, R.C.; Fang, Z.Z.; Ren, C.; Majzoub, E.H.; Conradi, M.S. Detection of fluorite-structured MgD2/TiD2: Deuterium NMR. J. Phys. Chem. 2015, 119, 7656–7661. [Google Scholar] [CrossRef]
- Kyoi, D.; Sato, T.; Rönnebro, E.; Kitamura, N.; Ueda, A.; Ito, M.; Katsuyama, S.; Hara, S.; Noréus, D.; Sakai, T. A new ternary magnesium–titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J. Alloys Compd. 2004, 372, 213–217. [Google Scholar] [CrossRef]
- Oelerich, W.; Klassen, T.; Bormann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 2001, 315, 237–242. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Nasani, N.; Correia, P.; Carbó-Argibay, E.; Otero-Irurueta, G.; Stroppa, D.G.; Fagg, D.P. Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2. J. Power Sources 2017, 362, 174–183. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Luo, B.; Liu, M.; Chen, M.; Chen, L. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures. J. Energy Chem. 2020, 46, 191–198. [Google Scholar] [CrossRef]
- Berezovets, V.; Denys, R.; Zavaliy, I.; Kosarchyn, Y. Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Jin, S.-A.; Shim, J.-H.; Cho, Y.W.; Yi, K.-W. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J. Power Sources 2007, 172, 859–862. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Wang, Y.; Jiao, L.; Yuan, H. Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2. J. Alloys Compd. 2015, 645, S509–S512. [Google Scholar] [CrossRef]
- Guoxian, L.; Erde, W.; Shoushi, F. Hydrogen absorption and desorption characteristics of mechanically milled Mg-35 wt%FeTi1.2 powders. J. Alloys Compd. 1995, 223, 111–114. [Google Scholar] [CrossRef]
- Reule, H.; Hirscher, M.; Weißhardt, A.; Kronmüller, H. Hydrogen desorption properties of mechanically alloyed MgH2 composite materials. J. Alloys Compd. 2000, 305, 246–252. [Google Scholar] [CrossRef]
- Cui, N.; Luan, B.; Zhao, H.; Liu, H.K.; Dou, S.X. Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt%Ti2Ni. J. Alloys Compd. 1996, 240, 229–234. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Wang, A.; Ding, B.; Hu, Z. Preparation and hydriding/dehydriding properties of mechanically milled Mg–30 wt% TiMn1.5 composite. J. Alloys Compd. 2003, 354, 296–302. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Aldakheel, F.; Alkandary, A.; Behbehani, M.; Al-Saidi, M. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Sci. Rep. 2017, 7, 13296. [Google Scholar] [CrossRef] [Green Version]
- El-Eskandarany, M.S.; Al-Ajmi, F.; Banyan, M.; Al-Duweesh, A. Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt% TiMn2 binary system. Int. J. Hydrogen Energy 2019, 44, 26428–26443. [Google Scholar] [CrossRef]
- Dai, J.H.; Jiang, X.W.; Song, Y. Stability and hydrogen adsorption properties of Mg/TiMn2 interface by first principles calculation. Surf. Sci. 2016, 653, 22–26. [Google Scholar] [CrossRef]
- Hanada, N.; Ichikawa, T.; Fujii, H. Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling. J. Alloys Compd. 2005, 404–406, 716–719. [Google Scholar] [CrossRef]
- Pourabdoli, M.; Raygan, S.; Abdizadeh, H.; Uner, D. A comparative study for synthesis methods of nano-structured (9Ni–2Mg–Y) alloy catalysts and effect of the produced alloy on hydrogen desorption properties of MgH2. Int. J. Hydrogen Energy 2013, 38, 16090–16097. [Google Scholar] [CrossRef]
- Elanski, D.; Lim, J.-W.; Mimura, K.; Isshiki, M. Thermodynamic estimation of hydride formation during hydrogen plasma arc melting. J. Alloys Compd. 2007, 439, 210–214. [Google Scholar] [CrossRef]
- Elanski, D.; Lim, J.-W.; Mimura, K.; Isshiki, M. Complex hydrides for energy storage, conversion, and utilization. Adv. Mater. 2019, 31, e1902757. [Google Scholar]
- Advani, S.G.; Hsaio, K.-T. Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- Lyu, J.; Lider, A.; Kudiiarov, V. Using ball milling for modification of the hydrogenation/dehydrogenation process in magnesium-based hydrogen storage materials: An overview. Metals 2019, 9, 768. [Google Scholar] [CrossRef] [Green Version]
- Berezovets, V.V.; Denys, R.V.; Zavalii, I.Y.; Paul-Boncour, V.; Pecharsky, V. Characteristic features of the sorption–desorption of hydrogen by Mg–M–Ni (M = Al, Mn, Ti) ternary alloys. Mater. Sci. 2013, 49, 159–169. [Google Scholar] [CrossRef]
- Denys, R.V.; Zavaliy, I.Y.; Berezovets, V.V.; Paul-Boncour, V.; Pecharsky, V.K. Phase equilibria in the Mg–Ti–Ni system at 500 °C and hydrogenation properties of selected alloys. Intermetallics 2013, 32, 167–175. [Google Scholar] [CrossRef]
- Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B 2006, 110, 8769–8776. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Neste, A.V.; Schulz, R. Hydrogen storage properties of the mechanically milled MgH –V2 nanocomposite. J. Alloys Compd. 1999, 291, 295–299. [Google Scholar] [CrossRef]
- Ranjbar, A.; Ismail, M.; Guo, Z.; Yu, X.; Liu, H. Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. Int. J. Hydrog. Energ. 2010, 35, 7821–7826. [Google Scholar] [CrossRef]
- Calka, A.; Radlinski, A.P. Universal high performance ball-milling device and its application for mechanical alloying. Mater. Sci. Eng. A 1991, 134, 1350–1353. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; De Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of magnesium hydride-based materials: Development and optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Xin, G.; Zheng, J.; Li, X.; Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 2012, 1, 590–601. [Google Scholar] [CrossRef]
- Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 1999, 293–295, 495–500. [Google Scholar] [CrossRef]
- Zhao, D.-L.; Zhang, Y.-H. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014, 33, 499–510. [Google Scholar] [CrossRef]
- Agueyzinsou, K.F.; Aresfernandez, J.; Klassen, T.; Bormann, R. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int. J. Hydrogen Energy 2007, 32, 2400–2407. [Google Scholar] [CrossRef]
- Gennari, F.C.; Castro, F.J.; Urretavizcaya, G. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. J. Alloys Compd. 2001, 321, 46–53. [Google Scholar] [CrossRef]
- Denys, R.; Riabov, A.; Maehlen, J.; Lototsky, M.; Solberg, J.; Yartys, V. In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen. Acta Mater. 2009, 57, 3989–4000. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.Z.; Bowman, C., Jr.; Xia, Y.; Lu, J.; Luo, X.; Ren, Y. Stability of catalyzed magnesium hydride nanocrystalline during hydrogen cycling. part II: Microstructure evolution. J. Phys. Chem. C 2015, 119, 22272–22280. [Google Scholar]
- Zhou, C.; Fang, Z.Z.; Bowman, C., Jr. Stability of catalyzed magnesium hydride nanocrystalline during hydrogen cycling. part I: Kinetic analysis. J. Phys. Chem. C 2015, 119, 22261–22271. [Google Scholar]
- Tan, X.; Zahiri, B.; Holt, C.M.; Kubis, A.; Mitlin, D. A TEM based study of the microstructure during room temperature and low temperature hydrogen storage cycling in MgH2 promoted by Nb–V. Acta Mater. 2012, 60, 5646–5661. [Google Scholar] [CrossRef]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Gremaud, R.; Broedersz, C.P.; Borsa, D.M.; Borgschulte, A.; Mauron, P.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 2007, 19, 2813–2817. [Google Scholar] [CrossRef]
- Maissel, L.I.; Clang, R. Handbook of Thin Film Technology; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Zahiri, B.; Danaie, M.; Tan, X.; Amirkhiz, B.S.; Botton, G.A.; Mitlin, D. Stable hydrogen storage cycling in magnesium hydride, in the range of room temperature to 300 °C, achieved using a new bimetallic Cr-V nanoscale catalyst. J. Phys. Chem. C 2012, 116, 3188–3199. [Google Scholar] [CrossRef]
- Zhu, C.; Hosokai, S.; Matsumoto, I.; Akiyama, T. Shape-controlled growth of MgH2/Mg nano/microstructures via hydriding chemical vapor deposition. Cryst. Growth Des. 2010, 10, 5123–5128. [Google Scholar] [CrossRef] [Green Version]
- Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: Londyn, UK, 2004. [Google Scholar]
- Mukherjee, D.; Okuda, J. Molecular magnesium hydrides. Angew. Chem. Int. Ed. Engl. 2018, 57, 1458–1473. [Google Scholar] [CrossRef]
- Norberg, N.S.; Arthur, T.S.; Fredrick, S.J.; Prieto, A.L. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 2011, 133, 10679–10681. [Google Scholar] [CrossRef]
- Bogdanović, B.; Liao, S.; Schwickardi, M.; Sikorsky, P.; Spliethoff, B. Catalytic synthesis of magnesium hydride under mild conditions. Angew. Chem. Int. Ed. Engl. 1980, 19, 818–819. [Google Scholar] [CrossRef]
- Martin, M.; Gommel, C.; Borkhart, C.; Fromm, E. Absorption and desorption kinetics of hydrogen storage alloys. J. Alloys Compd. 1996, 238, 193–201. [Google Scholar] [CrossRef]
- Hollenbach, D.; Salpeter, E.E. Surface recombination of hydrogen molecules. Astrophys. J. 1971, 163, 155. [Google Scholar] [CrossRef]
- Du, A.J.; Smith, S.C.; Yao, X.D.; Lu, G.Q. Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. J. Am. Chem. Soc. 2007, 129, 10201–10204. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Zhou, C.; Lu, J.; Ren, Y.; Zhang, X.; Luo, X. In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives. Int. J. Hydrogen Energy 2014, 39, 5868–5873. [Google Scholar] [CrossRef]
- Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163–184. [Google Scholar] [CrossRef]
- Pan, Y.-C.; Zou, J.-X.; Zeng, X.-Q.; Ding, W.-J. Hydrogen storage properties of Mg–TiO2 composite powder prepared by arc plasma method. Trans. Nonferrous Met. Soc. China 2014, 24, 3834–3839. [Google Scholar]
- Liu, H.; Sun, P.; Bowman, R.C.; Fang, Z.Z.; Liu, Y.; Zhou, C. Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride. J. Power Sources 2020, 454, 227936. [Google Scholar] [CrossRef]
- Ma, T.; Isobe, S.; Wang, Y.; Hashimoto, N.; Ohnuki, S. Nb-Gateway for Hydrogen Desorption in Nb2O5 Catalyzed MgH2 Nanocomposite. J. Phys. Chem. C 2013, 117, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Ma, Y.; Li, F.; Zhu, H.; Zeng, X.; Ding, W.; Wu, J.; Deng, T.; Zou, J. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen stabilized Mg3Pt. J. Mater. Chem. A 2019, 24, 14629–14637. [Google Scholar] [CrossRef]
- Friedrichs, O.; Sánchez-López, J.C.; López-Cartes, C.; Klassen, T.; Bormann, R.; Fernández, A. Nb2O5 “Pathway Effect” on hydrogen sorption in Mg. J. Phys. Chem. B 2006, 110, 7845–7850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, S.; Qu, H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement. Int. J. Hydrogen Energy 2018, 43, 1545–1565. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Shao, H.; Li, W.; Lin, H. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313. [Google Scholar]
- Weinberg, M.C.; Birnie, D.P.; Shneidman, V.A. Crystallization kinetics and the JMAK equation. J. Non Cryst. Solids 1997, 219, 89–99. [Google Scholar] [CrossRef]
- Pourabdoli, M.; Raygan, S.; Abdizadeh, H.; Uner, D. Determination of kinetic parameters and hydrogen desorption characteristics of MgH2-10 wt% (9Ni–2Mg–Y) nano-composite. Int. J. Hydrogen Energy 2013, 38, 11910–11919. [Google Scholar] [CrossRef]
- Muthukumar, P.; Satheesh, A.; Linder, M.; Mertz, R.; Groll, M. Studies on hydriding kinetics of some La-based metal hydride alloys. Int. J. Hydrogen Energy 2009, 34, 7253–7262. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Schimmel, H.G.; Huot, J.; Chapon, L.C.; Tichelaar, F.D.; Mulder, F.M. Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J. Am. Chem. Soc. 2005, 127, 14348–14354. [Google Scholar] [CrossRef]
- Mooij, L.; Dam, B. Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics. Phys. Chem. Chem. Phys. 2013, 15, 11501–11510. [Google Scholar] [CrossRef]
- Danaie, M.; Mitlin, D. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling. Acta Mater. 2012, 60, 6441–6456. [Google Scholar] [CrossRef]
- Mulder, F.M.; Singh, S.; Bolhuis, S.; Eijt, S.W.H. Extended solubility limits and nanograin refinement in Ti/Zr fluoride-catalyzed MgH2. J. Phys. Chem. C 2012, 116, 2001–2012. [Google Scholar] [CrossRef]
- Lototskyy, M.; Denys, R.; Nyamsi, S.N.; Bessarabskaia, I.; Yartys, V. Modelling of hydrogen thermal desorption spectra. Mater. Today Proc. 2018, 5, 10440–10449. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Q. A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrogen Energy 2016, 41, 18072–18087. [Google Scholar] [CrossRef]
- Ruitenberg, W.E.G.; Petford-Long, A.K. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 2001, 378, 97–105. [Google Scholar] [CrossRef]
- Luo, Q.; An, X.-H.; Pan, Y.-B.; Zhang, X.; Zhang, J.-Y.; Li, Q. The hydriding kinetics of Mg–Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model. Int. J. Hydrogen Energy 2010, 35, 7842–7849. [Google Scholar] [CrossRef]
- Giess, E.A. Equations and tables for analyzing solid-state reaction kinetics. J. Am. Ceram. Soc. 1963, 46, 374–376. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T.; Wronski, Z.S. Nanomaterials for Solid State Hydrogen Storage; Springer: New York, NY, USA, 2009. [Google Scholar]
- Carter, R.E. Kinetic Model for solid-state reactions. J. Chem. Phys. 1961, 34, 2010–2015. [Google Scholar] [CrossRef]
- Zou, J.; Guo, H.; Zeng, X.; Zhou, S.; Chen, X.; Ding, W. Hydrogen storage properties of Mg–TM–La (TM = Ti, Fe, Ni) ternary composite powders prepared through arc plasma method. Int. J. Hydrogen Energy 2013, 38, 8852–8862. [Google Scholar] [CrossRef]
- Mooij, L.; Dam, B. Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys. Chem. Chem. Phys. 2013, 15, 2782–2792. [Google Scholar] [CrossRef]
Modification | Unit Cell (Å) | Positional Parameters | B0 (GPa) | B′0 | ||
---|---|---|---|---|---|---|
Structure Type | a | b | c | |||
β-MgH2, TiO2-rutile (P42/mnm) | 4.5176 | 4.5176 | 3.0206 | Mg (2a): 0, 0, 0 | 45.00 ± 2 | 3.35 ± 0.3 |
) | 4.6655 | 4.6655 | 4.6655 | Mg (4a): 0, 0, 0 | 47.41 ± 4 | 3.49 ± 0.4 |
α-MgH2, α-PbO2 (Pbcn) | 4.5246 | 5.4442 | 4.9285 | Mg (4c): 0, 0.3313d, 1/4d | 44.03 ± 2 | 3.17 ± 0.4 |
δ’-MgH2, AuSn2 (Pbca) | 8.8069 | 4.6838 | 4.3699 | Mg (8c): (0.8823, 0.0271, 0.2790) | 49.83 ± 5 | 3.49 ± 0.6 |
Thermodynamic Parameters | Values |
---|---|
Formation enthalpy, kJ/(mol·H2) | −74.5 |
Formation entropy, J/(mol·H2·K) | −135 |
Hydrogen Storage Capacity (Theoretical) | |
Gravimetric capacity, wt% | 7.6 |
Volumetric capacity, g/(L·H2) | 110 |
Thermal Energy Storage Capacity (Theoretical) | |
Gravimetric capacity, kJ/kg | 2204 |
Volumetric capacity, kJ/dm3 | 1763 |
Metal | Dissociation Energy (eV) |
---|---|
Pure Mg | 0.87, 0.40, 0.50, 1.15, 1.05, 0.95, 1.00 |
Ti-doped Mg | Null, negligible |
Ni-doped Mg | 0.06 |
V-doped Mg | Null |
Cu-doped Mg | 0.56 |
Pd-doped Mg | 0.39 |
Fe-doped Mg | 0.03 |
Ag-doped Mg | 1.18 |
Materials | Synthetic Methods | Hydrogen Storage Properties | Reference | |||
---|---|---|---|---|---|---|
Desorption Kinetics | Eades (kJ/mol) | Absorption Kinetics | Eaabs (kJ/mol) | |||
Titanium/Titanium Hydrides | ||||||
Mg-2%Ti | Inert gas condensation | Des: 4.50%/320 °C/0.2 bar/25 min | Abs: 4.80%/320 °C/8 bar/21 min | [55] | ||
MgH2 + 2 at% Ti | Ball milling (argon) | Des: 6.32 wt%/623 K/35 kPa/0.5 h | Abs: 6.32 wt%/623 K/2000 kPa/4 min | [56] | ||
Cold rolling (5 times, air) | Des: 6.00 wt%/623 K/35 kPa/0.5 h | Abs: 5.70 wt%/623 K/2000 kPa/4 min | ||||
MgH2-4 mol% Ti | Ball milling | Des: 1.10%/573 K/2 MPa/5 min | Abs: 6.40%/573 K/2 MPa/5 min | [57] | ||
MgH2-5 at% Ti | Ball milling | Des Temperature: 235.6 °C | 70.11 | [58] | ||
MgH2-5 at% Ti | Ball milling | Des: 5.50%/523 K/0.015 MPa/20 min | 71.1 | Abs: 4.20%/373 K/1.0 MPa/15 min | [53] | |
MgH2-5 at% Ti | Ball milling | Des: 5.20%/573 K/0.03 MPa/15 min | Abs: 6.70%/ 573 K/0.8 MPa/15 min | [54] | ||
Mg-5% Ti | Chemical vapor synthesis | 104 | [59] | |||
Mg-14 at% Ti | Gas phase condensation | 35 | 52 | [60] | ||
Mg-22 at% Ti | 31 | 47 | ||||
MgH2-15% Ti | Ball milling | Des: 0.12%/573 K/1 bar/60 min | Abs: 3.48%/573 K/12 bar/60 min | [61] | ||
Mg0.9Ti0.1 | Ball milling | 76 | Abs: 6.62% (after milling) | [62] | ||
Mg0.75Ti0.25 | Ball milling | 88 | Abs: 6.18% (after milling) | |||
Mg0.5Ti0.5 | Ball milling | 91 | Abs: 5.21% (after milling) | |||
MgH2-20% Ti | Ball milling | 72 ± 3 | [63] | |||
MgH2-coated Ti | Ball milling | Des: 5.00%/250 °C/15 min (TPD) Des Temperature: 175 °C | [64] | |||
Mg83.5Ti16.5 | Inert gas condensation | Des: 2.50%/300 °C/0.15 bar/2 min | Abs: 2.20%/300 °C/9 bar/1 min | [65] | ||
15Mg-Ti | Chemical method | 72.2 | [66] | |||
MgH2-4 mol% TiH2 | Ball milling | Des: 0.70%/573 K/2 MPa/5 min | Abs: 6.10%/573 K/2 MPa/5 min | [57] | ||
MgH2-5 at% TiH2 | Ball milling | Des: 5.80%/270 °C/0.12 bar/10 min Des Temperature: 235.5 °C | 67.24 | Abs: 2.70%/25 °C/1 bar/250 min | [58] | |
10MgH2-TiH2 | Ball milling | 73 | [67] | |||
7MgH2-TiH2 | Ball milling | 71 | [68] | |||
4MgH2-TiH2 | Ball milling | 68 | [68] | |||
MgH2-10 mol% TiH2 | Ball milling | Abs: 5.70%/240 °C/2 MPa/200 s | 16.4 | [69] | ||
MgH2-10% TiH2 | Ball milling | 24.2 | [70] | |||
MgH2-10% TiH2 | Ball milling | 17.9 | [71] | |||
Mg-9.2% TiH1.971-3.7% TiH1.5 | Ball milling | Des: 4.10%/573 K/100 Pa/20 min | 46.2 | Abs: 4.30%/298 K/4 MPa/10 min | 12.5 | [72] |
Mg0.65Ti0.35D1.2 | Ball milling | 17 | [73] | |||
Titanium Oxides | ||||||
MgH2-10% TiO2 | Ball milling | Des: 6.00%/300 °C/vacuum/20 min | Abs: 6.00%/300 °C/0.84 MPa/5 min | [74] | ||
Mg-20% TiO2 | Reactive ball milling | Des: 4.40%/350 °C/1 bar/8.5 min | Abs: 3.80%/350 °C/20 bar/2 min | [75] | ||
MgH2-6% TiO2 | Ball milling | 145.8 ± 14.2 | [76] | |||
MgH2 + 10% TiO2 | Ball milling | Des Temperature: 200 °C | 75.50 | [77] | ||
Titanium Halides | ||||||
MgH2-10% TiF4 | Ball milling | Des Temperature: 216.7 °C | 71 | (Des: 6.6%) | [78] | |
MgH2-10% TiF4 | Ball milling (2 h, argon) | Des Temperature: 154 °C | 70 | [79] | ||
MgH2 + 10% TiF4 | Ball milling | Des Temperature: 150 °C | 70 | [77] | ||
MgH2-4 mol% TiF3 | Ball milling | Des: 4.50%/573 K/2 MPa/5 min | Abs: 5.10%/573 K/2 MPa/5 min | [57] | ||
MgH2-4 mol% TiCl3 | Ball milling | Des: 3.70%/573 K/2 MPa/5 min | Abs: 5.30%/573 K/2 MPa/5 min | [57] | ||
MgH2-7% TiCl3 | Ball milling | Des temperature: 274 °C | 85 | [80] | ||
Titanium Alloys | ||||||
MgH2-5a% TiAl | Ball milling | Des: 4.90%/270 °C/0.12 bar/10 min Des Temperature: 219.6 °C | 65.08 | Abs: 2.50%/25 °C/1 bar/250 min | [58] | |
MgH2-5 a% Ti3Al | Ball milling | Des Temperature: 232.3 °C | 70.61 | [58] | ||
Mg85Al7.5Ti7.5 | DC-magnetron co-sputtering | Des: 5.30%/200 °C/vacuum/20 min | Abs: 5.60%/200 °C/3 bar/0.5 min | [81] | ||
Mg0.63Ti0.27Si0.10D1.1 | Ball milling | 27 | [73] | |||
MgH2-5 at%TiNi | Ball milling | Des Temperature: 242.4 °C | 73.09 | [58] | ||
15Mg-Ti-0.75Ni | Chemical method | 63.7 | [66] | |||
Mg0.63Ti0.27Ni0.10D1.3 | Ball milling | 21 | [73] | |||
MgH2-5at%TiNb | Ball milling | Des: 5.90%/27 °C/0.12 bar/10 min Des Temperature: 231.3 °C | 71.72 | Abs: 2.80%/25 °C/1 bar/250 min | [58] | |
MgH2-5at% Cr-5a% Ti | Film | Des: 6.00%/200 °C/5 mbar/25 min | Abs: 6.20%/200 °C/3 bar/10 min | [82] | ||
MgH2-7 at% Cr-13 at% Ti | Film | Des: 5.00%/200 °C/5 mbar/25 min | Abs: 5.60%/200 °C/3 bar/10 min | |||
MgH2-5 at% TiFe | Ball milling | Des: 5.20%/270 °C/0.12 bar/10 min Des Temperature: 237.7 °C | 72.63 | Abs: 3.00%/25 °C/1 bar/250 min | [58] | |
MgH2-5% FeTi | Ball milling | Abs: 2.30%/150 °C/2 MPa/5 min | 21 | [83] | ||
MgH2-5 at% TiMn2 | Ball milling | Des: 4.80%/270 °C/0.12 bar/10 min Des Temperature: 219.7 °C | 74.22 | Abs: 3.20%/25 °C/1 bar/250 min | [58] | |
MgH2-10% TiMn2 | Ball milling | 22.6 | [70] | |||
MgH2-5% VTi | Ball milling | Abs: 3.30%/150 °C/2 MPa/5 min | 10.4 | [83] | ||
Mg87.5Ti9.6V2.9 | Hydrogen plasma metal reaction | Des: 4.00%/300 °C/1 mbar/5 min | 73.8 | Abs: 4.80%/200 °C/40 bar/5 min | 29.2 | [84] |
MgH2-5 at% TiVMn | Ball milling | Des: 5.70%/270 °C/0.12 bar/10 min Des Temperature: 216.7 °C | 85.20 | Abs: 3.00%/25 °C/1 bar/250 min | [58] | |
Multiple Catalysts | ||||||
Mg-10% Ti-10% Pd | Ball milling | 114 ± 4 | [85] | |||
Mg-TiH1.971-TiH1.5-ZrH1.66 | Arc melting | 36.6 | 21.2 | [86] | ||
Mg0.9Ti0.1 + 5% C | Ball milling | 88 | Abs: 6.43% (after milling) | [62] | ||
MgH2-6% NiTiO3 | Ball milling | 74 ± 4 | [87] | |||
MgH2-6% CoTiO3 | Ball milling | 100 ± 2 | ||||
MgH2-10 mol% TiH2-6 mol% TiO2 | Ball milling | 118 | [88] | |||
MgH2-5% VTi-CNTs | Ball milling | Abs: 5.10%/150 °C/2 MPa/5 min | 10.2 | [83] | ||
MgH2-5% FeTi-CNTs | Ball milling | Abs: 0.60%/150 °C/2 MPa/5 min | 65.5 | [83] | ||
MgH2-10% Ni-TiO2 | Ball milling | Des: 6.50%/265 °C/0.02 bar/7 min | 43.7 ± 1.5 | Abs: 5.00%/100 °C/60 bar/7 min | [76] | |
MgH2-4% Ni-6% TiO2 | Ball milling | 91.6 ± 8.5 | [76] | |||
MgH2-10% Co-TiO2 | Ball milling | Des: 6.20%/250 °C/0.02 bar/15 min | 77 | Abs: 4.24%/100 °C/60 bar/10 min | [89] |
Model | Kinetic Equation |
---|---|
Johnson-Mehl-Avrami (JMA) | |
Jander diffusion model (JMD) | |
1-D diffusion | |
2-D diffusion (Bidimensional partical shape) | |
3-D diffusion (Ginsling-Braunshteinn model) | |
2-D contracting area | |
3-D contracting volume |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhang, J.; Bowman, R.C., Jr.; Fang, Z.Z. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics 2021, 9, 36. https://doi.org/10.3390/inorganics9050036
Zhou C, Zhang J, Bowman RC Jr., Fang ZZ. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics. 2021; 9(5):36. https://doi.org/10.3390/inorganics9050036
Chicago/Turabian StyleZhou, Chengshang, Jingxi Zhang, Robert C. Bowman, Jr., and Zhigang Zak Fang. 2021. "Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties" Inorganics 9, no. 5: 36. https://doi.org/10.3390/inorganics9050036
APA StyleZhou, C., Zhang, J., Bowman, R. C., Jr., & Fang, Z. Z. (2021). Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics, 9(5), 36. https://doi.org/10.3390/inorganics9050036