Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensory Evaluation
2.3. Volatile Compounds Analysis
2.4. GC-MS-O Analysis of Volatile Compounds
2.5. Amino Acid Profile Analysis
2.6. Soluble Reducing Sugar Profile Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of Oil Processing Samples
3.2. Comparison between Volatile Components of Normal- and High Oleic Peanut Oils
3.3. Comparison between Key Volatile Components of Normal- and High Oleic Peanut Oils
3.4. Comparison between Amino Acids and Reducing Sugars Profile of Normal- and High Oleic Peanut Oil Processing Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- USDA. Available online: https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade/ (accessed on 9 November 2021).
- Wang, Q.; Liu, L.; Wang, L.; Guo, Y.; Wang, J. Introduction. In Peanuts: Processing Technology and Product Development, 1st ed.; Wang, Q., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–22. [Google Scholar] [CrossRef]
- Derbyshire, E.J. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. Int. J. Food Sci. Nutr. 2014, 65, 781–790. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Wang, Q.; Van Ruth, S. Evaluation of portable and benchtop NIR for classification of high oleic acid peanuts and fatty acid quantitation. LWT-Food Sci. Technol. 2020, 128, 109398. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, A.; Wang, Q.; Zhou, J. High Oleic Acid Peanut Oil and Extra Virgin Olive Oil Supplementation Attenuate Metabolic Syndrome in Rats by Modulating the Gut Microbiota. Nutrients 2019, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Norden, A.J.; Borget, D.W.; Knauft, D.A.; Young, C.T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 1987, 4, 7–11. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Shi, A.; Liu, L.; Fauconnier, M.L.; Wang, Q. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules 2018, 24, 62. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. Int. J. Food Prop. 2020, 23, 1036–1050. [Google Scholar] [CrossRef]
- Newell, J.A.; Mason, M.E.; Matlock, R.S. Precursors of typical atypical roasted peanut flavor. J. Agric. Food Chem. 1967, 15, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Baker, G.L.; Cornell, J.A.; Gorbet, D.W.; O’Keefe, S.F.; Sims, C.A.; Talcott, S.T. Determination of pyrazine and flavor variations in peanut genotypes during roasting. J. Food Sci. 2003, 68, 394–400. [Google Scholar] [CrossRef]
- Qian, D.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components. LWT-Food Sci. Technol. 2019, 112, 107648. [Google Scholar] [CrossRef]
- Dimitrios, L.; Vincenzo, F.; Edoardo, C. Flavor of roasted peanuts (Arachis hypogaea)—Part I: Effect of raw material and processing technology on flavor, color and fatty acid composition of peanuts. Food Res. Int. 2016, 89, 860–869. [Google Scholar] [CrossRef]
- Davis, J.P.; Dean, L.L. Peanut composition, flavor and nutrition. In Peanuts Genetics, Processing, and Utilization, 1st ed.; Stalker, H.T., Wilson, R.F., Eds.; Academic Press: Cambridge, MA, USA; AOCS Press: Urbana, IL, USA, 2016; pp. 289–345. [Google Scholar]
- Lu, C.Y.; Hao, Z.; Payne, R.; Ho, C.T. Effects of water content on volatile generation and peptide degradation in the Maillard reaction of glycine, diglycine, and triglycine. J. Agric. Food Chem. 2005, 53, 6443–6447. [Google Scholar] [CrossRef]
- Ho, C.T.; Zhang, J.; Hwang, H.I.; Riha, W.E. Release of ammonia from peptides and proteins and their effects on Maillard flavor generation. In Maillard Reactions in Chemistry, Food and Health, 1st ed.; Labuza, T.P., Reineccius, G.A., Monnier, V.M., O’Brien, J., Baynes, J.W., Eds.; Woodhead Publishing: Cambridge, UK, 2005; pp. 126–130. [Google Scholar]
- He, S.; Zhang, Z.; Sun, H.; Zhu, Y.; Zhao, J.; Tang, M.; Wu, X.; Cao, Y. Contributions of temperature and l-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and d-xylose Maillard reaction system. Ind. Crops Prod. 2019, 128, 455–463. [Google Scholar] [CrossRef]
- Guo, X.; Song, C.; Ho, C.T.; Wan, X. Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes. Food Chem. 2018, 263, 18–28. [Google Scholar] [CrossRef]
- Yu, A.N.; Tan, Z.W.; Wang, F.S. Mechanistic studies on the formation of pyrazines by Maillard reaction between l-ascorbic acid and l-glutamic acid. LWT-Food Sci. Technol. 2013, 50, 64–71. [Google Scholar] [CrossRef]
- Isleib, T.G.; Pattee, H.E.; Sanders, T.H.; Hendrix, K.W.; Dean, L.O. Compositional and sensory comparisons between normal- and high-oleic peanuts. J. Agric. Food Chem. 2006, 54, 1759. [Google Scholar] [CrossRef] [PubMed]
- Isleib, T.G.; Pattee, H.E.; Tubbs, R.S.; Sanders, T.H.; Dean, L.O.; Hendrix, K.W. Intensities of Sensory Attributes in High- and Normal-Oleic Cultivars in the Uniform Peanut Performance Test. Peanut Sci. 2015, 42, 83–91. [Google Scholar] [CrossRef]
- Johnsen, P.; Civille, G.; Vercellotti, J.; Sanders, T.; Dus, C. Development of a lexicon for the description of peanut flavor. J. Sens. Stud. 1988, 3, 9–17. [Google Scholar] [CrossRef]
- Sanders, T.H.; Vercellotti, J.R.; Crippen, K.L.; Civille, G.V. Effect of maturity on roast color and descriptive flavor of peanuts. J. Food Sci. 1989, 54, 475–477. [Google Scholar] [CrossRef]
- Schirack, A.; Drake, M.A.; Sanders, T.H.; Sandeep, K.P. Characterization of aroma-active compounds in microwave blanched peanuts. J. Food Sci. 2006, 71, C513. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Q.; Liu, Y.; Huang, J.; Wang, X.; Mao, W.; Wang, S. Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil. J. Food Sci. 2011, 76, C404–C412. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Frederich, M.; Uyttenbroeck, R.; Malik, P.; Filocco, S.; Richel, A.; Heuskin, S.; Alabi, T.; Megido, R.C.; Franck, T.; et al. Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus Zetterstedt). J. Asia-Pac. Entomol. 2016, 19, 1111–1116. [Google Scholar] [CrossRef]
- Tahir, M.; Vandenberg, A.; Chibbar, R.N. Influence of environment on seed soluble carbohydrates in selected lentil cultivars. J. Food Compos. Anal. 2011, 24, 596–602. [Google Scholar] [CrossRef]
- Nursten, H. Flavour and off-flavour formation in nonenzymic browning. In The Maillard Reaction Chemistry, Biochemistry and Implications, 1st ed.; Nursten, H., Ed.; Atheneum Press Ltd.: London, UK, 2005; pp. 62–89. [Google Scholar]
- Vranov, J.; Ciesarov, Z. Furan in food—A review. Czech J. Food Sci. 2009, 27, 1–10. [Google Scholar] [CrossRef]
- Ho, C.T.; Shahidi, F. Flavor components of fats and oil. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 387–411. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Dimitrios, L. Flavor of roasted peanuts (Arachis hypogaea)—Part II: Correlation of volatile compounds to sensory characteristics. Food Res. Int. 2016, 89, 870–881. [Google Scholar] [CrossRef]
- Flament, I. The individual constituents: Structure, nomenclature, origin, chemical and organoleptic properties. In Coffee Flavor Chemistry, 1st ed.; Flament, I., Ed.; John Wiley & Sons: Chichester, UK, 2002; pp. 81–346. [Google Scholar]
- Ho, C.W.; Wan Aida, W.M.; Maskat, M.Y.; Osman, H. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar. Food Chem. 2007, 102, 1156–1162. [Google Scholar] [CrossRef]
- Pattee, H.E.; Knauft, D.A. Comparison of selected high oleic acid breeding lines, Florunner and NC 7 for roasted peanut, sweet and other sensory attribute intensities. Peanut Sci. 1995, 22, 26–29. [Google Scholar] [CrossRef]
- Yu, A.N.; Tan, Z.W.; Shi, B.A. Influence of the pH on the formation of pyrazine compounds by the Maillard reaction of L-ascorbic acid with acidic, basic and neutral amino acids. Asia-Pac. J. Chem. Eng. 2012, 7, 455–462. [Google Scholar] [CrossRef]
- Van Lancker, F.; Adams, A.; De Kimpe, N. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems. J. Agric. Food Chem. 2012, 60, 4697–4708. [Google Scholar] [CrossRef]
- Ara, K.M.; Taylor, L.T.; Ashraf-Khorassani, M.; Coleman, W.M. Alkyl pyrazine synthesis via an open heated bath with variable sugars, ammonia, and various amino acids. J. Sci. Food Agric. 2017, 97, 2263–2270. [Google Scholar] [CrossRef]
- Chen, Y.; Xing, J.; Chin, C.-K.; Ho, C.-T. Effect of urea on volatile generation from Maillard reaction of cysteine and ribose. J. Agric. Food Chem. 2000, 48, 3512–3516. [Google Scholar] [CrossRef]
- Lu, G.; Yu, T.H.; Ho, C.T. Generation of flavor compounds by the reaction of 2-deoxyglucose with selected amino acids. J. Agric. Food Chem. 1997, 45, 233–236. [Google Scholar] [CrossRef]
- Cui, H.; Jia, C.; Hayat, K.; Yu, J.; Deng, S.; Karangwa, E.; Duhoranimana, E.; Zhang, X. Controlled formation of flavor compounds by preparation and application of Maillard reaction intermediate (MRI) derived from xylose and phenylalanine. RSC Adv. 2017, 7, 45442–45451. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Seow, Y.X.; Ong, P.K.; Zhou, W. Effects of high-intensity ultrasound on Maillard reaction in a model system of d-xylose and l-lysine. Ultrason. Sonochem. 2017, 34, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.J.; Liu, X.; Xia, B.; Hu, L.T.; Thakur, K.; Wei, Z.J. Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem. X 2021, 11, 100127. [Google Scholar] [CrossRef]
Sensory Attribute | Description a |
---|---|
Roast Peanutty | The aromatic associated with medium-roast peanuts having a fragrant character such as methyl pyrazine |
Dark Roast | The aromatic associated with dark roasted peanuts having a very browned or toasted character |
Sweet Aromatic | The aromatics associated with sweet material such as caramel, vanilla or molasses |
Raw/Beany | The aromatics associated with light roast peanuts having a legume like character |
Woody/Hulls/Skins | The aromatics associated with base peanut character (absence of fragrant top notes) related to dry wood, peanut hulls and skins |
Normal-Oleic Peanut Oil | High-Oleic Peanut Oil | |||
---|---|---|---|---|
Order | Retention Index | Volatile Compound | Volatile Compound (%) | Volatile Compound (%) |
N-heterocyclic | ||||
Pyrazines | ||||
1 | 1265 | Pyrazine, methyl- | 0.57 | 0.79 |
2 | 1319 | Pyrazine, 2,5-dimethyl- | 1.27 | 1.73 |
3 | 1334 | Pyrazine, ethyl- | 0.24 | 0.22 |
4 | 1344 | Pyrazine, 2,3-dimethyl- | 0.08 | 0.03 |
5 | 1389 | Pyrazine, 2-ethyl-5-methyl | 0.75 | 1.20 |
6 | 1434 | Pyrazine, 2-methoxy-3-(1-methylethyl) | 0.14 | |
7 | 1440 | Pyrazine, 3-ethyl-2,5-diemethyl | 0.09 | 0.19 |
Pyridines | ||||
8 | 1178 | Pyridine | 0.11 | |
9 | 1577 | Pyridine, 3-methoxy- | 0.49 | |
10 | 1599 | Ethanone, 1-(2-pyridinyl) | 0.10 | 0.09 |
Pyrroles | ||||
11 | 1140 | 1H-Pyrrole, 1-methyl- | 12.94 | 35.14 |
12 | 1976 | Ethanone, 1-(1H-pyrrol-2-yl) | 0.13 | |
13 | 2032 | 1H-Pyrrole-2-caboxaldehyde | 0.05 | |
Total | 16.98 | 39.40 | ||
O-heterocyclic | ||||
Furans | ||||
14 | 1233 | Furan, 2-methyl- | 0.17 | |
15 | 1235 | Furan, 2-pentyl- | 2.39 | 1.12 |
16 | 1608 | 2(3H)-Furanone, dihydro-5-methyl | 0.18 | |
17 | 1614 | 2(3H)-Furanone, dihydro-4-methyl | 1.04 | 1.05 |
18 | 1629 | 2(3H)-Furanone, dihydro- | 0.53 | 0.74 |
19 | 1665 | 2-Furanmethanol | 0.91 | 0.22 |
20 | 1697 | Furan, 2-pentyl- | 0.14 | |
21 | 1730 | 2,5-Furandione, 3,4-dimethyl | 0.09 | |
22 | 2027 | 2(3H)-Furanone, dihydro-5-pentyl | 0.07 | |
23 | 2042 | 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl | 0.41 | |
24 | 2407 | 2,3-dihydro-benzofuran | 1.03 | |
Pyrans | ||||
25 | 1804 | 2H-Pyran-2-one, tetrahydro- | 0.06 | |
26 | 1968 | 4H-Pyran-4-one, 3-hydroxy-2-methyl- | 0.67 | 0.87 |
Total | 7.44 | 4.24 | ||
Nonheterocyclic | ||||
Aldehydes | ||||
27 | <1000 | Butanal, 2-methyl- | 1.19 | 1.12 |
28 | <1000 | Butanal, 3-methyl- | 1.16 | 0.88 |
29 | <1000 | Pentanal | 2.87 | 0.48 |
30 | 1078 | Hexanal | 17.29 | 5.74 |
31 | 1185 | Heptanal | 0.76 | 1.89 |
32 | 1218 | 2-Hexenal, (E) | 0.48 | 0.13 |
33 | 1290 | Octanal | 1.08 | 3.75 |
34 | 1324 | 2-Heptenal, (Z) | 4.94 | 1.06 |
35 | 1395 | Nonanal | 1.33 | 4.95 |
36 | 1429 | 2-Octenal, (E) | 0.63 | |
37 | 1468 | Furfural | 1.27 | 0.76 |
38 | 1518 | Benzaldehyde | 2.69 | 2.77 |
39 | 1531 | 2-Nonenal, (E) | 0.47 | |
40 | 1643 | benzeneacetaldehyde | 1.15 | 0.10 |
41 | 1704 | Benzaldehyde, 4-ethyl- | 0.12 | 0.09 |
42 | 1762 | 2,4-Decadienal | 0.56 | |
43 | 1783 | 3-Phenylbutanal | 0.13 | |
44 | 1806 | 2,4-Decadienal, (E,E)- | 1.21 | |
45 | 1829 | 2-Propenal, 3-phenyl | 0.05 | |
46 | 2405 | Benzaldehyde, 4-methyl | 0.70 | |
Alcohols | ||||
47 | <1000 | 2-Propanol | 0.33 | |
48 | <1000 | Ethanol | 0.44 | |
49 | <1000 | 2-Butanol | 0.05 | |
50 | 1092 | 1-Propanol, 2-methyl- | 0.06 | 0.31 |
51 | 1207 | 1-Butanol, 3-methyl | 2.16 | |
52 | 1256 | 1-Pentanol | 4.08 | 2.16 |
53 | 1359 | 1-Hexanol | 5.79 | 2.29 |
54 | 1453 | 1-Octen-3-ol | 2.33 | 0.36 |
55 | 1558 | 1-Octanol | 0.46 | 2.45 |
56 | 1582 | 2,3-Butanediol | 0.08 | |
57 | 1618 | Ethanol, 2-(2-ethoxyethoxy) | 0.18 | 0.26 |
58 | 1659 | 1-Nonanol | 0.62 | |
59 | 1791 | Ethanol, 2-(2-butoxyethoxy)- | 0.15 | |
60 | 1912 | Phenylethyl Alcohol | 1.33 | 2.89 |
61 | 2018 | Phenol | 0.08 | 0.07 |
62 | 2184 | Phenol, 2-(1-methylpropyl)- | 0.19 | |
63 | 2309 | 5-Thiazoleethanol, 4-methyl | 0.35 | |
Alkanes | ||||
64 | <1000 | Pentane | 6.34 | |
65 | <1000 | Heptane | 1.01 | 1.59 |
66 | <1000 | Octane | 1.92 | 2.00 |
67 | <1000 | Heptane, 2,4-dimethyl | 0.65 | |
68 | <1000 | 2-Propanone | 1.35 | |
69 | <1000 | Octane, 4-methyl | 0.43 | |
70 | <1000 | Heptane, 2,2,4,6,6-pentamethyl- | 0.51 | 4.52 |
71 | <1000 | Decane | 0.03 | 2.29 |
72 | 1197 | Dodecane | 1.07 | |
73 | 1401 | Tetradecane | 0.80 | |
Acids | ||||
74 | 1496 | Acetic acid | 1.58 | 0.73 |
75 | 1769 | Pentanoic acid | 0.35 | 0.11 |
76 | 1875 | Hexanoic acid | 1.87 | 0.96 |
77 | 1981 | Heptanoic acid | 0.44 | 0.49 |
78 | 2087 | Octanoic acid | 0.46 | 0.28 |
79 | 2164 | Benzoic acid | 0.55 | |
80 | 2192 | Nonanoic acid | 0.99 | 0.50 |
81 | 2298 | Decanoic acid | 0.07 | |
Ketones | ||||
82 | 1129 | 3-Penten-2-one, 4-methyl- | 0.50 | |
83 | 1182 | 2-Heptanone | 0.49 | |
84 | 1286 | 2-Octanone | 0.14 | 0.20 |
85 | 1340 | 6-Methyl-5-hepten-2-one | 0.06 | 0.06 |
86 | 1407 | 3-Octen-2-one | 0.33 | |
Alkenes | ||||
87 | <1000 | 2-Octene, (Z) | 0.49 | |
88 | <1000 | 2-Octene, (E) | 0.23 | |
89 | <1000 | Alpha-Pinene | 0.27 | |
90 | 1096 | Undecane | 0.42 | |
91 | 1195 | Limonene | 0.70 | 0.24 |
Esters | ||||
92 | 1071 | Acetic acid, butyl ester | 0.12 | |
93 | 1635 | Decanoic acid, ethyl ester | 0.55 | |
Total | 75.58 | 56.37 |
Normal-Oleic Peanut Oil | High-Oleic Peanut Oil | ||||
---|---|---|---|---|---|
Retention Time | Key Volatile Compounds | Odor Description | Odor Strength | Concentration (mg/kg) | Concentration (mg/kg) |
7.4–7.5 | Pentanal | Nutty | 1.33 ± 0.58 | 1.39 ± 0.08 | 0.10 ± 0.01 |
10.3–10.6 | Hexanal | Green, Beany | 1.00 ± 0.00 | 8.40 ± 0.74 | 1.19 ± 0.06 |
12.1–12.7 | 1H-Pyrrole, 1-methyl- | Nutty, Sweet | 1.33 ± 0.58 | 6.29 ± 0.69 | 7.28 ± 0.42 |
14.9–15.1 | Furan, 2-pentyl- | Green, Earthy, Beany | 1.00 ± 0.00 | 1.16 ± 0.10 | 0.23 ± 0.01 |
16.0–16.2 | Pyrazine, methyl- | Nutty, Roasted, Cocoa | 3.00 ± 0.00 | 0.28 ± 0.02 | 0.16 ± 0.02 |
17.6–17.8 | Pyrazine, 2,5-dimethyl- | Nutty, Roasted, Cocoa | 3.67 ± 0.58 | 0.62 ± 0.05 | 0.36 ± 0.01 |
19.8–20.0 | Pyrazine, 2-ethyl-5-methyl | Nutty, Roasted, Grassy | 2.67 ± 0.58 | 0.37 ± 0.03 | 0.25 ± 0.00 |
21.3–21.5 | Furfural | Sweet | 1.67 ± 0.58 | 0.62 ± 0.05 | |
22.8–23.0 | Benzaldehyde | Sweet | 2.33 ± 0.58 | 1.30 ± 0.09 | 0.57 ± 0.01 |
25.8–26.0 | 2-Furanmethanol | Sweet | 1.67 ± 0.58 | 0.44 ± 0.05 | 0.05 ± 0.00 |
32.4–32.6 | 4H-Pyran-4-one, 3-hydroxy-2-methyl- | Sweet | 2.00 ± 0.00 | 0.32 ± 0.01 | 0.18 ± 0.01 |
Normal-Oleic Peanut | Roasted Normal-oleic Peanut | Normal-Oleic Peanut Meal | High Oleic Peanut | Roasted High-Oleic Peanut | High-Oleic Peanut Meal | |
---|---|---|---|---|---|---|
Aspartic acid | 2.83 ± 0.11 a | 2.80 ± 0.14 a | 3.37 ± 0.24 a | 2.65 ± 0.13 a | 2.75 ± 0.08 a | 3.10 ± 0.03 a |
Threonine | 0.66 ± 0.07 a | 0.67 ± 0.04 a | 0.75 ± 0.04 a | 0.64 ± 0.05 a | 0.65 ± 0.07 a | 0.71 ± 0.05 a |
Serine | 1.37 ± 0.06 a | 1.38 ± 0.07 a | 1.53 ± 0.03 a | 1.25 ± 0.09 a | 1.29 ± 0.12 a | 1.44 ± 0.09 a |
Glutamic acid | 4.63 ± 0.12 ab | 4.65 ± 0.02 ab | 5.45 ± 0.31 a | 4.37 ± 0.16 b | 4.52 ± 0.15 ab | 5.08 ± 0.16 ab |
Proline | 1.06 ± 0.05 a | 1.07 ± 0.06 a | 1.16 ± 0.14 a | 0.97 ± 0.04 a | 1.02 ± 0.04 a | 1.09 ± 0.05 a |
Glycine | 1.22 ± 0.06 a | 1.22 ± 0.09 a | 1.42 ± 0.09 a | 1.43 ± 0.07 a | 1.45 ± 0.05 a | 1.55 ± 0.08 a |
Alanine | 0.92 ± 0.08 a | 0.93 ± 0.05 a | 1.06 ± 0.07 a | 0.86 ± 0.00 a | 0.91 ± 0.07 a | 0.99 ± 0.03 a |
Cystine | 0.35 ± 0.02 a | 0.35 ± 0.01 a | 0.39 ± 0.02 a | 0.35 ± 0.04 a | 0.35 ± 0.02 a | 0.40 ± 0.01 a |
Valine | 1.05 ± 0.04 a | 1.04 ± 0.07 a | 1.23 ± 0.14 a | 1.05 ± 0.07 a | 1.09 ± 0.05 a | 1.21 ± 0.07 a |
Isoleucine | 0.75 ± 0.05 a | 0.74 ± 0.06 a | 0.95 ± 0.08 a | 0.74 ± 0.05 a | 0.79 ± 0.11 a | 0.86 ± 0.05 a |
Leucine | 1.55 ± 0.11 a | 1.55 ± 0.09 a | 1.87 ± 0.09 a | 1.57 ± 0.08 a | 1.56 ± 0.13 a | 1.72 ± 0.12 a |
Tyrosine | 0.96 ± 0.07 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.90 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Phenylalanine | 1.23 ± 0.14 a | 0.95 ± 0.04 a | 1.14 ± 0.04 a | 1.15 ± 0.07 a | 1.01 ± 0.07 a | 1.35 ± 0.08 a |
Histidine | 0.71 ± 0.05 b | 1.25 ± 0.13 a | 1.43 ± 0.05 a | 0.70 ± 0.03 b | 1.25 ± 0.09 a | 0.80 ± 0.00 b |
Lysine | 1.02 ± 0.07 a | 0.70 ± 0.03 b | 0.69 ± 0.03 b | 1.00 ± 0.04 a | 0.74 ± 0.03 b | 0.73 ± 0.04 b |
Arginine | 2.63 ± 0.16 a | 1.13 ± 0.05 b | 1.09 ± 0.08 b | 2.51 ± 0.07 a | 1.08 ± 0.07 b | 1.07 ± 0.01 b |
Normal-Oleic Peanut | Roasted Normal-Oleic Peanut | Normal-Oleic Peanut Meal | High-Oleic Peanut | Roasted High-Oleic Peanut | High-Oleic Peanut Meal | |
---|---|---|---|---|---|---|
Fructose | 0.26 ± 0.06 b | 0.81 ± 0.09 a | 0.94 ± 0.05 a | 0.24 ± 0.10 b | 0.62 ± 0.04 ab | 0.57 ± 0.05 ab |
Glucose | 0.18 ± 0.06 a | 0.14 ± 0.03 a | 0.12 ± 0.04 a | 0.07 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.02 a |
Sucrose | 50.99 ± 1.37 b | 58.36 ± 3.18 ab | 68.57 ± 0.81 a | 56.73 ± 3.51 ab | 64.15 ± 3.29 ab | 60.19 ± 1.27 ab |
Maltose | 3.06 ± 0.16 bc | 4.31 ± 0.20 ab | 4.83 ± 0.34 a | 1.87 ± 0.23 d | 3.27 ± 0.34 bc | 2.64 ± 0.12 cd |
Starchyose | 0.69 ± 0.06 b | 2.36 ± 0.37 ab | 3.27 ± 0.45 ab | 2.57 ± 0.23 ab | 4.53 ± 0.63 a | 3.05 ± 0.99 ab |
Raffinose | 2.30 ± 0.02 b | 3.59 ± 0.12 a | 3.66 ± 0.05 a | 2.42 ± 0.15 b | 2.64 ± 0.17 b | 2.89 ± 0.07 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Shi, A.; Liu, H.; Liu, L.; Fauconnier, M.L.; Wang, Q. Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods 2021, 10, 3036. https://doi.org/10.3390/foods10123036
Hu H, Shi A, Liu H, Liu L, Fauconnier ML, Wang Q. Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods. 2021; 10(12):3036. https://doi.org/10.3390/foods10123036
Chicago/Turabian StyleHu, Hui, Aimin Shi, Hongzhi Liu, Li Liu, Marie Laure Fauconnier, and Qiang Wang. 2021. "Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts" Foods 10, no. 12: 3036. https://doi.org/10.3390/foods10123036
APA StyleHu, H., Shi, A., Liu, H., Liu, L., Fauconnier, M. L., & Wang, Q. (2021). Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods, 10(12), 3036. https://doi.org/10.3390/foods10123036