Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Products Tested
2.2. Specimen Preparation of Dental Enamel
2.3. Specimen Preparation of Dental Dentin
2.4. Characterization of the Enamel and Dentin Surfaces and Cross-Sections via Scanning Electron Microscopy (SEM) Imaging Observation and Energy-Dispersive X-ray Spectroscopy (EDS)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, M.L.; Zheng, G.; Zhang, Y.D.; Yan, X.; Li, X.C.; Lin, H. Effect of desensitizing toothpastes on dentine hypersensitivity: A systematic review and meta-analysis. J. Dent. 2018, 75, 12–21. [Google Scholar] [CrossRef]
- Arnold, W.H.; Gröger, C.; Bizhang, M.; Naumova, E.A. Dentin abrasivity of various desensitizing toothpastes. Head Face Med. 2016, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso Cde, A.; Lacerda, B.; Mangueira, D.F.; Charone, S.; Olympio, K.P.; Magalhaes, A.C.; Pessan, J.P.; Vilhena, F.V.; Sampaio, F.C.; Buzalaf, M.A.R. Mechanisms of action of fluoridated acidic liquid dentifrices against dental caries. Arch. Oral Biol. 2015, 60, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Kraivaphan, P.; Amornchat, C. Comparative clinical efficacy of three toothpastes in the control of supragingival calculus formation. Eur. J. Dent. 2017, 11, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet-Regí, M.; Arcos, D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005, 15, 1509–1516. [Google Scholar] [CrossRef]
- Cacciotti, I. Cationic and Anionic Substitutions in Hydroxyapatite. In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–211. [Google Scholar]
- Cury, J.A.; Tenuta, L.M.A. Enamel remineralization: Controlling the caries disease or treating early caries lesions? Braz. Oral Res. 2009, 23, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Palard, M.; Champion, E.; Foucaud, S. Synthesis of silicated hydroxyapatite Ca10(PO4)6-x(SiO4)x(OH)2-x. J. Solid State Chem. 2008, 181, 1950–1960. [Google Scholar] [CrossRef]
- Yao, F.; LeGeros, J.P.; LeGeros, R.Z. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties. Acta Biomater. 2009, 5, 2169–2177. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Ottolenghi, L.; Gaillard, C.; Bourgeois, D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Vilhena, F.V.; de Oliveira, S.M.L.; Matochek, M.H.M.; Tomaz, P.L.S.; Oliveira, T.S.; D’Alpino, P.H.P. Biomimetic Mechanism of Action of Fluoridated Toothpaste Containing Proprietary REFIX Technology on the Remineralization and Repair of Demineralized Dental Tissues: An In Vitro Study. Eur. J. Dent. 2021, 15, 236–241. [Google Scholar] [CrossRef]
- Zanatta, R.F.; Avila, D.; Maia, M.M.; Viana, I.E.L.; Scaramucci, T.; Torres, C.R.G.; Borges, A.B. Protection of calcium silicate/sodium phosphate/fluoride toothpaste with serum on enamel and dentin erosive wear. J. Appl. Oral Sci. 2021, 29, e20210081. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Buzalaf, M.A.R.; Duangthip, D.; Anttonen, V.; Ganss, C.; João-Souza, S.H.; Baumann, T.; Carvalho, T.S. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur. Arch. Paediatr. Dent. 2019, 20, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, R.F.; Caneppele, T.M.F.; Scaramucci, T.; El Dib, R.; Maia, L.C.; Ferreira, D.; Borges, A.B. Protective effect of fluorides on erosion and erosion/abrasion in enamel: A systematic review and meta-analysis of randomized in situ trials. Arch. Oral Biol. 2020, 120, 104945. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, G.; Gug, H.; Lee, J.H.; Park, S.J.; Park, J.C. Desensitizing toothpastes for dentin sealing and tertiary dentin formation in vitro and in vivo: A comparative analysis. BMC Oral Health 2022, 22, 483. [Google Scholar] [CrossRef]
- Fontana, M. Enhancing fluoride: Clinical human studies of alternatives or boosters for caries management. Caries Res. 2016, 50 (Suppl. S1), 22–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Bioactive materials for caries management: A literature review. Dent. J. 2023, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, N.J.; Cai, F.; Huq, N.L.; Burrow, M.F.; Reynolds, E.C. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 2010, 89, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; Klimek, J.; Starck, C. Quantitative analysis of the impact of the organic matrix on the fluoride effect on erosion progression in human dentine using longitudinal microradiography. Arch. Oral Biol. 2004, 49, 931–935. [Google Scholar] [CrossRef]
- Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef]
- Delbem, A.C.B.; Pessan, J.P. Alternatives to enhance the anticaries effects of fluoride. In Pediatric Restorative Dentistry; Coelho Leal, S., Takeshita, E.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 75–92. [Google Scholar]
- Addy, M.; West, N.X. The role of toothpaste in the aetiology and treatment of dentine hypersensitivity. Monogr. Oral Sci. 2013, 23, 75–87. [Google Scholar]
- Moron, B.M.; Miyazaki, S.S.; Ito, N.; Wiegand, A.; Vilhena, F.; Buzalaf, M.A.; Magalhães, A.C. Impact of different fluoride concentrations and pH of dentifrices on tooth erosion/abrasion in vitro. Aust. Dent. J. 2013, 58, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, P.L.S.; Sousa, L.A.; Aguiar, K.F.; Oliveira, T.S.; Matochek, M.H.M.; Polassi, M.R.; D’Alpino, P.H.P. Effects of 1450-ppm fluoride-containing toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. Eur. J. Dent. 2020, 14, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Vilhena, F.V.; Polassi, M.R.; Paloco, E.A.C.; Alonso, R.C.; Guiraldo, R.D.; D’Alpino, P.H. Effectiveness of toothpaste containing REFIX technology against dentin hypersensitivity: A randomized clinical study. J. Contemp. Dent. Pract. 2020, 21, 609–614. [Google Scholar] [CrossRef]
- Zangrando, M.S.R.; Silva, G.F.F.; Bigotto, M.L.B.; Cintra, F.M.R.N.; Damante, C.A.; Sant’Ana, A.C.P.; Vilhena, F.V. Blocking tubules technologies for dentin hypersensitivity in periodontal patients—Pilot study. Res. Soc. Dev. 2021, 10, e35101320398. [Google Scholar] [CrossRef]
- Reis, A.L.M.; dos Reis, M.C.; Mazzola, T.; Pegoraro, J.V.C.; De Lima, D.C.; Fernandes, L.A. A novel clinical protocol for dentin hypersensitivity management based on regenerative dental gel associated with calcium—A case study in a patient with periodontal disease. Int. J. Case Rep. Images 2023, 14, 70–74. [Google Scholar] [CrossRef]
- Ten Cate, J.M. Novel anticaries and remineralizing agents: Prospects for the future. J. Dent. Res. 2012, 91, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Amaechi, B.T.; Farah, R.; Liu, J.A.; Schulze zur Wiesche, E.; Meyer, F. Remineralization strategies for teeth with molar incisor hypomineralization (MIH): A literature review. Dent. J. 2023, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Vilhena, F.V.; Lonni, A.A.S.G.; D’Alpino, P.H.P. Silicon-enriched hydroxyapatite formed induced by REFIX-based toothpaste on the enamel surface. Braz. Dent. Sci. 2021, 24 (Suppl. 1), e3114. [Google Scholar] [CrossRef]
- Purk, J.H. 8—Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In Material-Tissue Interfacial Phenomena; Spencer, P., Misra, A., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 205–229. [Google Scholar]
- Ye, X.; Zhou, Y.; Sun, Y.; Chen, J.; Wang, Z. Structure and infrared emissivity of collagen/SiO2 composite. Appl. Surf. Sci. 2008, 254, 5975–5980. [Google Scholar] [CrossRef]
- Liufu, S.-C.; Xiao, H.-N.; Li, Y.-P. Adsorption of MA–Na copolymer at the ZnO-aqueous solution interface. Mater. Chem. Phys. 2006, 95, 117–121. [Google Scholar] [CrossRef]
- Febriani, M.; Amelia, H.; Alawiyah, T.; Rachmawati, E. The Potential of Hydroxyapatite Toothpaste towards the Hypersensitive Tooth. Int. J. Med. Sci. Clin. Inventig. 2021, 8, 5849–5857. [Google Scholar] [CrossRef]
- Roveri, N.; Battistella, E.; Foltran, I.; Foresti, E.; Iafisco, M.; Lelli, M.; Palazzo, B.; Rimondini, L. Synthetic Biomimetic Carbonate-Hydroxyapatite Nanocrystals for Enamel Remineralization. Adv. Mater. Res. 2008, 47–50, 821–824. [Google Scholar] [CrossRef]
Dentifrice | Composition | pH ** |
---|---|---|
Regenerador Sentitive | 1450 ppm sodium fluoride, glycerin, silica, sorbitol, sodium lauryl sulfate, aqua, aroma, PEF-12, cellulose gum, phosphoric acid, xylitol, tetrasodium pyrophosphate, sodium saccharin, triclosan, menthol, mica, sodium benzoate, REFIX Technology. | 4.7 |
Calcium Booster | Dentifrice containing 5% calcium mix (calcium carbonate, tricalcium phosphate), silica, glycerin, CPC, saccharine, water). | 7.8 |
Dentin | Enamel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Untreated | Treated Immediate | Treated after 5 Days | Untreated | Treated Immediate | Treated after 5 Days | |||||||
Element * | W% | A% | W% | A% | W% | A% | W% | A% | W% | A% | W% | A% |
K L | - | - | 0.2 | 0.1 | - | - | - | - | 0.3 | 0.2 | 0.6 | 0.3 |
C K | 49.2 | 75.4 | 31.6 | 52.0 | 32.3 | 48.5 | - | - | 33.6 | 53.7 | 18.7 | 32.9 |
Ca L | 4.1 | 1.9 | 7.0 | 3.5 | 4.3 | 1.9 | 33.6 | 21.0 | 13.8 | 6.6 | 12.3 | 6.4 |
O K | 16.3 | 18.8 | 28.9 | 35.8 | 38.4 | 43.2 | 40.4 | 63.3 | 27.5 | 32.9 | 39.7 | 52.2 |
Na K | - | - | 0.1 | 0.1 | - | - | 0.4 | 0.5 | 0.5 | 0.4 | 1.1 | 1.0 |
Si K | - | - | 5.5 | 3.9 | 5.8 | 3.7 | - | - | 0.6 | 0.4 | 2.2 | 1.6 |
P K | 2.2 | 1.3 | 3.7 | 2.4 | 1.7 | 1.0 | 17.2 | 13.9 | 6.3 | 3.9 | 5.9 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhena, F.V.; Grecco, S.d.S.; González, A.H.M.; D’Alpino, P.H.P. Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dent. J. 2023, 11, 153. https://doi.org/10.3390/dj11060153
Vilhena FV, Grecco SdS, González AHM, D’Alpino PHP. Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dentistry Journal. 2023; 11(6):153. https://doi.org/10.3390/dj11060153
Chicago/Turabian StyleVilhena, Fabiano Vieira, Simone dos Santos Grecco, Alejandra Hortencia Miranda González, and Paulo Henrique Perlatti D’Alpino. 2023. "Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study" Dentistry Journal 11, no. 6: 153. https://doi.org/10.3390/dj11060153
APA StyleVilhena, F. V., Grecco, S. d. S., González, A. H. M., & D’Alpino, P. H. P. (2023). Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dentistry Journal, 11(6), 153. https://doi.org/10.3390/dj11060153