The Effects of the Myobrace® System on Peripheral Blood Oxygen Saturation (SpO2) in Patients with Mixed Dentition with Oral Dysfunction
Abstract
:1. Introduction
Myofunctional Therapy in Breathing Disorders
2. Materials and Methods
Device Description
- The J (junior) series: Used during the primary dentition, and therefore approximately between 2 and 5 years of age. This device corrects oral dysfunctions by promoting correct chewing and nasal breathing.
- The K (kids) series: Used in the mixed-dentition phase, approximately between 6 and 10 years of age. It is particularly indicated in cases of dental crowding, for the correction of open bites and deep bites due to oral dysfunction habits.
- The T Series, for teens: Used during the development phase of permanent teeth, roughly between 11 and 15 years of age. Its objective is to promote the correct development of the dental arches and the alignment of the teeth.
- A series, for adults: Used after age 16 and for adults. This type of device is indicated to correct many types of dental malocclusions and related problems such as TMJD, joint clicks, speech problems, or snoring.
- Series I-3: used in the early mixed-dentition stage to intercept class-III dental malocclusions.
3. Results
Statistical Analysis
4. Discussion
5. Limitations
6. Conclusions
- -
- The mandibular advancement caused by the device, with an immediate increase in the upper airway.
- -
- An increase in the PAS that is comparable to the effects of the MAD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambi-Rocha, A.; Cabrera-Domínguez, M.E.; Domínguez-Reyes, A. Breathing mode influence on craniofacial development and head posture. J. Pediatr. 2018, 94, 123–130. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, V.A.; Leal, R.B.; Pessoa, R.S.; Pontes, R.M. Prevalence and factors related to mouth breathing in school children at the Santo Amaro project-Recife, 2005. Braz. J. Otorhinolaryngol. 2006, 72, 394–399. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, L. Oral dysfunction as a cause of malocclusion. Orthod. Craniofac. Res. 2019, 22, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, J.M.; Berwig, L.C.; Marquezan, M.; Schuch, L.H.; Moraes, A.B.D.; Silva, A.M.T.D.; Corrêa, E.C.R. Variables associated with mouth breathing diagnosis in children based on a multidisciplinary assessment. Codas 2018, 30, e20170071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvold, E.P.; Tomer, B.S.; Vargervik, K.; Chierici, G. Primate experiments on oral respiration. Am. J. Orthod. 1981, 79, 359–372. [Google Scholar] [CrossRef]
- Woodside, D.G.; Linder-Aronson, S.; Lundstrom, A.; McWilliam, J. Mandibular and maxillary growth after changed mode of breathing. Am. J. Orthod. Dentofac. Orthop. 1991, 100, 1–18. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, T.; Qin, D.; Hua, F.; He, H. The impact of mouth breathing on dentofacial development: A concise review. Front. Public Health 2022, 10, 929165. [Google Scholar] [CrossRef]
- Jefferson, Y. Mouth breathing: Adverse effects on facial growth, health, academics, and behavior. Gen. Dent. 2010, 58, 18–25. [Google Scholar]
- Grippaudo, C.; Paolantonio, E.G.; Antonini, G.; Saulle, R.; La Torre, G.; Deli, R. Association between oral habits, mouth breathing and malocclusion. Acta Otorhinolaryngol. Ital. 2016, 36, 386–394. [Google Scholar] [CrossRef]
- Gasparini, G.; Azzuni, C.; Rinaldo, F.M.; Cervelli, D.; Marianetti, T.M.; Sferrazza, A.; Pelo, S. OSAS treatment with oral appliance: Assessment of our experience through the use of a new device. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 385–391. [Google Scholar]
- Santilli, M.; Manciocchi, E.; D’Addazio, G.; Di Maria, E.; D’attilio, M.; Femminella, B.; Sinjari, B. Prevalence of Obstructive Sleep Apnea Syndrome: A Single-Center Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 10277. [Google Scholar] [CrossRef]
- Reimão, R.; De Gouveia, M.M.; Pestana, M.C.; Lopes, S.R.; Papaiz, E.G.; Papaiz, L.F. Obstructive sleep apnea treatment with dental appliance. Arq. Neuropsiquiatr. 1994, 52, 560–565. [Google Scholar] [CrossRef]
- Van Dyck, C.; Dekeyser, A.; Vantricht, E.; Manders, E.; Goeleven, A.; Fieuws, S.; Willems, G. The effect of orofacial myofunctional treatment in children with anterior open bite and tongue dysfunction: A pilot study. Eur. J. Orthod. 2016, 38, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Usumez, S.; Uysal, T.; Sari, Z.; Basciftci, F.A.; Karaman, A.I.; Guray, E. The effects of early preorthodontic trainer treatment on Class II, division 1 patients. Angle Orthod. 2004, 74, 605–609. [Google Scholar]
- Johnson, J.S.; Satyaprasad, S.; Sharath Chandra, H.; Havaldar, K.S.; Raj, A.; Suresh, N. A Comparative Evaluation of the Dentoskeletal Treatment Effects Using Twin Block Appliance and Myobrace® System on Class II Division I Malocclusion. Int. J. Clin. Pediatr. Dent. 2021, 14, S10–S17. [Google Scholar] [CrossRef]
- Achmad, H.; Mutmainnah, N.; Ramadhany, Y.F. Management of Malocclusion in Children Using Myobrace® Appliance: A Systematic Review. Ann. Rom. Soc. Cell Biol. 2021, 25, 2120–2136. [Google Scholar]
- Du, X.; Hägg, U. Muscular adaptation to gradual advancement of the mandible. Angle Orthod. 2003, 73, 525–531. [Google Scholar]
- Sahlin, K. Muscle fatigue and lactic acid accumulation. Acta Physiol. Scand. Suppl. 1986, 556, 83–91. [Google Scholar]
- Stainsby, W.N.; Brechue, W.F.; O’Drobinak, D.M. Regulation of muscle lactate production. Med. Sci. Sports Exerc. 1991, 23, 907–911. [Google Scholar] [CrossRef]
- Yarom, R.; Meyer, S.; Carmy, O.; Ghidoni, B.; More, R. Enhancement of human muscle growth in diffusion chambers by bone marrow cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1982, 41, 171–180. [Google Scholar] [CrossRef]
- Juliano, M.L.; Machado, M.A.; De Carvalho, L.B.; Zancanella, E.; Santos, G.M.; Do Prado, L.B.; Do Prado, G.F. Polysomnographic findings are associated with cephalometric measurements in mouth-breathing children. J. Clin. Sleep Med. 2009, 5, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, M.; Caprioglio, A.; Calori, G.; Ferini-Strambi, L.; Oldani, A.; Castronovo, C.; Smirne, S. Craniofacial modifications in children with habitual snoring and obstructive sleep apnoea: A case-control study. Eur. Respir. J. 1999, 13, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proffit, W.R. Equilibrium theory revisited: Factors influencing position of the teeth. Angle Orthod. 1978, 48, 175–186. [Google Scholar] [PubMed]
- Knösel, M.; Klein, S.; Bleckmann, A.; Engelke, W. Coordination of tongue activity during swallowing in mouth-breathing children. Dysphagia 2012, 27, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Botzer, E.; Quinzi, V.; Salvati, S.E.; Coceani Paskay, L.; Saccomanno, S. Myofunctional therapy Part 3: Tongue function and breastfeeding as precursor of oronasal functions. Eur. J. Paediatr. Dent. 2021, 22, 248–250. [Google Scholar] [CrossRef]
- Valera, F.C.; Travitzki, L.V.; Mattar, S.E.; Matsumoto, M.A.; Elias, A.M.; Anselmo-Lima, W.T. Muscular, functional and orthodontic changes in pre school children with enlarged adenoids and tonsils. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 761–770. [Google Scholar] [CrossRef]
- Saccomanno, S.; Martini, C.; D’Alatri, L.; Farina, S.; Grippaudo, C. A specific protocol of myo-functional therapy in children with Down syndrome. A pilot study. Eur. J. Paediatr. Dent. 2018, 19, 243–246. [Google Scholar] [CrossRef]
- Ivanov, K.P. Circulation in the lungs and microcirculation in the alveoli. Respir. Physiol. Neurobiol. 2013, 187, 26–30. [Google Scholar] [CrossRef]
OXYGEN SATURATION | |||||
---|---|---|---|---|---|
Without Myobrace Mouth at Rest | Without Myobrace Closed Mouth | With Myobrace Mouth at Rest | With Myobrace Closed Mouth | ||
Patient 1 | K1 | 97 | 96 | 99 | 99 |
K2 | 98 | 97 | 100 | 100 | |
K3 | 98 | 98 | 100 | 100 | |
Patient 2 | K1 | 98 | 98 | 99 | 99 |
K2 | 98 | 98 | 99 | 100 | |
K3 | 100 | 99 | 100 | 100 | |
Patient 3 | K1 | 96 | 95 | 98 | 98 |
K2 | 96 | 96 | 100 | 99 | |
K3 | 97 | 97 | 100 | 100 | |
Patient 4 | K1 | 98 | 98 | 100 | 100 |
K2 | 99 | 98 | 100 | 100 | |
K3 | 100 | 99 | 100 | 100 | |
Patient 5 | K1 | 98 | 98 | 99 | 99 |
K2 | 98 | 99 | 100 | 100 | |
Patient 6 | K1 | 98 | 97 | 100 | 99 |
K2 | 98 | 98 | 99 | 99 | |
K3 | 100 | 99 | 100 | 100 | |
Patient 7 | K1 | 98 | 98 | 99 | 100 |
K2 | 100 | 100 | 99 | 100 | |
K3 | 100 | 99 | 100 | 100 | |
Patient 8 | K1 | 98 | 98 | 99 | 99 |
K2 | 99 | 99 | 100 | 99 | |
K3 | 100 | 100 | 100 | 100 | |
Patient 9 | K1 | 97 | 97 | 98 | 99 |
K2 | 98 | 97 | 99 | 99 | |
K3 | 99 | 99 | 100 | 100 | |
Patient 10 | K1 | 96 | 95 | 96 | 97 |
K2 | 97 | 97 | 98 | 98 | |
K3 | 98 | 97 | 99 | 99 | |
Patient 11 | K1 | 97 | 97 | 98 | 98 |
K2 | 98 | 97 | 98 | 98 | |
Patient 12 | K1 | 98 | 98 | 99 | 98 |
K2 | 99 | 99 | 100 | 100 | |
K3 | 99 | 98 | 100 | 99 | |
Patient 13 | K1 | 95 | 95 | 96 | 96 |
K2 | 97 | 97 | 98 | 99 | |
K3 | 98 | 98 | 99 | 100 | |
Patient 14 | K1 | 98 | 98 | 100 | 99 |
K2 | 99 | 99 | 100 | 100 | |
K3 | 100 | 99 | 100 | 100 | |
Patient 15 | K1 | 96 | 95 | 97 | 96 |
K2 | 97 | 97 | 99 | 99 | |
K3 | 98 | 98 | 100 | 100 | |
Patient 16 | K1 | 96 | 96 | 97 | 96 |
K2 | 97 | 97 | 99 | 98 | |
Patient 17 | K1 | 98 | 98 | 100 | 99 |
K2 | 99 | 99 | 100 | 99 | |
K3 | 100 | 100 | 100 | 100 | |
Patient 18 | K1 | 97 | 97 | 99 | 98 |
K2 | 99 | 98 | 100 | 98 | |
Patient 19 | K1 | 98 | 98 | 100 | 100 |
K2 | 100 | 99 | 100 | 100 | |
Patient 20 | K1 | 97 | 97 | 99 | 99 |
K2 | 99 | 97 | 100 | 99 | |
K3 | 98 | 98 | 100 | 100 | |
Patient 21 | K1 | 96 | 95 | 96 | 96 |
K2 | 97 | 97 | 99 | 99 | |
K3 | 98 | 97 | 100 | 100 | |
Patient 22 | K1 | 98 | 98 | 100 | 99 |
K2 | 100 | 100 | 100 | 99 | |
Patient 23 | K1 | 97 | 96 | 98 | 97 |
K2 | 98 | 97 | 98 | 98 |
Median of the Oximeter Values | |
---|---|
Baseline open mouth | 98 (2) |
Baseline closed mouth | 98 (2) |
Device open mouth | 100 (1) |
Device closed | 99 (1.25) |
With Myobrace vs. without Myobrace Significance | |
---|---|
Open mouth | p < 0.01 |
Closed mouth | p < 0.01 |
Mean of Oxygen Saturation Values | |
---|---|
Without Myobrace mouth at rest | 98.03 |
Without Myobrace closed mouth | 97.66 |
With Myobrace mouth at rest | 99.07 |
With Myobrace closed mouth | 99.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levrini, L.; Persano, R.; Piantanida, S.; Carganico, A.; Deppieri, A.; Naboni, G.; Mastrapasqua, R.F.; Saran, S. The Effects of the Myobrace® System on Peripheral Blood Oxygen Saturation (SpO2) in Patients with Mixed Dentition with Oral Dysfunction. Dent. J. 2023, 11, 191. https://doi.org/10.3390/dj11080191
Levrini L, Persano R, Piantanida S, Carganico A, Deppieri A, Naboni G, Mastrapasqua RF, Saran S. The Effects of the Myobrace® System on Peripheral Blood Oxygen Saturation (SpO2) in Patients with Mixed Dentition with Oral Dysfunction. Dentistry Journal. 2023; 11(8):191. https://doi.org/10.3390/dj11080191
Chicago/Turabian StyleLevrini, Luca, Roberta Persano, Sofia Piantanida, Andrea Carganico, Alessandro Deppieri, Giulia Naboni, Rodolfo Francesco Mastrapasqua, and Stefano Saran. 2023. "The Effects of the Myobrace® System on Peripheral Blood Oxygen Saturation (SpO2) in Patients with Mixed Dentition with Oral Dysfunction" Dentistry Journal 11, no. 8: 191. https://doi.org/10.3390/dj11080191
APA StyleLevrini, L., Persano, R., Piantanida, S., Carganico, A., Deppieri, A., Naboni, G., Mastrapasqua, R. F., & Saran, S. (2023). The Effects of the Myobrace® System on Peripheral Blood Oxygen Saturation (SpO2) in Patients with Mixed Dentition with Oral Dysfunction. Dentistry Journal, 11(8), 191. https://doi.org/10.3390/dj11080191