Analysis of the Pulpal Blood Flow Microdynamics during Prosthetic Tooth Preparation Using Diamond Burs with Different Degrees of Wear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection, and Ethical Aspects
2.2. Study Design
2.3. Materials and Study Protocol
- Gr. A (n = 16): selected to be prepared with new burs (first use);
- Gr. B (n = 16): selected to be prepared with burs at their fifth use;
2.4. LDF Device
2.5. The Study Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
Study Limitations and Future Perspectives
5. Conclusions
- −
- A significant increase in pulpal blood flow, immediately and especially at 24 h post-preparation, both when using new burs and those at their 5th use;
- −
- The PBF values recorded at 7 days exhibit a significantly high decrease compared to the values recorded at 24 h, yet they remain significantly higher than the baseline values;
- −
- Preparing teeth with burs with a certain degree of wear (on the 5th use) leads to a more significant increase in pulpal blood flow than that recorded after using new burs;
- −
- The mandibular teeth exhibited a more pronounced increase in PBF immediately after preparation compared to the maxillary teeth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitt Ford, T.R.; Patel, S. Technical Equipment for Assessment of Dental Pulp Status. Endod. Top. 2004, 7, 2–13. [Google Scholar] [CrossRef]
- Yavorek, A. The Influence of Full-Coverage Restorations on Pulp Vitality: A Ten-Year Retrospective Study. Master’s Thesis, Faculty of the Graduate School, Marquette University, Milwaukee, WI, USA, 2019; p. 522. [Google Scholar]
- Matos, F.D.S.; Cunha, T.C.; Ribeiro, M.A.G.; Araujo, C.S.; Bernardino, Í.D.M.; Moura, C.C.G.; Paranhos, L.R. Accuracy of the Dental Pulp Sensibility Test Using Cold Spray for the Diagnosis of Pulp Diseases: An Observational Clinical Study. Biosci. J. 2021, 37, e37040. [Google Scholar] [CrossRef]
- Patro, S.; Meto, A.; Mohanty, A.; Chopra, V.; Miglani, S.; Das, A.; Luke, A.M.; Hadi, D.A.; Meto, A.; Fiorillo, L.; et al. Diagnostic Accuracy of Pulp Vitality Tests and Pulp Sensibility Tests for Assessing Pulpal Health in Permanent Teeth: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9599. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Abbott, P.V. Dental Pulp Testing: A Review. Int. J. Dent. 2009, 2009, 365785. [Google Scholar] [CrossRef] [PubMed]
- Gazelius, B.; Olgart, L.; Edwall, B.; Edwall, L. Non-invasive Recording of Blood Flow in Human Dental Pulp. Dent. Traumatol. 1986, 2, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Alghaithy, R.A.; Qualtrough, A.J.E. Pulp Sensibility and Vitality Tests for Diagnosing Pulpal Health in Permanent Teeth: A Critical Review. Int. Endod. J. 2017, 50, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ghouth, N.; Duggal, M.S.; BaniHani, A.; Nazzal, H. The Diagnostic Accuracy of Laser Doppler Flowmetry in Assessing Pulp Blood Flow in Permanent Teeth: A Systematic Review. Dent. Traumatol. 2018, 34, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Miron, M.; Dodenciu, D.; Sarbescu, P.; Filip, L.; Balabuc, C.; Hanigovski, E.; Todea, C. Optimization of the Laser Doppler Signal Acquisition Technique in Pulp Vitality Tests. Arch. Balk. Med. Union 2011, 46, 280–284. [Google Scholar]
- Todea, C.; Canjau, S.; Miron, M.; Vitez, B.; Noditi, G. Laser Doppler Flowmetry Evaluation of the Microcirculation in Dentistry. IntechOpen 2016, 11, 203–230. [Google Scholar] [CrossRef]
- Belcheva, A.; Shindova, M.; Hanna, R. Efficacy of Laser Doppler Flowmetry, as a Diagnostic Tool in Assessing Pulp Vitality of Traumatised Teeth: A Split Mouth Clinical Study. J. Pers. Med. 2021, 11, 801. [Google Scholar] [CrossRef]
- Ghouth, N.; Duggal, M.S.; Kang, J.; Nazzal, H. A Diagnostic Accuracy Study of Laser Doppler Flowmetry for the Assessment of Pulpal Status in Children’s Permanent Incisor Teeth. J. Endod. 2019, 45, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Roeykens, H.J.J.; De Moor, R.J.G. Diurnal Variations and Pulpal Status: Is There a Need for FFT besides LDF? Lasers Med. Sci. 2018, 33, 1891–1900. [Google Scholar] [CrossRef]
- Ersahan, S.; Sabuncuoglu, F.A.; Oktay, E.A. The Efficacy of Laser Doppler Flowmetry, Electric Pulp Test and Cold Test in Diagnosing Revascularization of Extrusively Luxated Immature Maxillary Incisors. Pakistan J. Med. Sci. 2018, 34, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Abu Alhaija, E.S.; Taha, N.A. A Comparative Study of Initial Changes in Pulpal Blood Flow between Conventional and Self-Ligating Fixed Orthodontic Brackets during Leveling and Alignment Stage. Clin. Oral Investig. 2021, 25, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, L.; Birk, L.; Birk, L.; Cankar, K. Laser-Doppler Microvascular Flow of Dental Pulp in Relation to Caries Progression. Lasers Med. Sci. 2022, 37, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Miron, M.; Lungeanu, D.; Ciora, E.; Ogodescu, E.; Todea, C. Using Laser-Doppler Flowmetry to Evaluate the Therapeutic Response in Dentin Hypersensitivity. Int. J. Environ. Res. Public Health 2020, 17, 8787. [Google Scholar] [CrossRef] [PubMed]
- Song, X.F.; Jin, C.X.; Yin, L. Quantitative Assessment of the Enamel Machinability in Tooth Preparation with Dental Diamond Burs. J. Mech. Behav. Biomed. Mater. 2015, 41, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Emir, F.; Ayyildiz, S.; Sahin, C. What Is the Changing Frequency of Diamond Burs? J. Adv. Prosthodont. 2018, 10, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Yi, J.; Kim, S.; Shim, J.S.; Lee, K.W. Changes in the Cutting Efficiency of Different Types of Dental Diamond Rotary Instrument with Repeated Cuts and Disinfection. J. Prosthet. Dent. 2014, 111, 64–70. [Google Scholar] [CrossRef]
- Pilcher, E.S.; Tietge, J.D.; Draughn, R.A. Comparison of Cutting Rates among Single-Patient-Use and Multiple-Patient-Use Diamond Burs. J. Prosthodont. 2000, 9, 66–70. [Google Scholar] [CrossRef]
- Fathima, T.; Sasanka, K.; Ezhilarasan, D. Surface Characteristics of Tooth and Effectiveness of Diamond Points: A Systematic Review. Int. J. Res. Reports Dent. 2024, 7, 1–6. [Google Scholar]
- Zach, L.; Cohen, G. Pulp Response to Externally Applied Heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Lau, X.E.; Liu, X.; Chua, H.; Wang, W.J.; Dias, M.; Choi, J.J.E. Heat Generated during Dental Treatments Affecting Intrapulpal Temperature: A Review. Clin. Oral Investig. 2023, 27, 2277–2297. [Google Scholar] [CrossRef]
- Ramoglu, S.I.; Karamehmetoglu, H.; Sari, T.; Usumez, S. Temperature Rise Caused in the Pulp Chamber under Simulated Intrapulpal Microcirculation with Different Light-Curing Modes. Angle Orthod. 2015, 85, 381–385. [Google Scholar] [CrossRef]
- Kim, S.; Dörscher-Kim, J.; Liu, M.; Grayson, A. Functional Alterations in Pulpal Microcirculation in Response to Various Dental Procedures and Materials. Proc. Finnish Dent. Soc. 1992, 88, 65–71. [Google Scholar]
- Zöllner, A.; Gaengler, P. Pulp Reactions to Different Preparation Techniques on Teeth Exhibiting Periodontal Disease. J. Oral Rehabil. 2000, 27, 93–102. [Google Scholar] [CrossRef]
- Berani, R.; Sveqla, M. Remaining Dentine Thickness Following Tooth Preparation and Its Impact on Dentine—Pulp Complex. Int. J. Bus. Technol. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Barallat, L.; Arregui, M.; Fernandez-Villar, S.; Paniagua, B.; Rocca, A.P.L. Fracture Resistance in Non-Vital Teeth: Absence of Interproximal Ferrule and Influence of Preparation Depth in CAD/CAM Endocrown Overlays—An In Vitro Study. Materials 2022, 15, 436. [Google Scholar] [CrossRef]
- Galindo, D.F.; Ercoli, C.; Funkenbusch, P.D.; Greene, T.D.; Moss, M.E.; Lee, H.J.; Ben-Hanan, U.; Graser, G.N.; Barzilay, I. Tooth Preparation: A Study on the Effect of Different Variables and a Comparison between Conventional and Channeled Diamond Burs. J. Prosthodont. 2004, 13, 3–16. [Google Scholar] [CrossRef]
- Farah, R.I. Effect of Simulated Pulpal Blood Flow Rate on the Rise in Pulp Chamber Temperature during Direct Fabrication of Exothermic Provisional Restorations. Int. Endod. J. 2017, 50, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Chua, H.; Choi, J.J.E.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. The Cooling Efficiency of Different Dental High-Speed Handpiece Coolant Port Designs. Heliyon 2019, 5, e02185. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Choi, J.J.E.; Uy, C.E.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. Real-Time Pulp Temperature Change at Different Tooth Sites during Fabrication of Temporary Resin Crowns. Heliyon 2019, 5, e02971. [Google Scholar] [CrossRef] [PubMed]
- Park, H.N.; Lim, Y.J.; Yi, W.J.; Han, J.S.; Lee, S.P. A Comparison of the Accuracy of Intraoral Scanners Using an Intraoral Environment Simulator. J. Adv. Prosthodont. 2018, 10, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Katsuda, Y.; Ankyu, S.; Harada, A.; Tenkumo, T.; Kanno, T.; Niwano, Y.; Egusa, H.; Milleding, P.; Örtengren, U. Cutting Efficiency of Diamond Burs Operated with Electric High-Speed Dental Handpiece on Zirconia. Eur. J. Oral Sci. 2015, 123, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Uğur-Aydın, Z.; Kılınç, H.; Akbaş, Y.; Usta, S.N. Evaluation of the Effect of Different Desensitizers on Pulpal Blood Flow after Full Crown Preparation Using Laser Doppler Flowmetry: A Randomized Clinical Trial. Odontology 2024, 112, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Sukapattee, M.; Wanachantararak, S.; Sirimaharaj, V.; Vongsavan, N.; Matthews, B. Effect of Full Crown Preparation on Pulpal Blood Flow in Man. Arch. Oral Biol. 2016, 70, 111–116. [Google Scholar] [CrossRef]
- Gumus, H.; Kocaagaoglu, H.; Sagsen, B.; Albayrak, H.; Aslan, T. Prevalence of Pulp Exposures during Tooth Preparation for Fixed Prosthetics. Eur. J. Prosthodont. 2014, 2, 48. [Google Scholar] [CrossRef]
- Loi, I.; Di Felice, A. Biologically Oriented Preparation Technique (BOPT): A New Approach for Prosthetic Restoration of Periodontically Healthy Teeth. Eur. J. Esthet. Dent. 2013, 8, 10–23. [Google Scholar]
- Jasim, H.H.; Findakly, M.B.; Mahdi, N.A.; Mutar, M.T. Effect of Reduced Occlusal Thickness with Two Margin Designs on Fracture Resistance of Monolithic Zirconia Crowns. Eur. J. Dent. 2020, 14, 245–249. [Google Scholar] [CrossRef]
- Nakamura, K.; Harada, A.; Inagaki, R.; Kanno, T.; Niwano, Y.; Milleding, P.; Örtengren, U. Fracture Resistance of Monolithic Zirconia Molar Crowns with Reduced Thickness. Acta Odontol. Scand. 2015, 73, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Hey, J.; Schweyen, R.; Kupfer, P.; Beuer, F. Influence of Preparation Design on the Quality of Tooth Preparation in Preclinical Dental Education. J. Dent. Sci. 2017, 12, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Skjold, A.; Schriwer, C.; Øilo, M. Effect of Margin Design on Fracture Load of Zirconia Crowns. Eur. J. Oral Sci. 2019, 127, 89–96. [Google Scholar] [CrossRef]
- Blair, F.M.; Wassell, R.W.; Steele, J.G. Crowns and Other Extra-Coronal Restorations: Preparations for Full Veneer Crowns. Br. Dent. J. 2002, 192, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.I. Effect of Cooling Water Temperature on the Temperature Changes in Pulp Chamber and at Handpiece Head during High-Speed Tooth Preparation. Restor. Dent. Endod. 2019, 44, e3. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Sun, J. Effect of the Spray Pattern, Water Flow Rate, and Cutting Position on the Cutting Efficiency of High-Speed Dental Handpieces. Int. J. Prosthodont. 2013, 26, 85–87. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Alsahafi, T.; Wallet, S.M.; Vasconcellos, A. Performance and Efficacy of a Recently Introduced Diamond Rotary Instrument: Cutting, Surface Preparation, and Cleanability. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef]
- Gonzaga, C.; Falcão Spina, D.; De Paiva Bertoli, F.; Feres, R.; Franco Fernandes, A.; Da Cunha, L. Cutting Efficiency of Different Diamond Burs after Repeated Cuts and Sterilization Cycles in Autoclave. Indian J. Dent. Res. 2019, 30, 915–919. [Google Scholar] [CrossRef]
- Thomas, M.S.; Kundabala, M. Pulp Hyperthermia during Tooth Preparation: The Effect of Rotary—Instruments, Lasers, Ultrasonic Devices, and Airborne Particle Abrasion. J. Calif. Dent. Assoc. 2012, 40, 720–731. [Google Scholar] [CrossRef]
- Ciora, E.; Miron, M.; Bojoga, D.; Lungeanu, D.; Jivanescu, A. Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study. Dent. J. 2023, 11, 197. [Google Scholar] [CrossRef]
Group | Diamond Burs’ Wear | Sample Size | Teeth | |
---|---|---|---|---|
A | New | N = 16 | upper jaw | N = 10 |
mandible | N = 6 | |||
B | Fifth use | N = 16 | upper jaw | N = 10 |
mandible | N = 6 |
Burs Wear | Tooth Location | Tooth Number | Baseline | After Preparation | 24 h | 7 Days |
---|---|---|---|---|---|---|
New | ||||||
upper jaw | 13 (N = 2) | 5.45 ± 1.05 | 8.65 ± 1.3 | 8.25 ±1.2 | 6.7 ± 0.9 | |
12 (N = 4) | 8.95 ± 1.42 | 9.62 ± 1.75 | 12.2 ± 1.97 | 9.7 ± 1.42 | ||
11 (N = 4) | 10.12 ± 1.82 | 12.87 ± 1.95 | 14.2 ± 2.15 | 11.27 ± 1.85 | ||
Total N = 10 | 8.17 ± 1.43 | 10.38 ± 1.66 | 11.55 ± 1.77 | 9.22 ± 1.39 | ||
mandible | 43 (N = 2) | 5.3 ± 0.8 | 7.35 ± 1.05 | 9.45 ± 2.1 | 7.05 ± 1 | |
42 (N = 2) | 4.05 ± 0.75 | 7.9 ± 1 | 8.85 ± 1.05 | 6.8 ± 1.35 | ||
41 (N = 2) | 3.5 ± 0.7 | 6.65 ± 1.05 | 7.25 ± 1.2 | 4.85 ± 0.85 | ||
Total N = 6 | 4.28 ± 0.75 | 7.3 ± 1.03 | 8.51 ± 1.45 | 6.23 ± 1.06 | ||
5th use | ||||||
upper jaw | 21 (N = 4) | 7.67 ± 1.45 | 12.35 ± 2.15 | 12.92 ± 2.02 | 9.2 ± 1.4 | |
22 (N = 4) | 8.87 ± 1.47 | 13.65 ± 2.5 | 13.75 ± 2.12 | 11.25 ± 1.6 | ||
23 (N = 2) | 6.7 ± 1.2 | 11 ± 1.9 | 12.45 ± 1.9 | 10.2 ± 1.7 | ||
Total N = 10 | 7.74 ± 1.37 | 12.33 ± 2.18 | 13.04 ± 2.01 | 10.21 ± 1.56 | ||
mandible | 31 (N = 2) | 5.3 ± 0.9 | 10 ± 1.85 | 10.45 ± 1.5 | 7.8 ± 1.35 | |
32 (N = 2) | 5 ± 0.95 | 8.05 ± 1.6 | 8.1 ± 1 | 7.75 ± 1.1 | ||
33 (N = 2) | 5.4 ± 0.9 | 9.15 ± 1.25 | 10.1 ± 1.15 | 8.1 ± 1.1 | ||
Total N = 6 | 5.23 ± 0.91 | 9.06 ± 1.56 | 9.55 ± 1.21 | 7.88 ± 1.18 |
Factor | F-Statistic (df) | p-Value | |
---|---|---|---|
Main effects | Time of measurement | 20.146 (3) | <0.001 ** |
Burs’ wear | 6.492 (1) | 0.013 * | |
Tooth location | 55.541 (1) | <0.001 ** | |
Tooth number | 2.038 (2) | 0.137 | |
Two-way interactions | Time * burs | 0.427 (3) | 0.734 |
Time * location | 0.188 (3) | 0.904 | |
Time * tooth | 0.164 (6) | 0.985 | |
Burs * location | 0.393 (1) | 0.532 | |
Burs * tooth | 0.774 (2) | 0.465 | |
Location * tooth | 6.268 (2) | 0.003 ** | |
Three-way interaction | Time * burs * location | 0.197 (3) | 0.898 |
Time * burs * tooth | 0.108 (6) | 0.995 | |
Time * location * tooth | 0.087 (6) | 0.997 | |
Burs * location * tooth | 5.479 (2) | 0.006 ** | |
Four-way interaction | Time * burs * location * tooth | 0.140 (6) | 0.990 |
Model | 3.902 (47) | <0.001 ** |
Comparisons (Tukey Procedure) | p-Value | |
---|---|---|
Time of measurement | Baseline vs. After preparation | <0.001 ** |
Baseline vs. 24 h | <0.001 ** | |
Baseline vs. 7 days | 0.008 ** | |
After preparation vs. 24 h | 0.636 | |
After preparation vs. 7 days | 0.015 * | |
24 h vs. 7 days | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciora, E.; Miron, M.; Lungeanu, D.; Igna, A.; Jivanescu, A. Analysis of the Pulpal Blood Flow Microdynamics during Prosthetic Tooth Preparation Using Diamond Burs with Different Degrees of Wear. Dent. J. 2024, 12, 178. https://doi.org/10.3390/dj12060178
Ciora E, Miron M, Lungeanu D, Igna A, Jivanescu A. Analysis of the Pulpal Blood Flow Microdynamics during Prosthetic Tooth Preparation Using Diamond Burs with Different Degrees of Wear. Dentistry Journal. 2024; 12(6):178. https://doi.org/10.3390/dj12060178
Chicago/Turabian StyleCiora, Edmond, Mariana Miron, Diana Lungeanu, Andreea Igna, and Anca Jivanescu. 2024. "Analysis of the Pulpal Blood Flow Microdynamics during Prosthetic Tooth Preparation Using Diamond Burs with Different Degrees of Wear" Dentistry Journal 12, no. 6: 178. https://doi.org/10.3390/dj12060178
APA StyleCiora, E., Miron, M., Lungeanu, D., Igna, A., & Jivanescu, A. (2024). Analysis of the Pulpal Blood Flow Microdynamics during Prosthetic Tooth Preparation Using Diamond Burs with Different Degrees of Wear. Dentistry Journal, 12(6), 178. https://doi.org/10.3390/dj12060178