Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds a Wild Fern Used in Timorese Cuisine †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Extracts Preparation
2.3. Standards and Reagents
2.4. Gas Chromatography—Mass Spectrometry Analysis
2.5. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindsay, S.; Hovenkamp, P.H.; Middleton, D.J. New combinations and typifications in Aglaomorpha (Polypodiaceae). Gard. Bull. Singapore 2017, 69, 149–155. [Google Scholar] [CrossRef]
- Hovenkamp, P.H. Polypodiaceae. In Flora Malesiana, Seri II—Pteridophyta; Kalkman, C., Kirkup, D.W., Nooteboon, H.P., Saw, L.G., Stevens, P.F., Wilde, W.J.J., Eds.; New York Botanical Garden: New York, NY, USA, 1998; Volume 3, pp. 1–234. [Google Scholar]
- PPG. A community-derived classification for extant lycophytes and ferns. J. Systemat. Evolut. 2016, 54, 563–603. [Google Scholar] [CrossRef]
- Kalaiselvan, M.; Gopalan, R. Ethnobotanical studies on selected wild medicinal plants used by Irula tribes of Bolampatty Valley, Nilgiri Biosphere Reserve (NBR), Southern Western Ghats, India. Asian J. Pharm. Clin. Res. 2014, 7, 22–26. [Google Scholar]
- Das, H.B.; Majumdar, K.; Datta, B.K.; Ray, D. Ethnobotanical uses of some plants by Tripuri and Reang tribes of Tripura. Nat. Prod. Rad. 2009, 8, 172–180. [Google Scholar]
- Sen, A.; Ghosh, P.D. A note on the ethnobotanical studies of some pteriddophytes in Assam. Indian J. Tradit. Knowl. 2011, 10, 292–295. [Google Scholar]
- Ramanathan, R.; Bhuvaneswari, R.; Indhu, M.; Subramanian, G.; Dhandapani, R. Survey of ethnobotanical observation on wild tuberous medicinal plants of Kollihills, Namakkal district, Tamilnadu. J. Med. Plants Stud. 2014, 2, 50–58. [Google Scholar]
- Rahmatullah, M.; Jahan, R.; Seraj, S.; Islam, F.; Jahan, F.I.; Khatun, Z.; Sanam, S.; Monalisa, M.N.; Khan, T.; Biswas, K.R. Medicinal Plants Used by Folk and Tribal Medicinal Practitioners of Bangladesh for Treatment of Gonorrhea. Am Eurasian J. Sustain. Agric. 2011, 5, 276–281. [Google Scholar]
- Rahmatullah, M.; Mukti, I.J.; Haque, A.; Mollik, M.D.; Parvin, K.; Jahan, R.; Chowdhury, M.H.; Rahman, T. An Ethnobotanical Survey and Pharmacological Evaluation of Medicinal Plants used by the Garo Tribal Community living in Netrakona district, Bangladesh. Adv. Nat. App. Sci. 2009, 3, 402–418. [Google Scholar]
- Rahmatullah, M.; Azam, M.D.; Khatun, Z.; Seraj, S.; Islam, F.; Rahman, M.D.; Jahan, S.; Aziz, M.D.S. Medicinal plants used for treatment of diabetes by the Marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. Afr. J. Tradit. Complement. Alternat. Med. 2012, 9, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Mollik, A.; Hasan, N.; Hossan, S.; Jahan, R.; Rahmatullah, M. Medicinal plants used against malaria in several regions of Bogra district, Bangladesh. Planta Med. 2009, 75, PD39. [Google Scholar] [CrossRef]
- Costa, H.R. The Pteridophytes of Timor, with Special Focus on Timor-Leste. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2021. [Google Scholar]
- Taek, M.M.; Prajogo, B.E.W.; Agil, M. Plants used in traditional medicine for the treatment of malaria by the Tetun ethnic people in West Timor Indonesia. Asian Pac. J. Trop. Med. 2018, 11, 630–637. [Google Scholar] [CrossRef]
- Prasanna, G.; Anuradha, R. Evaluation of in vitro antioxidant activity of rhizome extract of Drynaria quercifolia L. Int. J. Chem. Tech. Res. 2015, 8, 183–187. [Google Scholar]
- Mithraja, M.J.; Irudayaraj, V.; Kiruba, S.; Jeeva, S. Antibacterial efficacy of Drynaria quercifolia (L.) J. Smith (Polypodiaceae) against clinically isolated urinary tract pathogens. Asian Pac. J. Trop. Biomed. 2012, 2, S131–S135. [Google Scholar] [CrossRef]
- Anuja, G.I.; Latha, P.G.; Shine, V.J.; Suja, S.R.; Shikha, P.; Kumar, K.S.; Rajasekharan, S. Antioedematous and Analgesic Properties of Fertile Fronds of Drynaria quercifolia. ISRN Inflammation 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Anuja, G.I.; Latha, P.G.; Suja, S.R.; Shyamal, S.; Shine, V.J.; Sini, S.; Pradeep, S.; Shikha, P.; Rajasekharan, S. Anti-inflammatory and analgesic properties of Drynaria quercifolia (L.) J. Smith. J. Ethnopharmacol. 2010, 132, 456–460. [Google Scholar] [CrossRef]
- Kulkarni, G.K.; Kadolkar, R.V.; Maisale, A.B. Anthelmintic activity of Drynaria quercifolia (L.) J. Smith. J. Pharm. Res. 2010, 3, 975–977. [Google Scholar]
- Khan, A.; Haque, E.; Mukhlesur, R.M.; Mosaddik, A.; Rahman, M.; Sultana, N. Isolation of antibacterial constituent from rhizome of Drynaria quercifolia and its sub-acute toxicological studies. DARU J. Fac. Pharm. 2007, 15, 205–211. [Google Scholar]
- Saravanan, S.; Mutheeswaran, S.; Saravanan, M.; Chellappandian, M.; Paulraj, M.G.; Raj, M.K.; Ignacimuthua, S.; Duraipandiyanac, V. Ameliorative effect of Drynaria quercifolia (L.) J. Sm., an ethnomedicinal plant, in arthritic animals. Food Chem. Toxicol. 2013, 51, 356–363. [Google Scholar] [CrossRef]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary Metabolites of Plants and their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Inaugural Trop. Rev. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Prasanna, G.; Chitra, M. Phytochemical screening and GC-MS analysis of Drynaria quercifolia rhizome. Am. J. Adv. Drug Deliv. 2014, 3, 72–78. [Google Scholar]
- Rajesh, K.D.; Subramanian, V.; Panneerselvam, A.; Rajesh, N.V.; Jeyathilakan, N. GC-MS analysis of secondary metabolites from the whole plant methanolic extract of Drynaria quercifolia (L.) J. Smith (Polypodiaceae). J. Adv. Appl. Scientif. Res. 2016, 1, 84–89. [Google Scholar]
- Nithin, M.K.; Veeramani, G.; Sivakrishnan, S. Phytochemical screening and GC-MS analysis of rhizome of Drynaria quercifolia. Res. J. Pharm. Tech. 2020, 13, 2266–2268. [Google Scholar] [CrossRef]
- Füzfai, Z.; Boldizsár, I.; Molnar-Perl, I. Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl-oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. J. Chromatogr. A 2008, 1177, 183–189. [Google Scholar] [CrossRef]
- Razboršek, M.I.; Vončina, D.B.; Doleček, V.; Vončina, E. Determination of oleanolic, betulinic and ursolic acid in lamiaceae and mass spectral fragmentation of their trimethylsilylated derivatives. Chromatographia 2008, 67, 433–440. [Google Scholar] [CrossRef]
- Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of phytosterols and tripernoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 2015, 7, 1672–1687. [Google Scholar] [CrossRef] [Green Version]
- AOCS Lipid Library, Lipid Chemistry, Biology, Technology & Analysis. Available online: http://lipidlibrary.aocs.org/index.html (accessed on 15 November 2020).
- Golm Metabolome Database (GMD). Available online: http://gmd.mpimp-golm.mpg.de/ (accessed on 15 November 2020).
- Nič, M.; Jirát, J.; Košata, B.; Jenkins, A.; McNaught, A. Compendium of Chemical Terminology; IUPAC: Research Triangle Park, NC, USA, 2009. [Google Scholar]
- Rahmouni, N.; Pinto, D.C.G.A.; Santos, S.A.O.; Beghidja, N.; Silva, A.M.S. Lipophilic composition of Scabiosa stellata L.: An underexploited plant from Batna (Algeria). Chem. Pap. 2018, 72, 753–762. [Google Scholar] [CrossRef]
- Bourdenx, B.; Bernard, A.; Domergue, F.; Pascal, S.; Léger, A.; Roby, D.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol. 2011, 156, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Sparkman, O.D.; Penton, Z.E.; Kitson, F.G. Hydrocarbons. In Gas Chromatography and Mass Spectrometry: A Practical Guide; Sparkman, O.D., Penton, Z.E., Kitson, F.G., Eds.; Elsevier: Burlington, MA, USA, 2011; pp. 331–339. [Google Scholar]
- Agostoni, C.; Moreno, L.; Shamir, R. Palmitic acid and health: Introduction. Crit. Rev. Food Sci. Nutr. 2016, 56, 1941–1942. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty axid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–678. [Google Scholar] [CrossRef]
- Faustino, M.V.; Faustino, M.A.F.; Silva, H.; Silva, A.M.S.; Pinto, D.C.G.A. Lipophilic metabolites of Spartina maritima and Puccinellia maritima involved in their tolerance to salty environments. Chem. Biodiversity 2020, 17, e2000316. [Google Scholar] [CrossRef]
- Boar, R.B.; Roner, C.R. Cycloartane triterpenoids. Phytochemistry 1975, 14, 1143–1146. [Google Scholar] [CrossRef]
- Myant, N.B. The Biosynthesis of Sterols. In The Biology of Cholesterol and Related Steroids; Elsevier Ltd.: Amsterdam, The Netherlands, 1981; Chapter 4; pp. 161–225. [Google Scholar]
- Clouse, S.D. Brassinosteroids. Ref. Module Biomed. Sci. 2019. [Google Scholar] [CrossRef]
- Kuswaningrum, O.; Suwandono, A.; Ariyanti, I.; Hadisaputro, S.; Suharttono, S. The impact of consuming Amaranthus spinosus L. extract on prolactin level and breast milk production in postpartum mothers. Belitung Nurs. J. 2017, 3, 541–547. [Google Scholar] [CrossRef]
- Bekoe, E.O.; Kitcher, C.; Gyima, N.A.M.; Schwingee, G.; Frempong, M. Medicinal plants used as galactagogues. In Pharmacognosy—Medicinal Plants; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Jendras, G.; Monizi, M.; Neinhuis, C.; Lautenschläger, T. Plants, food and treatments used by BaKongo tribes in Uíge (northern Angola) to affect the quality and quantity of human breast milk. Int. Breastfeeding J. 2020, 15, 88. [Google Scholar] [CrossRef]
- Poralla, K. Cycloartenol and other triterpene cyclases. Compr. Nat. Prod. Chem. 1999, 2, 299–319. [Google Scholar]
- Kushiro, T.; Ebizuka, Y. Triterpenes. In Comprehensive Natural Products II: Chemistry and Biology; Elsevier Ltd.: London, UK, 2010; pp. 673–708. [Google Scholar]
- Shiojima, K.; Ageta, H. Fern constituents: Two new triterpenoid hydrocarbons, hop-16-ene and isohop-22(29)-ene, isolated from Davallia mariesii. Chem. Pharm. Bull. 1999, 38, 347–349. [Google Scholar] [CrossRef] [Green Version]
Part of Plant | DW (g) | V (mL) | HeW (g) | PyHe (%) |
---|---|---|---|---|
Leaves | 10.01 ± 0.05 | 300.0 ± 0.1 | 0.58 ± 0.03 | 5.79 ± 0.09 |
Rhizomes | 10.03 ± 0.05 | 300.0 ± 0.1 | 0.37 ± 0.01 | 3.69 ± 0.05 |
Standard Compound | Slope (m) § | Intercept (b) § | R2 | LOD §§ | LOQ §§ |
---|---|---|---|---|---|
Palmitic acid | 0.2143 | 0 | 0.9944 | 15 | 50 |
1-Monopalmitin | 7.2283 | −0.0009 | 0.9975 | 3 | 10 |
Glycerol | 7.2366 | −0.0037 | 0.9937 | 3 | 10 |
Triacontane | 2.0154 | −0.0311 | 0.9991 | 10 | 33 |
Maltose | 4.1401 | −0.0801 | 0.9998 | 3 | 10 |
Mannose | 4.1380 | −0.1126 | 0.9999 | 5 | 17 |
β-Sitosterol | 2.5254 | −0.0033 | 0.9983 | 12 | 40 |
α-Tocopherol | 2.4738 | −0.0028 | 0.9993 | 5 | 17 |
Identification * | Rt (min) | RINIST | RIcal | Rhizome ** | Leaves ** |
---|---|---|---|---|---|
Carboxylic acids and derivatives | |||||
Butanedioic acid b,c,d | 8.26 | 1170 | 1171 | - | tr |
Undecanoic acid b,c,d | 9.55 | 1704 | 1704 | - | 21.78 ± 0.19 |
Malic acid a,b,c | 9.86 | 1390 | 1392 | - | tr |
L-Glutamic acid a,b,c | 10.30 | - | - | - | 9.87 ± 0.23 |
Shikimic acid a,b,c | 13.14 | 1904 | 1904 | - | 28.58 ± 0.08 |
Citric acid a,b,c | 13.26 | 1944 | 1945 | - | tr |
Quininic acid a,b,c | 13.66 | - | - | - | tr |
Myristic acid | 13.83 | 1788 | 1787 | - | tr |
3,4-Dihydroxyhydrocinnamic acid a,b,c | 14.96 | 1964 | 1962 | - | tr |
Dodecanedioic acid b,c,d | 15.42 | 1965 | 1966 | - | tr |
Glucaric acid a,b,c | 15.58 | 2249 | 2250 | - | tr |
Oct-3-enoic acid b,c,d | 16.26 | 1200 | 1202 | - | 15.67 ± 0.09 |
Palmitic acid a,b,c | 16.40 | 1987 | 1987 | 107.65 ± 0.12 | 237.27 ± 0.59 |
Linoleic acid a,b,c | 18.63 | 2202 | 2202 | 60.97 ± 0.08 | 153.81 ± 0.11 |
Linolenic acid a,b,c | 18.73 | 2210 | 2211 | - | 253.71 ± 0.93 |
Oleic acid a,b,c | 18.80 | 2194 | 2192 | 12.33±0.05 | 14.48 ± 0.24 |
Stearic acid a,b,c | 19.05 | 2186 | 2184 | 17.00 ± 0.02 | 15.49 ± 0.08 |
Arachidonic acid a,b,c | 20.72 | 2417 | 2415 | - | 19.13 ± 0.04 |
Oleoamide (9-Octadecenamide) a,b,c | 20.84 | 2228 | 2230 | - | 13.12 ± 0.03 |
Monopalmitin a,b,c | 23.63 | 2581 | 2583 | 0.50 ± 0.01 | - |
Lignoceric acid a,b,c | 27.75 | 2782 | 2783 | - | tr |
Terpenoids | |||||
Neophytadiene b,c,d | 13.76 | - | 1832 | - | tr |
Squalene b,c,d | 27.39 | 2914 | 2910 | 2.59 ± 0.01 | - |
Cycloeucalenol acetate derivative b,c,d | 32.13 | - | 2909 | 14.61 ± 0.02 | - |
Stigmastan-3,5-diene c,d,e | 32.47 | 2525 | 2526 | tr | - |
α-Tocopherol a,b,c | 32.99 | 3226 | 3227 | 6.89 ± 0.01 | - |
Cycloeucalenol acetate b,c,d,§ | 33.29 | 2900 | 2901 | tr | tr |
Serratene b,c,d | 33.53 | 2744 | 2745 | tr | - |
Lupeol a,b,c | 33.76 | 2848 | 2845 | tr | - |
Hop-16-ene b,c,d | 34.34 | 3420 | 3421 | 166.45 ± 0.53 | - |
Cycloartenol acetate b,c,d | 34.58 | 2907 | 2906 | 9.49 ± 0.01 | - |
9,19-Cycloergost-24-en-3-ol acetate b,c,d | 34.70 | 2956 | 2957 | 14.58 ± 0.03 | - |
Cholest-5-en-3(α)-ol b,c,d | 35.07 | 2954 | 2955 | 16.49 ± 0.02 | - |
Lupenone b,c,d | 35.28 | 3483 | 3481 | 7.22 ± 0.01 | - |
Stigmasterol a,b,c | 35.48 | 2797 | 2796 | 9.44 ± 0.01 | - |
4,14-Dimethyl-9,19-cyclolanost-24(28)-en-3-ol b,c,d | 35.76 | 2760 | 2761 | 10.75 ± 0.01 | - |
γ-Sitosterol a,b,c | 36.05 | 2731 | 2731 | 12.11 ± 0.05 | - |
β-Sitosterol a,b,c | 36.60 | 2789 | 2789 | 50.76 ± 0.11 | - |
Hop-21-ene b,c,d | 36.67 | 2659 | 2659 | 6.23 ± 0.01 | - |
Diploptene [Hop-22(29)-ene] b,c,d | 37.06 | - | 2667 | 48.01 ± 0.13 | - |
Cycloeucalenone b,c,d | 37.81 | - | 2981 | 26.75 ± 0.02 | - |
9,19-Cyclolanost-23-ene-3,25-diol 3-acetate b,c,d,§ | 38.62 | 3071 | 3070 | 12.99 ± 0.01 | - |
Hop-17(21)-ene b,c,d | 38.80 | - | 2672 | 14.99 ± 0.01 | - |
3-O-Acetyl-6-methoxycycloartenol b,c,d | 39.01 | 3093 | 3091 | 5.94 ± 0.02 | - |
Cyclolaudenol b,c,d | 39.21 | 2834 | 2834 | 19.32 ± 0.06 | - |
Campesterol a,b,c | 39.62 | 2689 | 2685 | 25.64 ± 0.12 | tr |
31-Norcyclolaudenone b,c,d,§§ | 40.43 | - | 3095 | 21.05 ± 0.06 | - |
Alcohols | |||||
Glycerol a,b,c | 7.74 | - | - | - | 0.39 ± 0.01 |
Pentitol b,c,d | 12.13 | - | - | - | 0.95 ± 0.01 |
Phytol b,c,d | 18.07 | 2086 | 2086 | - | 16.43 ± 0.05 |
Alkanes | |||||
n-Docosane e | 25.56 | - | - | - | 5.02 ± 0.02 |
n-Octacosane e | 28.91 | - | - | - | 38.05 ± 0.03 |
n-Tritetracontane b,c,d | 32.48 | - | - | - | 131.35 ± 0.64 |
n-Hentriacontane b,c,d | 36.06 | - | - | - | 13.04 ± 0.05 |
Carbohydrates | |||||
D-Psicofuranose b,c,d | 12.99 | 2029 | 2029 | - | 1.73 ± 0.02 |
D-Tagatose b,c,d | 14.03 | 1982 | 1980 | - | tr |
D-Galactose a,b,c | 14.11 | 1970 | 1973 | - | tr |
D-Glucose a,b,c | 15.23 | 2037 | 2035 | - | 5.76 ± 0.04 |
Sucrose a,b,c | 23.86 | 3552 | 3551 | 1.97 ± 0.01 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, H.R.; Simão, I.; Silva, H.; Silveira, P.; Silva, A.M.S.; Pinto, D.C.G.A. Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds a Wild Fern Used in Timorese Cuisine. Foods 2021, 10, 87. https://doi.org/10.3390/foods10010087
Costa HR, Simão I, Silva H, Silveira P, Silva AMS, Pinto DCGA. Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds a Wild Fern Used in Timorese Cuisine. Foods. 2021; 10(1):87. https://doi.org/10.3390/foods10010087
Chicago/Turabian StyleCosta, Hermenegildo R., Inês Simão, Helena Silva, Paulo Silveira, Artur M. S. Silva, and Diana C. G. A. Pinto. 2021. "Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds a Wild Fern Used in Timorese Cuisine" Foods 10, no. 1: 87. https://doi.org/10.3390/foods10010087
APA StyleCosta, H. R., Simão, I., Silva, H., Silveira, P., Silva, A. M. S., & Pinto, D. C. G. A. (2021). Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds a Wild Fern Used in Timorese Cuisine. Foods, 10(1), 87. https://doi.org/10.3390/foods10010087