Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Grape Materials
2.3. Winemaking Process
2.4. Extraction of Free and Bound Volatile Compounds from Juice and Skin
2.5. Grape VOC Gas Chromatography (GC-FID/MS) Analysis
2.6. SPME Conditions for Wine VOC Analysis
2.7. Wine VOC Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.8. Sensory Analysis
2.9. Statistical Analyses
3. Results and Discussion
3.1. Grape Technological Parameters at Maturity
3.2. Volatile Aroma in Grape Juice and Skin
3.3. Volatile Aroma in Wine
3.4. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayram, M.; Kayalar, M. White wines from Narince grapes: Impact of two different grape provenances on phenolic and volatile composition. OENO One 2018, 52, 81–92. [Google Scholar] [CrossRef]
- Deloire, A.; Vaudour, E.; Carey, V.A.; Bonnardot, V.; Van Leeuwen, C. Grapevine response to terroir: A global approach. OENO One 2005, 39, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pan, Q.; Jin, Z.; Mu, L.; Duan, C. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet sauvignon wines from five wine-growing regions in China. Food Chem. 2011, 125, 77–83. [Google Scholar] [CrossRef]
- Priori, S.; Pellegrini, S.; Perria, R.; Puccioni, S.; Storchi, P.; Valboa, G.; Costantini, E.A.C. Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany, Italy). Geoderma 2019, 334, 99–112. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T.; Brunori, E.; Cirigliano, P.; Biasi, R. Biochemical Markers for Enological Potentiality in a Grapevine Aromatic Variety under Different Soil Types. Am. J. Enol. Vitic. 2017, 68, 100–111. [Google Scholar]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascues, E.; Calderon, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [PubMed]
- Gholamim, M.; Hayasaka, Y.; Coombe, B.G.; Jackson, J.F.; Robinson, S.P.; Williams, P.J. Biosynthesis of flavour compounds in Muscat Gordo Blanco grape berries. Aust. J. Grape Wine Res. 1995, 1, 19–24. [Google Scholar]
- Ryona, I.; Pan, B.S.; Intrigliolo, D.S.; Lakso, A.N.; Sacks, G.L. Effects of cluster light exposure on 3-Isobutyl-2-methxypyrazine accumulation and degradation pattern in red wine grapes (Vitis vinifera L. Cv. Cabernet Franc). J. Agric. Food Chem. 2008, 56, 10838–10846. [Google Scholar] [CrossRef] [PubMed]
- Crupi, P.; Coletta, A.; Antonacci, D. Analysis of carotenoids in grapes to predict norisoprenoid varietal aroma of wines from Apulia. J. Agric. Food Chem. 2010, 58, 9647–9656. [Google Scholar] [PubMed]
- Capone, D.L.; Sefton, M.A.; Jeffery, D.W. Application of a modified method for 3-mercaptohexan-1-ol determination to investigate the relationship between free thiol and related conjugates in grape juice and wine. J. Agric. Food Chem. 2011, 59, 4649–4658. [Google Scholar]
- Kalua, C.M.; Boss, P.K. Evolution of Volatile Compounds during the Development of Cabernet Sauvignon Grapes (Vitis vinifera L.). J. Agric. Food Chem. 2009, 57, 3818–3830. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Lamorte, S.A.; Gambuti, A.; Moio, L. Aroma of Aglianico and uva di Troia grapes by aromatic series. Food Res. Int. 2013, 53, 15–23. [Google Scholar] [CrossRef]
- Herderich, M.; Barter, S.; Black, C.A.; Bramley, R.; Capone, D.; Dry, P.; Siebert, T.; Zhang, P. Terroir Effects on Grape and Wine Aroma Compounds. In Advances in Wine Research; American Chemical Society: Washington, DC, USA, 2015; Volume 1203, pp. 131–146. [Google Scholar]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Agric. Food Chem. 2019, 99, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Van Leewen, C.; Roby, J.; de Resseguier, L. Soil-Related terroir factors: A review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E., IV; Koppel, K. Association of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor. Molecules 2013, 18, 4887–4905. [Google Scholar] [CrossRef] [PubMed]
- Sardegna Agricoltura, Regione Autonoma Sardegna, vini e denominazioni, doc, Cannonau di Sardegna. Available online: http://www.sardegnaagricoltura.it/index.php?xsl=443&s=67750&v=2&c=3684 (accessed on 18 September 2019).
- Cipriani, G.; Spadotto, A.; Jurman, I.; Di Gaspero, G.; Crespan, M.; Meneghetti, S.; Frare, E.; Vignani, R.; Cresti, M.; Morgante, M.; et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 2010, 121, 1569–1585. [Google Scholar] [CrossRef] [PubMed]
- Mercenaro, L.; Nieddu, G.; Porceddu, A.; Pezzotti, M.; Camiolo, S. Sequence Polymorphisms and Structural Variations among Four Grapevine (Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. Front. Plant Sci. 2017, 8, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIV. 2017. Available online: http://www.inumeridelvino.it/2018/04/i-principali-vitigni-del-mondo-e-per-nazioneaggiornamento-oiv-2017.html (accessed on 12 August 2019).
- Dry, P.R. Grapevine varieties. In Viticulture Volume 1—Resources, 2nd ed.; Coombe, B., Dry, P., Eds.; AUS: Adelaide, Australia, 2004; Volume 1, pp. 132–149. [Google Scholar]
- De Andrés-de Prado, R.; Yuste-Rojas, M.; Sort, X.; Andrés-Lacueva, C.; Torres, M.; Lamuela-Raventós, R.M. Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards. J. Agric. Food Chem. 2007, 55, 779–786. [Google Scholar] [CrossRef]
- Edo-Roca, M.; Nadal, M.; Lampreave, M. How Terroir Affects Bunch Uniformity, Ripening and Berry Composition in Vitis Vinifera cvs. Carignan and Grenache. OENO One 2013, 47, 1–20. [Google Scholar] [CrossRef]
- Begala, M.; Corda, L.; Podda, G.; Fedrigo, A.; Traldi, P. Headspace solid-phase microextraction gas chromatography/mass spectrometry in the analysis of the aroma constituents of ‘Cannonau of Jerzu’ wine. Rapid Commun. Mass Spectrom. 2002, 16, 1086–1091. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Congiu, F.; Serreli, G.; Mameli, S. Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food Chem. 2015, 175, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Mercenaro, L.; Usai, G.; Fadda, C.; Nieddu, A.; Del Caro, A. Intra-varietal Agronomical Variability in Vitis vinifera L. cv. Cannonau Investigated by Fluorescence, Texture and Colorimetric Analysis. S. Afr. J. Enol. Vitic. 2016, 37, 67–78. [Google Scholar] [CrossRef]
- ARPAS—Agenzia Regionale per la Protezione dell’Ambiente della Sardegna. Dipartimento Meteoclimatico. Available online: http://www.sar.sardegna.it/pubblicazioni/periodiche/annata_agraria_2017_2018.pdf (accessed on 24 September 2019).
- Bicchi, C.; Liberto, E.; Matteodo, M.; Sgorbini, B.; Mondello, L.; d’Acampora Zellner, B.; Costa, R.; Rubiolo, P. Quantitative analysis of essential oils: A complex task. Flavour Fragr. J. 2008, 23, 382–391. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D.A. Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Ubigli, M.; Cravero, M.C.; Bonello, F. Cannonau di Sardegna Rosso: Profili e Individuazione Della Rappresentazione Sensoriale. Dal vigneto al Vino—Note tecniche sul Cannonau; Cantina Dorgali: Dorgali, Italy, 2006. [Google Scholar]
- Leardi, R. Data Processing. In Advances in Food Diagnostics; Wiley-Blackwell: Oxford, UK, 2007; Volume 14, pp. 295–321. [Google Scholar]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Cabritta, J.M.; Freitas, C.A.M.; Laueano, O.; Di Stefano, R. Glicosidic aroma compounds of some Portuguese grape cultivar. J. Sci. Food Agric. 2006, 86, 922–931. [Google Scholar] [CrossRef]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. The aroma of grapes. Localization and evolution of free and bound fractions of some grape aroma components cv. Muscat during first development and maturation. J. Sci. Food Agric. 1985, 36, 857–862. [Google Scholar]
- Friedel, M.; Frotscher, J.; Nitsch, M.; Hofmann, M.; Bogs, J.; Stoll, M.; Dietrich, H. Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera L. cv. Riesling). Aust. J. Grape Wine Res. 2016, 22, 409–421. [Google Scholar] [CrossRef]
- Ubeda, C.; Gil, I.; Cortiella, M.; Del Barrio Galán, R.; Peña-Neira, A. Influence of Maturity and Vineyard Location on Free and Bound Aroma Compounds of Grapes from the País Cultivar. S. Afr. J. Enol. Vitic. 2017, 38, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Garde-Cerdan, T.; Santamaría, P.; Rubio-Breton, P.; Gonzalez-Arenzana, L.; Lopez-Alfaro, I.; Lopez, R. Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT Food Sci. Technol. 2015, 60, 684–689. [Google Scholar] [CrossRef]
- Mendez-Costabel, M.P.; Wilkinson, K.L.; Sue, E.P.B.; McCarthy, M.; Ford, C.M.; Dokoozlian, N. Seasonal and Regional Variation of Green Aroma Compounds in Commercial Vineyards of Vitis vinifera L. Merlot in California. Am. J. Enol. Vitic. 2013, 64, 430–436. [Google Scholar] [CrossRef]
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Hernandes, K.C.; Nicolli, K.P.; Souza-Silva, E.; Manfroi, V.; Zini, C.A.; Welke, J.E. Development of a Method for Determination of Target Toxic Carbonyl Compounds in Must and Wine Using HS-SPME-GC/MS-SIM After Preliminary GC×GC/TOFMS Analyses. Food Anal. Method 2019, 12, 108–120. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar]
- Saerens, S.M.G.; Delvaux, F.R.D.; Verstrepen, K.J.; Thevelein, M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jin, G.J.; Wang, X.J.; Kong, C.L.; Liu, J.; Tao, Y.S. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chem. 2019, 284, 155–161. [Google Scholar] [CrossRef]
- Molina, G.; Pinheiro, D.M.; Pimentel, M.R.; dos Ssanros, R.; Pastore, G. Monoterpene bioconversion for the production of aroma compounds by fungi isolated from Brazilian fruits. Food Sci. Biotechnol. 2013, 22, 999–1006. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, S.H.; Hong, C.Y.; Park, S.Y.; Choi, G.G. Biotrasformation of (-)-α-pinene and geranial to α-terpineol and p-menthane-3,8-diol by white rot fungus, Polyporus brumalis. J. Microbiol. 2015, 53, 462–467. [Google Scholar] [CrossRef]
- Sabon, I.; De Revel, G.; Kotseridis, Y.; Bertrand, A. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley. J. Agric. Food Chem. 2002, 50, 6341–6345. [Google Scholar] [CrossRef]
- Helwi, P.; Tibon, C.; Habran, A.; Hilbert, G.; Guillaumie, S.; Delrot, S.; Darriet, P.; van Leeuwen, C. Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. OENO One 2015, 49, 253–265. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Moreno-Sanz, P.; Garcia, A.; Fernandez, N.; Surez, B. Influence of rootstock on the performance of the Albarin Negro minority grapevine cultivar. Sci. Hortic. 2016, 201, 145–152. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Ayestaran, B.; Martinez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef]
Parameter | Unit | VINEYARDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
North | Centre | South | ||||||||
NS1 | NS2 | NS3 | NS4 | NS5 | CS1 | CS2 | SS1 | |||
agronomic characteristics | Altitude | m | 40 | 120 | 40 | 50 | 260 | 220 | 220 | 40 |
Yield | tons | 152 | 76 | 65 | 91 | 119 | 98 | 106 | 109 | |
Yield/vine | kg | 4.47 | 2.28 | 1.86 | 2.46 | 3.15 | 2.11 | 2.36 | 2.08 | |
Pruning | Spur cordon | Cane | Spur cordon | Cane | Cane | Cane | Spur cordon | Spur cordon | ||
Rootstock | 1103 P | 1103 P | Rupestris du lot | 1103 P | 140 R | 1103 P | 1103 P | 1103 P | ||
Clone/biotype | Cfc 13 | Cfc 13 | Local selection | Cfc 13 | Capvs 1 | Local selection | Local selection | Cfc 13 | ||
Irrigation | yes | yes | no | yes | yes | no | no | yes | ||
physico-chemical characteristics | Sand | % | 40.5 | 89.3 | 52 | 60.3 | 78.1 | 55 | 61 | 53.5 |
Silt | % | 23.9 | 2.2 | 35.5 | 18.5 | 5.1 | 20 | 18 | 7.5 | |
Clay | % | 35.6 | 8.5 | 12.5 | 21.2 | 16.8 | 25 | 21 | 39 | |
pH | (H2O) | 7.3 | 7.7 | 7.2 | 8.4 | 8.7 | 6.9 | 6.8 | 8.1 | |
Organic carbon | g/kg | 4.9 | 2.8 | 0.73 | 2.3 | 2.7 | 0.96 | 1.26 | 2.5 | |
Organic matter | g/kg | 14 | 7 | 1.26 | 5 | 16 | 0.8 | 0.7 | 4.4 | |
Active limestone | g/kg | 8 | 6 | 9 | 22 | 53 | 2 | 1.2 | 42 | |
Total limestone | g/kg | 26 | 14 | 23 | 95 | 166 | 11 | 9 | 122 | |
Total nitrogen | g/kg | 0.7 | 0.6 | 0.10 | 0.7 | 0.51 | 0.6 | 0.9 | 0.56 | |
Base exchange | meq/100 g | 16 | 10.4 | 18.1 | 8.6 | 30.2 | 6.70 | 5.2 | 15.4 |
Compound | Skin F | Skin B | Juice F | Juice B | Calibration Equation | R2 | Linearity Range (µg/mL) | RI |
---|---|---|---|---|---|---|---|---|
2-Methyl-2-butanol * | x | x | x | x | 2-methyl-1-butanol | 1022 | ||
5-Isopropyl-3,3-dimethyl-2-methylene-2,3-dihydrofuran | x | x | x | x | nq | 1026 | ||
Butyl acetate | x | x | x | x | y = 0.938x − 0.0037 | 0.9991 | 0.002–2.38 | 1089 |
Hexanal | x | x | y = 0.755x − 0.0064 | 0.9995 | 0.002–2.4 | 1103 | ||
1-Methoxy-2-propanol | x | nq | 1143 | |||||
Butanol | x | x | x | x | y = 0.1246x + 0.0174 | 0.9969 | 0.008–0.84 | 1152 |
Pent-3-en-2-ol * | x | x | x | x | (Z)-3-Hexen-1-ol, | 1178 | ||
2-Methyl-1-butanol | y = 1.4888x + 0.0053 | 0.9995 | 0.0002–0.238 | 1213 | ||||
n-Pentanol * | x | Hexanol | 1215 | |||||
Limonene * | x | x | x | x | α-Terpineol | 1217 | ||
1-Methoxypropan-2-yl acetate | x | x | x | nq | 1233 | |||
(E)-Hex-2-enal | x | x | y = 1.391x + 0.0047 | 0.9986 | 0.061–61.46 | 1241 | ||
3-Octanone | x | x | x | x | nq | 1269 | ||
2-Methyloctan-2-ol | x | x | x | x | nq | 1318 | ||
Cyclohexanone | x | x | x | x | nq | 1320 | ||
1-Butoxypropan-2-ol | x | x | x | x | nq | 1346 | ||
Hexanol | x | x | y = 2.092x − 0.0094 | 0.9987 | 0.001–0.986 | 1352 | ||
(Z)-Hex-3-en-1-ol | x | x | y = 1.816x − 0.0169 | 0.9986 | 0.026–26.2 | 1372 | ||
(E)-Hex-3-en-1-ol * | x | x | (Z)-hex-3-en-1-ol | 1385 | ||||
Nonanal | x | x | x | y = 1.256x − 0.0046 | 0.9993 | 0.009–9.48 | 1403 | |
(E)-Hex-2-en-1-ol * | x | x | (Z)-hex-3-en-1-ol | 1403 | ||||
2-Butoxyethan-1-ol | x | x | x | x | nq | 1407 | ||
Terpenoid * | x | x | x | x | α-Terpineol | 1424 | ||
2-Ethyl-1-hexanol | x | x | x | x | y = 2.114x + 0.002 | 0.999 | 0.013–12.56 | 1479 |
Benzaldehyde | x | x | x | x | y = 1.86x − 0.0122 | 0.9985 | 0.003–2.52 | 1547 |
Isophorone | x | x | x | x | nq | 1622 | ||
Acetophenone | x | x | x | x | y = 1.734x − 0.0012 | 0.9968 | 0.0009–0.94 | 1672 |
α-Terpineol | x | x | x | x | y = 2.187x + 0.00009 | 0.9986 | 0.001–1.42 | 1695 |
Naphthalene | x | x | x | x | Nq | 1764 | ||
Hex-2-enoic acid | x | x | x | x | nq | 1818 | ||
2-Ethyl-3-hydroxyhexyl isobutyrate | x | x | x | x | nq | 1848 | ||
Benzyl alcohol | x | x | x | x | y = 1.93x + 0.0267 | 0.9987 | 0.003–0.659 | 1862 |
Methylnaphthalene (not identified isomer) | x | x | x | x | nq | 1868 | ||
2-Phenylethanol | x | x | x | y = 2.02x + 0.0002 | 0.9986 | 0.003–2.86 | 1894 | |
Methylnaphthalene (not identified isomer) | x | x | x | x | nq | 1901 | ||
Benzo[d]thiazole | x | x | x | x | nq | 1962 | ||
Dimethylnapthalene (not identified isomer) | x | x | x | x | nq | 1969 | ||
Dimethylnapthalene (not identified isomer) | x | x | x | x | nq | 2004 |
SKIN FREE (µg kg−1) | JUICE FREE (µg kg−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | CS | SS | NS | CS | SS | |||||||||
Max | Min | Mean | Max | Min | Mean | Mean | Max | Min | Mean | Max | Min | Mean | Mean | |
2-Methyl-2-butanol * | 20.7 | 14.6 | 17.5 ns | 24.0 | 12.8 | 19.0 ns | 16.9 | 21.9 | 14.2 | 18.4 ns | 19.7 | 13.4 | 16.0 ns | 15.8 |
Butyl acetate | 40.8 | 19.9 | 33.0 ns | 51.2 | 17.0 | 32.9 ns | 38.2 | 45.5 | 4.7 | 26.6 ns | 42.8 | 19.9 | 29.3 ns | 41.4 |
Hexanal | 643.5 | 238.7 | 388.0 ns | 467.3 | 131.0 | 303.5 ns | 408.7 | 813.9 | 300.7 | 536.9 ns | 658.1 | 101.5 | 344.5 ns | 636.8 |
Pent-3-en-2-ol * | 79.7 | 57.0 | 67.5 ns | 89.1 | 50.1 | 73.1 ns | 66.1 | 61.4 | 21.0 | 42.6 ns | 49.4 | 36.5 | 42.3 ns | 36.8 |
n-Pentanol * | 17.0 | 8.9 | 11.3 ns | 13.2 | 6.0 | 10.4 ns | 11.9 | nd | nd | nd | nd | nd | nd | nd |
Limonene * | 4.9 | 0.0 | 1.3 ns | 4.2 | 0.04 | 1.5 ns | 1.5 | 5.7 | 0.04 | 1.9 ns | 13.5 | 0.04 | 3.8 ns | 16.0 |
(E)-Hex-2-enal | 875.2 | 377.8 | 518.9 ns | 808.8 | 230.5 | 575.8 ns | 544.8 | 571.6 | 311.0 | 424.8 ns | 543.4 | 156.6 | 401.8 ns | 855.6 |
Hexanol | 41.1 | 13.3 | 32.9 ns | 39.4 | 14.8 | 29.8 ns | 12.7 | 113.7 | 82.9 | 92.8 ns | 175.5 | 11.2 | 87.4 ns | 106.8 |
(Z)-Hex-3-en-1-ol | 16.4 | 8.8 | 12.6 ns | 27.5 | 12.3 | 19.9 ns | nd | 18.0 | 9.3 | 11.7 ns | 105.2 | 9.3 | 31.8 ns | 9.3 |
Nonanal | 158.2 | 70.7 | 116.6 ns | 179.0 | 58.1 | 103.8 ns | 133.6 | nd | nd | nd | nd | nd | nd | nd |
(E)-Hex-2-en-1-ol * | nd | nd | nd | nd | nd | nd | nd | 149.4 | 63.2 | 109.4 ns | 186.1 | 75.2 | 126.6 ns | 145.5 |
Terpenoid * | 4.8 | 0.0 | 1.7 ns | 1.9 | 0.01 | 0.7 ns | 0.01 | 2.3 | 0.04 | 0.77 b | 14.3 | 0.04 | 6.1 a | 0.04 |
2-Ethyl-1-hexanol | 90.6 | 36.5 | 74.0 ns | 107.4 | 35.7 | 63.7 ns | 82.8 | 102.3 | 5.4 | 60.0 ns | 111.3 | 34.8 | 67.3 ns | 83.2 |
Benzaldehyde | 147.2 | 18.6 | 111.2 ns | 174.8 | 16.5 | 78.3 ns | 134.6 | 182.4 | 12.7 | 103.6 ns | 158.7 | 14.1 | 89.7 ns | 159.4 |
Acetophenone | 8.2 | 0.7 | 4.0 ns | 10.9 | 0.7 | 6.0 ns | 7.4 | 12.5 | 0.7 | 7.2 ns | 12.6 | 7.2 | 9.2 ns | 7.4 |
α-Terpineol | 15.7 | 3.9 | 9.0 ns | 15.6 | 2.6 | 7.0 ns | 9.2 | 14.6 | 0.04 | 8.3 ns | 13.2 | 0.04 | 5.4 ns | 10.8 |
Benzyl alcohol | 238.1 | 58.1 | 112.5 a | 88.7 | 25.0 | 54.8 b | 68.9 | 106.0 | 44.4 | 67.8 a | 72.6 | 7.9 | 35.9 b | 81.8 |
2-Phenylethanol | 34.3 | 26.8 | 31.5 a | 32.4 | 12.5 | 24.9 b | 22.7 | 19.8 | 7.7 | 13.4 ns | 23.5 | 4.6 | 15.0 ns | 13.6 |
Total VOCs | 1543.5 | 1405.1 | 1560.0 | 1526.2 | 1312.1 | 2220.2 |
SKIN BND (µg kg−1) | JUICE BND(µg kg−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | CS | SS | NS | CS | SS | |||||||||
max | min | mean | max | min | mean | mean | max | min | mean | max | min | mean | mean | |
2-Methyl-2-butanol * | 47.0 | 17.9 | 26.5 ns | 49.0 | 15.3 | 30.0 ns | 22.4 | 30.6 | 11.0 | 21.3 ns | 42.1 | 13.8 | 25.2 ns | 17.3 |
Butyl acetate | 36.8 | 0.00 | 20.9 ns | 52.4 | 4.3 | 30.8 ns | 26.7 | 50.0 | 4.7 | 23.3 ns | 46.2 | 7.5 | 26.3 ns | 43.4 |
Butanol | 19.0 | 0.00 | 13.3 ns | 28.0 | 6.1 | 16.8 ns | 15.2 | 18.9 | 6.8 | 14.1 ns | 31.8 | 11.0 | 17.5 ns | 14.1 |
Pent-3-en-2-ol * | 93.7 | 52.1 | 79.6 ns | 124.2 | 15.0 | 79.9 ns | 84.4 | 57.7 | 10.1 | 44.7 ns | 65.5 | 27.9 | 48.2 ns | 38.3 |
Limonene * | 4.8 | 0.00 | 2.1 ns | 5.5 | 0.3 | 3.4 ns | 0.5 | 7.2 | 0.2 | 2.8 ns | 6.3 | 0.9 | 3.4 ns | 3.4 |
Nonanal | 162.1 | 42.0 | 105.1 ns | 166.6 | 8.3 | 98.9 ns | 39.9 | 150.7 | 10.8 | 71.9 ns | 149.8 | 22.3 | 90.6 ns | 127.6 |
Terpenoid * | 12.0 | 0.00 | 5.7 ns | 16.3 | 0.9 | 7.7 ns | 0.00 | 9.5 | 0.4 | 4.7 ns | 15.4 | 2.4 | 8.1 ns | tr |
2-Ethyl-1-hexanol | 147.7 | 37.2 | 77.0 ns | 140.3 | 3.6 | 84.0 ns | 38.4 | 111.5 | 4.5 | 57.2 ns | 129.0 | 22.2 | 78.6 ns | 86.3 |
Benzaldehyde | 246.2 | 19.2 | 106.2 ns | 305.5 | 11.8 | 178.3 ns | 17.4 | 242.8 | 12.7 | 105.2 ns | 261.8 | 17.5 | 137.5 ns | 196.2 |
Acetophenone | 13.3 | 4.6 | 7.9 ns | 21.1 | 1.3 | 12.5 ns | 6.4 | 11.3 | 1.8 | 6.7 ns | 14.5 | 4.5 | 9.9 ns | 9.1 |
α-Terpineol | 17.1 | 3.0 | 8.8 ns | 20.0 | 0.00 | 10.8 ns | 3.6 | 13.2 | 0.9 | 6.6 ns | 14.6 | 1.9 | 8.8 ns | 13.4 |
Benzyl alcohol | 216.9 | 9.4 | 80.9 ns | 282.3 | 5.3 | 166.7 ns | 10.2 | 282.3 | 3.9 | 121.6 ns | 272.7 | 7.6 | 126.0 ns | 190.2 |
2-Phenylethanol | 6.9 | 0.00 | 3.5 ns | 10.3 | 0.2 | 4.8 ns | nd | nd | nd | nd | nd | nd | nd | nd |
Total VOCs | 537.5 | 724.6 | 265.1 | 480.1 | 580.1 | 739.3 |
Compound | NS1 | NS2 | NS3 | NS4 | NS5 | CS1 | CS2 | SS1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | µg L−1 | SD | |
1-Ethoxy-1-methoxyethane * | ||||||||||||||||
Ethyl Acetate | 24,255c | 36 | 33,049a | 2944 | 18,088d | 124 | 28,469b | 1223 | 20,444d | 1716 | 21,127d | 774 | 25,295c | 385 | 33,049a | 121 |
Ethyl butyrate | 110.5e | 5.1 | 481.9a | 45.8 | 163.5de | 8.7 | 328.6b | 19.3 | 234.8cd | 48.2 | 294.6bc | 44.6 | 160.2de | 17.2 | 345.2b | 35.1 |
2-Methyl-1-propanol * | ||||||||||||||||
Isoamyl acetate | 158.4ab | 30.4 | 118.7bc | 7.2 | 63.5 | 20.4 | 221.3a | 7.7 | 38.9c | 7.2 | 108.3bc | 83.4 | 82.4bc | 70.2 | 161.4ab | 6.3 |
Limonene | 1.48ab | 0.03 | 1.64a | 0.12 | 1.51ab | 0.14 | 1.49ab | 0.01 | 1.44b | 0.03 | 1.47b | 0.03 | 1.48ab | 0.01 | 1.50ab | 0.02 |
2-Methyl-1-butanol ** | 92,310e | 4405 | 159,247b | 7786 | 98,603de | 6420 | 181,830a | 6218 | 122,528c | 17,625 | 124,113c | 11,918 | 115,444cd | 2971 | 163,498ab | 1960 |
Ethyl hexanoate | 704.7cd | 18.4 | 724.9bc | 1.4 | 664.6 | 21.7 | 779.4ab | 4.9 | 743.4abc | 52.5 | 655.0cd | 15.2 | 625.8d | 0.6 | 784.1a | 29.2 |
3-Octanone * | ||||||||||||||||
Styrene * | ||||||||||||||||
Ethyl heptanoate | tr | 0.47a | 0.38 | 0.13b | 0.07 | tr | tr | tr | 0.09b | 0.09 | tr | |||||
Hexanol | 897bc | 41 | 1536a | 31 | 734c | 41 | 1041b | 48 | 1581a | 302 | 1089b | 20 | 936bc | 2 | 1041b | 99 |
Ethyl octanoate | 154.9a | 1.3 | 111.9b | 2.4 | 124.9b | 12.1 | 154.0a | 7.0 | 152.2a | 16.3 | 110.5b | 7.3 | 107.9b | 2.5 | 168.8a | 20.1 |
Acetic acid * | ||||||||||||||||
2-Ethyl-1-hexanol | 1.8 | 0.4 | tr | 8.8 | 0.7 | tr | 4.7 | 0.5 | tr | 1.8 | 0.2 | tr | ||||
Ethyl nonanoate * | ||||||||||||||||
Benzaldehyde | 39.5c | 10.0 | 31.1cd | 11.3 | 12.4d | 11.4 | 145.6b | 4.0 | 208.0a | 9.3 | 13.4d | 9.3 | 31.4cd | 8.9 | 28.2cd | 15.3 |
Methyl decanoate * | ||||||||||||||||
Ethyl decanoate | 41.8ns | 4.6 | 41.5 | 3.6 | 40.8 | 4.6 | 67.3 | 0.8 | 46.0 | 7.4 | 30.4 | 4.6 | 33.7 | 1.7 | 31.5 | 58.2 |
Nonanol * | ||||||||||||||||
Isoamyl octanoate * | ||||||||||||||||
Diethyl succinate * | ||||||||||||||||
Ethyl dec-9-enoate * | ||||||||||||||||
3-(Methylthio)-1-propanol * | ||||||||||||||||
Ethyl undecanoate * | ||||||||||||||||
Citronellol | 4.2b | 0.1 | 2.6b | 1.1 | 3.0b | 1.6 | 11.3ab | 5.0 | 5.0b | 0.6 | 2.1b | 0.2 | 0.7b | 0.4 | 27.2a | 23.9 |
Methyl dodecanoate * | ||||||||||||||||
Methyl 2-hydroxybenzoate | 0.8bc | 0.7 | 0.1c | 0.1 | 3.3b | 1.6 | tr | 13.0a | 1.8 | 2.1bc | 1.0 | tr | 11.9a | 1.8 | ||
Phenethyl acetate * | ||||||||||||||||
Ethyl dodecanoate | 0.35abc | 0.06 | 0.51ab | 0.42 | 0.16bc | 0.11 | 0.26abc | 0.12 | 0.09bc | 0.08 | 0.51ab | 0.10 | 0.54a | 0.03 | tr | |
β-Damascenone * | ||||||||||||||||
2-Phenylethanol | 45,352c | 2942 | 55,954b | 3236 | 52,787b | 2360 | 66,077a | 5436 | 44,126c | 943 | 64,783a | 987 | 56,035b | 1196 | 66,107a | 3311 |
Ethyl tetradecanoate | tr | tr | tr | tr | tr | tr | tr | tr | ||||||||
Ethyl pentadecanoate * | ||||||||||||||||
Methyl hexadecanoate * | ||||||||||||||||
Ethyl hexadecanoate * | ||||||||||||||||
Total VOCs | 164,032 | 251,301 | 171,299 | 279,126 | 190,126 | 212,330 | 198,756 | 265,255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petretto, G.L.; Mercenaro, L.; Urgeghe, P.P.; Fadda, C.; Valentoni, A.; Del Caro, A. Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods 2021, 10, 101. https://doi.org/10.3390/foods10010101
Petretto GL, Mercenaro L, Urgeghe PP, Fadda C, Valentoni A, Del Caro A. Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods. 2021; 10(1):101. https://doi.org/10.3390/foods10010101
Chicago/Turabian StylePetretto, Giacomo L., Luca Mercenaro, Pietro Paolo Urgeghe, Costantino Fadda, Antonio Valentoni, and Alessandra Del Caro. 2021. "Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis" Foods 10, no. 1: 101. https://doi.org/10.3390/foods10010101
APA StylePetretto, G. L., Mercenaro, L., Urgeghe, P. P., Fadda, C., Valentoni, A., & Del Caro, A. (2021). Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods, 10(1), 101. https://doi.org/10.3390/foods10010101