Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparations
2.2. Water Sorption/Solubility and Translucency Measurements [T1]
2.3. Translucency Measurements
2.4. Thermal Cycling Effect and Repeated Measures (T2)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2021. [Google Scholar] [CrossRef] [PubMed]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Nanditha Kumar, M.; Raghavendra Swamy, K.N.; Thippeswamy, H.M. Flexural strength and impact strength of heat-cured acrylic and 3D printed denture base resins—A comparative in vitro study. J. Oral Biol. Craniofac. Res. 2022, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.S.; Kim, J.E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef]
- Bidra, A.S.; Taylor, T.D.; Agar, J.R. Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives. J. Prosthet. Dent. 2013, 109, 361–366. [Google Scholar] [CrossRef]
- Alp, G.; Murat, S.; Yilmaz, B. Comparison of flexural strength of different CAD/CAM PMMA-based polymers. J. Prosthodont. 2019, 28, 491–495. [Google Scholar] [CrossRef]
- Figuerôa, R.M.S.; Conterno, B.; Arrais, C.A.G.; Sugio, C.Y.C.; Urban, V.M.; Neppelenbroek, K.H. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave. J. Appl. Oral. Sci. 2018, 26, e20170383. [Google Scholar] [CrossRef]
- Berli, C.; Thieringer, F.M.; Sharma, N.; Müller, J.A.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef]
- Machado, C.; Rizzatti-Barbosa, C.M.; Gabriotti, M.N.; Joia, F.A.; Ribeiro, M.C.; Sousa, R.L. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerized by microwave irradiation and conventional water bath. Dent. Mater. 2004, 20, 565–569. [Google Scholar] [CrossRef]
- Saini, R.; Kotian, R.; Madhyastha, P.; Srikant, N. Comparative study of sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. Indian J. Dent. Res. 2016, 2, 288–294. [Google Scholar]
- Pfeiffer, P.; Rosenbauer, E.U. Residual methyl methacrylate monomer, water sorption, and water solubility of hypoallergenic denture base materials. J. Prosthet. Dent. 2004, 92, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Katheng, A.; Minakuchi, S. Comparison of Mechanical Properties of PMMA Disks for Digitally Designed Dentures. Polymers 2021, 13, 1745. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Alqarawi, F.K.; Emam, A.M.; Khan, S.Q.; Akhtar, S.; Mahrous, A.A.; Al-Harbi, F.A. Translucency of nanoparticle-reinforced PMMA denture base material: An in-vitro comparative study. Dent. Mater. J. 2021, 40, 972–978. [Google Scholar] [CrossRef]
- Dayan, C.; Guven, M.C.; Gencel, B.; Bural, C.A. A Comparison of the Color Stability of Conventional and CAD/CAM Polymethyl Methacrylate Denture Base Materials. Acta. Stomatol. Croat. 2019, 53, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Waliszewski, M. Restoring dentate appearance: A literature review for modern complete denture esthetics. J. Prosthet. Dent. 2005, 93, 386–394. [Google Scholar] [CrossRef]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Ryan, E.A.; Tam, L.E.; McComb, D. Comparative translucency of esthetic composite resin restorative materials. J. Can. Dent. Assoc. 2010, 76, 84. [Google Scholar]
- Alfouzan, A.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Color stability of 3D-printed denture resins: Effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 2021, 13, 160–171. [Google Scholar] [CrossRef]
- American Dental Association. Revised American Dental Association specification no. 12 for denture base polymers. J. Am. Dent. Assoc. 1975, 90, 451–458. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Dentistry—Base Polymers—Part 1: Denture Base Polymers; ISO 20795-1:2013(en); International Organization of Standardization (ISO): Geneva, Switzerland, 2013; Available online: https://www.iso.org/obp/ui/#iso:std:iso:20795:-1:ed-2:v1:en (accessed on 3 December 2019).
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Jadhav, V.; Deshpande, S.; Radke, U.; Mahale, H.; Patil, P.G. Comparative evaluation of three types of denture base materials with saliva substitute before and after thermocycling: An in vitro study. J. Prosthet. Dent. 2021, 126, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Barsby, M.J. A denture base resin with low water absorption. J. Dent. 1992, 20, 240–244. [Google Scholar] [CrossRef]
- Iwaki, M.; Kanazawa, M.; Arakida, T.; Minakuchi, S. Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures. J. Oral Sci. 2020, 62, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Arima, T.; Murata, H.; Hamad, T. The effects of cross-linking agents on the water sorption and solubility characteristics of denture base resin. J. Oral Rehabil. 1996, 23, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.G.; Powers, J.M.; Sakaguchi, R.L. Craig’s Restorative Dental Materials, 13th ed.; Mosby Elsevier: St. Louis, MO, USA, 2011; pp. 51–52. [Google Scholar]
- Lin, C.T.; Lee, S.Y.; Tsai, T.Y.; Dong, D.R.; Shih, Y.H. Degradation of repaired denture base material in simulated oral fluid. J. Oral Rehabil. 2000, 27, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K.; Ruyter, I.E. The swelling phenomenon of acrylic resin polymer teeth at the interface with denture base polymers. J. Prosthet. Dent. 1997, 78, 194–199. [Google Scholar] [CrossRef]
- Cucci, A.L.M.; Vergani, C.E.; Giampaolo, E.T.; Afonso, M.C. Water sorption, solubility, and bond strength of two autopolymerizing acrylic resins and one heat-polymerizing acrylic resin. J. Prosthet. Dent. 1998, 80, 434–438. [Google Scholar] [CrossRef]
- Lassila, L.V.; Vallittu, P.K. Denture base polymer Alldent Sinomer: Mechanical properties, water sorption and release of residual compounds. J. Oral Rehabil. 2001, 28, 607–613. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chai, J.; Kawaguchi, M. Effect of water sorption on the resistance to plastic deformation of a denture base material relined with four different denture reline materials. Int. J. Prosthodont. 1998, 11, 49–54. [Google Scholar] [PubMed]
- Lee, Y.K. Influence of scattering/absorption characteristics on the color of resin composites. Dent. Mater. 2007, 23, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dental Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Fouda, S.M.; Rahoma, A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Al-Abidi, K.S.; Ali, M.S.; Al-Harbi, F.A. Color Stability and Surface Properties of PMMA/ZrO2 Nanocomposite Denture Base Material after Using Denture Cleanser. Int. J. Biomater. 2021, 2021, 6668577. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Kim, J.E.; Choi, Y.J.; Shin, S.H.; Nam, N.E.; Shim, J.S.; Lee, K.W. Evaluation of the Color Stability of 3D-Printed Crown and Bridge Materials against Various Sources of Discoloration: An In Vitro Study. Materials 2020, 13, 5359. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, W.H.; Lee, D.; Shin, Y.; Park, S.H.; Roh, B.D.; Kim, D. Color and Translucency Stability of Three-Dimensional Printable Dental Materials for Crown and Bridge Restorations. Materials 2021, 14, 650. [Google Scholar] [CrossRef]
- Gad, M.M.; Al-Harbi, F.A.; Akhtar, S.; Fouda, S.M. 3D-Printable Denture Base Resin Containing SiO2 Nanoparticles: An In Vitro Analysis of Mechanical and Surface Properties. J. Prosthodont. 2022. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material. J. Mech. Behav. Biomed. Mater. 2021, 115, 104254. [Google Scholar] [CrossRef]
- Aati, S.; Akram, Z.; Shrestha, B.; Patel, J.; Shih, B.; Shearston, K.; Ngo, H.; Fawzy, A. Effect of post-curing light exposure time on the physico-mechanical properties and cytotoxicity of 3D-printed denture base material. Dent Mater. 2022, 38, 57–67. [Google Scholar] [CrossRef]
- Bayarsaikhan, E.; Lim, J.H.; Shin, S.H.; Park, K.H.; Park, Y.B.; Lee, J.H.; Kim, J.E. Effects of Postcuring Temperature on the Mechanical Properties and Biocompatibility of Three-Dimensional Printed Dental Resin Material. Polymers 2021, 13, 1180. [Google Scholar] [CrossRef]
Material Brand Name/Printers/Printing Technology | Composition | Printing Parameters | Post Printing Conditions | ||||
---|---|---|---|---|---|---|---|
Layer Thickness | Orientations | Light Source/Intensity | Rinsing/ Cleaning | Post Curing Machine | Post Curing Time/Temperature | ||
NextDent Denture 3D+/ NextDent 5100 3D NextDent B.V/ Stereolithography | Methacrylic oligomers, methacrylate monomer, inorganic filler, phosphine oxides, pigments | 50 µm | 90° | Blue UV-A 405 nm | Isopropyl alcohol 99.9%, | LC-D Print Box, 3D systems, Vertex Dental B.V., Soesterberg, Netherland | 10 min/60 °C |
Denture base OP resin, FormLabs/ Form 3+ Formlabs/ Stereolithography | Biocompatible photopolymer resin | 50 µm | 90° | UV laser 405 nm, 120 mW | Isopropyl alcohol 99.9%, | FormCure (Formlabs Form Cure) | 15 min/60 °C |
ASIGA DentaBASE, ASIGA MAX UV/ ASIGA, Erfurt, Germany/ Digital light processing (DLP) | Polymer | 50 µm | 90° | UV LED (385 nm–405 nm | Isopropyl alcohol 99.9%, | Asiga Flash UV Curing Chamber | 15 min/80 °C |
Property | Thermal Cycling Effect | Materials Mean (SD) | ANOVA F- and p-Values | |||
---|---|---|---|---|---|---|
Control | NextDent | FormLabs | Asiga | |||
Water Sorption (µg/mm3) | Before | 16.1(1.1) | 19.83(1.2) a | 17.86(0.83) | 20.1(1.2) a | F = 29.262 p = 0.000 * |
After | 21.1(1.3) | 25.99(1.3) a | 25.92(1.2) a | 24.64(0.98) a | F = 38.015 p = 0.000 * | |
p value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | ||
Solubility (µg/mm3) | Before | 0.53(0.1) | 1.09(0.2) a | 0.94(0.12) a | 1.01(0.1) a | F = 30.149 p = 0.000 * |
After | 1.53(0.07) a | 1.5(0.2) a | 1.4(0.24) a | 1.16(0.14) | F = 10.274 p = 0.000 * | |
p value | 0.000 * | 0.000 * | 0.000 * | 0.017 * | ||
Translucency | Before | 11.09(1.1) | 7.18(0.87) | 9.14(0.98) a | 8.78(0.74) a | F = 29.326 p = 0.000 * |
After | 8.38(0.96) | 3.62(0.74) | 6.29(0.71) a | 6.09(0.5) a | F = 68.002 p = 0.000 * | |
p value | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Properties | Variables | Type III Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Water Sorption (µg/mm3) | Materials | 229.884 | 3 | 76.628 | 58.555 | 0.000 * |
Thermocycling effect | 707.455 | 1 | 707.455 | 540.600 | 0.000 * | |
Materials × thermocycling | 36.850 | 3 | 12.283 | 9.386 | 0.000 * | |
Error | 94.223 | 72 | 1.309 | |||
Total | 37,813.148 | 80 | ||||
Solubility (µg/mm3) | Materials | 0.805 | 3 | 0.268 | 11.072 | 0.000 * |
Thermocycling effect | 5.050 | 1 | 5.050 | 208.482 | 0.000 * | |
Materials × thermocycling | 1.939 | 3 | 0.646 | 26.681 | 0.000 * | |
Error | 1.744 | 72 | 0.024 | |||
Total | 113.962 | 80 | ||||
Translucency | Materials | 188.669 | 3 | 62.890 | 87.503 | 0.000 * |
Thermocycling effect | 174.434 | 1 | 174.434 | 242.701 | 0.000 * | |
Materials × thermocycling | 2.540 | 3 | 0.847 | 1.178 | 0.324 | |
Error | 51.748 | 72 | 0.719 | |||
Total | 5006.175 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022, 10, 42. https://doi.org/10.3390/dj10030042
Gad MM, Alshehri SZ, Alhamid SA, Albarrak A, Khan SQ, Alshahrani FA, Alqarawi FK. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dentistry Journal. 2022; 10(3):42. https://doi.org/10.3390/dj10030042
Chicago/Turabian StyleGad, Mohammed M., Saleh Z. Alshehri, Shahad A. Alhamid, Alanoud Albarrak, Soban Q. Khan, Faris A. Alshahrani, and Firas K. Alqarawi. 2022. "Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins" Dentistry Journal 10, no. 3: 42. https://doi.org/10.3390/dj10030042
APA StyleGad, M. M., Alshehri, S. Z., Alhamid, S. A., Albarrak, A., Khan, S. Q., Alshahrani, F. A., & Alqarawi, F. K. (2022). Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dentistry Journal, 10(3), 42. https://doi.org/10.3390/dj10030042