Bacterial Colonization and Tissue Compatibility of Denture Base Resins
Abstract
:1. Introduction
2. Materials and Methods
3. Microbiological Assessments
4. Cytology Assessments
5. Results
5.1. Microbiological Results
5.2. Cytology Results
6. Discussion
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Sachdeo, A.; Haffajee, A.D.; Socransky, S.S. Biofilms in the edentulous oral cavity. J. Prosthodont. 2008, 17, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.; Lewis, M.; Rogers, H.; Williams, D.; Wilson, M. Oral Microbiology, 6th ed.; Elsevier, Churchill Livingstone: London, UK, 2016. [Google Scholar]
- Majchrzak, K.; Mierzwinska-Nastalska, E.; Chmura, A.; Kwiatkowski, A.; Paczek, L.; Mlynarczyk, G.; Szymanek-Majchrzak, K. Clinical and Microbiological Evaluation of Removable Prosthetic Restorations in Patients Treated with an Organ Transplant. Transplant. Proc. 2016, 48, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.E.; Smith, K.; Williams, C.; Nile, C.J.; Lappin, D.F.; Bradshaw, D.; Lambert, M.; Robertson, D.P.; Bagg, J.; Hannah, V.; et al. Dentures are a Reservoir for Respiratory Pathogens. J. Prosthodont. 2016, 25, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Gendreau, L.; Loewy, Z. Epidemiology and etiology of denture stomatitis. J. Prosthodont. 2011, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Marinoski, J.; Bokor-Bratic, M.; Cankovic, M. Is denture stomatitis always related with candida infection? A case control study. Med. Glas. 2014, 11, 379–384. [Google Scholar]
- Pietrokovski, J.; Azuelos, J.; Tau, S.; Mostavoy, R. Oral findings in elderly nursing home residents in selected countries: Oral hygiene conditions and plaque accumulation on denture surfaces. J. Prosthet. Dent. 1995, 73, 136–141. [Google Scholar] [CrossRef]
- Pietrokovski, J.; Harfin, J.; Mostavoy, R.; Levy, F. Oral findings in elderly nursing home residents in selected countries: Quality of and satisfaction with complete dentures. J. Prosthet. Dent. 1995, 73, 132–135. [Google Scholar] [CrossRef]
- Kawara, M.; Iwata, Y.; Iwasaki, M.; Komoda, Y.; Iida, T.; Asano, T.; Komiyama, O. Scratch test of thermoplastic denture base resins for non-metal clasp dentures. J. Prosthodont. Res. 2014, 58, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Schwarz, S.; Zeman, F.; Schafer, L.; Behr, M. Prevalence of xerostomia and hyposalivation and their association with quality of life in elderly patients in dependence on dental status and prosthetic rehabilitation: A pilot study. J. Dent. 2014, 42, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, W.; Schimmel, M.; Muller, F. Oral health and dental care of elderly adults dependent on care. Swiss Dent. J. 2015, 125, 417–426. [Google Scholar] [PubMed]
- Bremer, F.; Grade, S.; Kohorst, P.; Stiesch, M. In vivo biofilm formation on different dental ceramics. Quintessence Int. 2011, 42, 565–574. [Google Scholar] [PubMed]
- Dittmer, M.P.; Hellemann, C.F.; Grade, S.; Heuer, W.; Stiesch, M.; Schwestka-Polly, R.; Demling, A.P. Comparative three-dimensional analysis of initial biofilm formation on three orthodontic bracket materials. Head Face Med. 2015, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Fuchslocher Hellemann, C.; Grade, S.; Heuer, W.; Dittmer, M.P.; Stiesch, M.; Schwestka-Polly, R.; Demling, A.P. Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity. J. Orofac. Orthop. 2013, 74, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Heuer, W.; Stiesch, M.; Abraham, W.R. Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Heuer, W.; Kettenring, A.; Demling, A.; Stumpp, S.N.; Gellermann, E.; Winkel, A.; Stiesch, M. Microbial diversity of peri-implant biofilms on implant fixed bar and telescopic double crown attachments. J. Oral Implantol. 2013, 39, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, D.; David, A.; Inquimbert, C.; Tramini, P.; Molinari, N.; Carrouel, F. Quantification of carious pathogens in the interdental microbiota of young caries-free adults. PLoS ONE 2017, 12, e0185804. [Google Scholar] [CrossRef] [PubMed]
- Klinke, T.; Guggenheim, B.; Klimm, W.; Thurnheer, T. Dental caries in rats associated with Candida albicans. Caries Res. 2011, 45, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moalic, E.; Gestalin, A.; Quinio, D.; Gest, P.E.; Zerilli, A.; Le Flohic, A.M. The extent of oral fungal flora in 353 students and possible relationships with dental caries. Caries Res. 2001, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, M.L.; Daniluk, T.; Rozkiewicz, D.; Cylwik-Rokicka, D.; Kierklo, A.; Tokajuk, G.; Dabrowska, E.; Pawinska, M.; Klimiuk, A.; Stokowska, W.; et al. Incidence rate of Candida species in the oral cavity of middle-aged and elderly subjects. Adv. Med. Sci. 2006, 51 (Suppl. 1), 233–236. [Google Scholar] [PubMed]
- Bloching, M.; Reich, W.; Schubert, J.; Grummt, T.; Sandner, A. Micronucleus rate of buccal mucosal epithelial cells in relation to oral hygiene and dental factors. Oral Oncol. 2008, 44, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Kirsch-Volders, M.; Sofuni, T.; Aardema, M.; Albertini, S.; Eastmond, D.; Fenech, M.; Ishidate, M., Jr.; Kirchner, S.; Lorge, E.; Morita, T.; et al. Report from the in vitro micronucleus assay working group. Mutat. Res. 2003, 540, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Tadin, A.; Galic, N.; Marovic, D.; Gavic, L.; Klaric, E.; Pejda, S.; Ugrin, K.; Zeljzic, D. Cytogenetic damage in exfoliated oral buccal cells by dental composites. Am. J. Dent. 2016, 29, 219–222. [Google Scholar] [PubMed]
- Bigatti, M.P.; Lamberti, L.; Rizzi, F.P.; Cannas, M.; Allasia, G. In vitro micronucleus induction by polymethyl methacrylate bone cement in cultured human lymphocytes. Mutat. Res. 1994, 321, 133–137. [Google Scholar] [CrossRef]
- Rickman, L.J.; Padipatvuthikul, P.; Satterthwaite, J.D. Contemporary denture base resins: Part 1. Dent. Update 2012, 39, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Aeran, H.; Kumar, N.; Gupta, N. Flexible thermoplastic denture base materials for aesthetical removable partial denture framework. J. Clin. Diagn. Res. 2013, 7, 2372–2373. [Google Scholar] [CrossRef] [PubMed]
- Abuzar, M.A.; Bellur, S.; Duong, N.; Kim, B.B.; Lu, P.; Palfreyman, N.; Surendran, D.; Tran, V.T. Evaluating surface roughness of a polyamide denture base material in comparison with poly(methy methacrylate). J. Oral Sci. 2010, 52, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Kedjarune, U.; Charoenworaluk, N.; Koontongkaew, S. Release of methyl methacrylate from heat-cured and autopolymerized resins: Cytotoxicity testing related to residual monomer. Aust. Dent. J. 1999, 44, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yu, W.-H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010, baq013. [Google Scholar] [CrossRef] [PubMed]
- Remmerbach, T.W.; Pomjanski, N.; Bauer, U.; Neumann, H. Liquid-based versus conventional cytology of oral brush biopsies: A split-sample pilot study. Clin. Oral Investig. 2017, 21, 2493–2498. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Dey, P. Micronucleus and its applications. Diagn. Cytopathol. 2012, 40, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Belien, J.A.M.; Copper, M.P.; Braakhuis, B.J.M. Standardization of counting micronuclei: Definition of a protocol to measure genotoxic damage in human exfoliated cells. Carcinogenesis 1995, 16, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Ambroise, M.M.; Balasundaram, K.; Phansalkar, M. Predictive value of micronucleus count in cervical intraepithelial neoplasia and carcinoma. Turk Patoloji Derg. 2013, 29, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Mujib, A.B.R.; Jahagirdar, A.; Telagi, N.; Kulkarni, P.G. A comparative study for selectivity of micronuclei in oral exfoliated epithelial cells. J. Cytol. 2012, 29, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Ayyad, S.B.A.; Israel, E.; El-Setouhy, M.; Nasr, G.R.; Mohamed, M.K.; Loffredo, C.A. Evaluation of Papanicolaou Stain for Studying Micronuclei in Buccal Cells Under Field Conditions. Acta Cytol. 2006, 50, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.M.D.; Alves, G.R.; Avanço, G.T.; Parizi, J.L.S.; Nai, G.A. Assessment of methyl methacrylate genotoxicity by the micronucleus test. Braz. Oral Res. 2013, 27, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrotra, R. (Ed.) Oral Cytology. A Concise Guide; The Development of a Novel Oral Cytologic Grading System; Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2012; pp. 73–90. [Google Scholar]
- Groß, G.; Olms, C. Einsatz einer intraoralen Testmethode zur Biokompatibilitätsprüfung von zahnärztlichen Materialien—eine Pilotstudie. 13. Research Festival for Life Science. 2014. Available online: http://resfest.uniklinikum-leipzig.de/docs/2014_Abstract_Band.pdf (accessed on 13 June 2018).
- Lindel, I.D.; Elter, C.; Heuer, W.; Heidenblut, T.; Stiesch, M.; Schwestka-Polly, R.; Demling, A.P. Comparative analysis of long-term biofilm formation on metal and ceramic brackets. Angle Orthod. 2011, 81, 907–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olms, C.; Hix, N.; Neumann, H.; Yahiaoui-Doktor, M.; RemmCach, T.W. Clinical comparison of liquid-based and conventional cytology of oral brush biopsies: A randomized controlled trial. Head Face Med. 2018, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Hayama, F.H.; Motta, A.C.F.; Silva, P.A.; Migliari, D.A. Liquid-based preparations versus conventional cytology: Specimen adequacy and diagnostic agreement in oral lesions. Med. Oral Patol. Oral Cir. Bucal 2005, 10, 115–122. [Google Scholar] [PubMed]
- Kujan, O.; Desai, M.; Sargent, A.; Bailey, A.; Turner, A.; Sloan, P. Potential applications of oral brush cytology with liquid-based technology: Results from a cohort of normal oral mucosa. Oral Oncol. 2006, 42, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Goodson, M.L.; Sloan, P.; Wadehra, V.; Johnson, S.J.; Robinson, C.M.; Aubourg, G.; Thomson, P.J. Orcellex® Brush Biopsy and Liquid-Based Cytology—Assessment of a New Diagnostic Technique in Oral Potentially Malignant Disorder Management. J. Oral Maxillofac. Surg. 2014, 117, 224–231. [Google Scholar]
- Reichardt, T.; Remmerbach, T.W. Tumoren in der Mundhöhle—Zahnärztliche Aspekte der Früherkennung. Zahnmed. up2date 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Gendron, R.; Grenier, D.; Maheu-Robert, L. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect. 2000, 2, 897–906. [Google Scholar] [CrossRef]
- Hahnel, S.; Rosentritt, M.; Handel, G.; Burgers, R. In vitro evaluation of artificial ageing on surface properties and early Candida albicans adhesion to prosthetic resins. J. Mater. Sci. Mater. Med. 2009, 20, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Burgers, R.; Hahnel, S. Candida albicans adherence and proliferation on the surface of denture base materials. Gerodontology 2013, 30, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, M.; Giti, R. Polyamide as a Denture Base Material: A Literature Review. J. Dent. 2015, 16, 1–9. [Google Scholar]
- Waltimo, T.; Vallittu, P.; Haapasalo, M. Adherence of Candida species to newly polymerized and water-stored denture base polymers. Int. J. Prosthodont. 2001, 14, 457–460. [Google Scholar] [PubMed]
- Susewind, S.; Lang, R.; Hahnel, S. Biofilm formation and Candida albicans morphology on the surface of denture base materials. Mycoses 2015, 58, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Freitas Fernandes, F.; Pereira-Cenci, T.; da Silva, W.J.; Filho, A.P.R.; Straioto, F.G.; Del Bel Cury, A.A. Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J. Prosthet. Dent. 2011, 105, 51–58. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age between 20 and 30 years | Smoker |
Healthy | Pregnancy |
No signs of gingivitis or periodontitis | Edentulousness |
No caries lesions | Fixed partial dentures |
Fully dentate | Removable partial dentures |
good mouth hygiene | Insufficient fillings |
good compliance | Composite fillings more than 5 per person and more than ten years old |
Amalgam fillings | |
Known intolerance or allergies to the materials to be used | |
Oral mucosal diseases (e.g., lichen planus, leukoplakia) | |
Systemic diseases (e.g., diabetes mellitus) | |
Taking immunosuppressants | |
Antibiotic therapy in the last 6 weeks | |
Non-consent by the subject |
Proband | 1 (m) | 2 (m) | 3 (f) | 4 (f) | 5 (f) | 6 (m) | 7 (m) | 8 (m) | 9 (m) | 10 (m) |
---|---|---|---|---|---|---|---|---|---|---|
Number of different isolated bacteria per sample | ||||||||||
PMMA | 18 | 15 | 20 | 16 | 24 | 18 | 22 | 11 | 16 | 18 |
Polyamide | 19 | 9 | 15 | 19 | 18 | 18 | 18 | 14 | 21 | 22 |
Most frequent isolated bacteria (cfu/mL) | ||||||||||
PMMA | ||||||||||
Actinomyces naeslundii | - | 1,000,000 | 2,000,000 | 100,000 | - | 200,000 | 1,010,000 | 100,000 | - | 100,000 |
Actinomyces odontolyticus | 120,000 | 1,210,000 | 1,000,000 | 1,300,000 | 4,000,000 | - | - | 340,000 | - | 500,000 |
Atopobium parvulum | 10,000 | 100,000 | 1,000,000 | 1,000,000 | 2,000,000 | 1,000,000 | - | 100,000 | 200,000 | 1,000,000 |
Capnocythophaga gingivalis | 1,020,000 | 100,000 | - | 200,000 | 1,000,000 | - | - | 220,000 | 100,000 | - |
Neisseria mucosa | - | - | - | 100,000 | 1,000,000 | 100,000 | 10,000 | 100,000 | 200,000 | 10,000 |
Prevotella melaninogenica | 10,000 | 200,000 | 1,000,000 | 400,000 | - | 1,110,000 | - | - | - | 100,000 |
Streptococcus gordonii | 100,000 | - | - | - | 100,000 | - | - | 10,000 | 410,000 | 2,000,000 |
Streptococcus mitis Gruppe | - | 1,210,000 | 3,100,000 | - | 1,000,000 | 1,300,000 | 10,000 | 100,000 | 1,300,000 | - |
Streptococcus parasanguinis | - | 10,000 | - | 200,000 | - | 100,000 | 20,000 | - | - | 1,700,000 |
Streptococcus sanguinis | - | - | - | 100,000 | 2,000,000 | - | 100,000 | 400,000 | 500,000 | 100,000 |
Veillonella parvula | 1,110,000 | 1,400,000 | - | 2,000,000 | 2,000,000 | 110,000 | 1,100,000 | 300,000 | 200,000 | 1,300,000 |
Polyamide | ||||||||||
Actinomyces naeslundii | 1,100,000 | 10,000 | 1,100,000 | 1,500,000 | - | 1,210,000 | 1,330,000 | - | - | - |
Actinomyces odontolyticus | 1,200,000 | - | 1,100,000 | 2,300,000 | 1,000,000 | - | 200,000 | 400,000 | 100,000 | 1,100,000 |
Atopobium parvulum | 1,000,000 | - | - | - | - | - | - | 200,000 | 100,000 | 1,000,000 |
Capnocythophaga gingivalis | - | - | - | - | - | - | - | - | 100,000 | - |
Neisseria mucosa | 1,000,000 | - | - | - | 10,000 | 1,100,000 | 10,000 | 10,000 | - | - |
Prevotella melaninogenica | - | - | - | 100,000 | - | - | - | 100,000 | - | 1,000,000 |
Streptococcus gordonii | 1,110,000 | - | - | 100,000 | - | - | - | 700,000 | 100,000 | - |
Streptococcus mitis Gruppe | 1,100,000 | - | - | - | 10,000 | 1,200,000 | 100,000 | 200,000 | 2,200,000 | - |
Streptococcus parasanguinis | 210,000 | - | 100,000 | - | 1000,000 | 1,100,000 | - | - | 1,000,000 | 100,000 |
Streptococcus sanguinis | - | - | 1,000,000 | 300,000 | 1,110,000 | - | 110,000 | 100,000 | 1,000,000 | - |
Veillonella parvula | 1,000,000 | 100,000 | 1,000,000 | - | 1,100,000 | 1,310,000 | 1,110,000 | 100,000 | 300,000 | 2,000,000 |
PMMA | Polyamide | |||||
---|---|---|---|---|---|---|
Average Number of Cells per 100 Evaluated Cells | Average Number of Cells per 100 Evaluated Cells | |||||
Cells with Nucleus | Cells without Nucleus | MC | Cells with Nucleus | Cells without Nucleus | MC | |
T1-I. Quadrant | 10 | 90 | 0 | 7 | 93 | 0 |
T1-II. Quadrant | 8 | 92 | 0 | 9 | 91 | 0 |
T1-total | 9 | 91 | 0 | 8 | 92 | 0 |
T2-I. Quadrant | 30 | 70 | 0 | 36 | 64 | 0 |
T2-II. Quadrant | 34 | 66 | 0 | 34 | 66 | 0 |
T2-total | 32 | 68 | 0 | 35 | 65 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olms, C.; Yahiaoui-Doktor, M.; Remmerbach, T.W.; Stingu, C.S. Bacterial Colonization and Tissue Compatibility of Denture Base Resins. Dent. J. 2018, 6, 20. https://doi.org/10.3390/dj6020020
Olms C, Yahiaoui-Doktor M, Remmerbach TW, Stingu CS. Bacterial Colonization and Tissue Compatibility of Denture Base Resins. Dentistry Journal. 2018; 6(2):20. https://doi.org/10.3390/dj6020020
Chicago/Turabian StyleOlms, Constanze, Maryam Yahiaoui-Doktor, Torsten W. Remmerbach, and Catalina Suzana Stingu. 2018. "Bacterial Colonization and Tissue Compatibility of Denture Base Resins" Dentistry Journal 6, no. 2: 20. https://doi.org/10.3390/dj6020020
APA StyleOlms, C., Yahiaoui-Doktor, M., Remmerbach, T. W., & Stingu, C. S. (2018). Bacterial Colonization and Tissue Compatibility of Denture Base Resins. Dentistry Journal, 6(2), 20. https://doi.org/10.3390/dj6020020