Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review
Abstract
:1. Introduction
1.1. The Concept of Quality
1.2. Quality Measurement and Evaluation
1.3. Parameters Used for Evaluating Models’ Performance
2. Infrared Spectroscopy
2.1. Overview of Infrared Spectroscopy
2.2. Application of Infrared Spectroscopy for Assessment of Processed Horticultural Products
2.2.1. Dried Horticultural Products
Products | Non-Invasive Method | Parameters | Wavelength Range | Predictors Accuracy | References |
---|---|---|---|---|---|
Black tea | NIRs | Caffeine Free amino acid Total phenolics Water extract | 800–2500 nm | R2 = 0.955, RMSEP = 0.16% R2 = 0.927, RMSEP = 0.273% R2 = 0.954, RMSEP = 0.594% R2 = 0.962, RMSEP = 0.685% | [42] |
Chilli powder | NIRs | Aflatoxin B1 | 12,000–4000 cm−1 | R2 = 0.967, RMSECV = 0.654% | [4] |
Chilli powder | NIRs | Sudan I dye | 9000–4000 cm−1 | R2 = 0.991, RMSEP = 0.141% | [46] |
Corn flour | NIRs | Protein | 10,000–4000 cm−1 | R2 = 0.882, RMSEP = 0.413% | [39] |
Garlic powder | MIRs | Starch | 4000–650 cm−1 | R2 = 0.950 for VIP, R2 = 0.890 for SR | [38] |
Coffee powder | NIRs | Moisture content | 960–1650 nm | R2 = 0.980, RMSECV = 0.02%, RPD = 8.0 | [43] |
Tap density | 960–1650 nm | R2 = 0.700, RMSECV = 13.70 g/L, RPD = 1.8 | |||
Powder granulometry | 960–1650 nm | R2 = 0.920, RMSECV = 1.23%, RPD = 3.5 | |||
Coffee powder | NIRs | Moisture content | 960–1650 nm | R2 = 0.970, RMSEP = 0.13% | [45] |
Lotus root flour | MIRs | Starch | 4000–500 cm−1 | R2 = 0.981, SDR = 5.47% | [40] |
Tea powder | MIRs | Catechin | 4000–1000 cm−1 | R2 = 0.921–0.971, RMSEP = 0.017–0.384% | [35] |
Tea powder | MIRs | Polyphenol | 4000–400 cm−1 | R2 = 0.708–0.713 | [48] |
Tea powder | MIRs | Talcum concentration | 4000–400 cm−1 | R2 = 0.927, RMSEP = 0.137% | [37] |
Turmeric powder | MIRs | Metanil yellow | 4000–650 cm−1 3700–100 cm−1 | Detection of 5% (w/w) 1% (w/w) | [41] |
2.2.2. Juice Products
Product | Non-Invasive Method | Parameters | Wavelength Range | Predictors Accuracy | References |
---|---|---|---|---|---|
Apple juice | NIRs | SSC TA SSC/TA | 12,500–4000 cm−1 | R2 = 0.881, RMSECV = 0.277% R2 = 0.761, RMSECV = 0.239% R2 = 0.843, RMSECV = 0.113% | [50] |
Bayberry juice | NIRs | Glucose Fructose Sucrose | 800–2400 nm | R2 = 0.746–0.854 R2 = 0.698–0.963 R2 = 0.890–0.993 | [49] |
Black currant juice | MIRs | SSC TA | 7000–600 cm−1 | R2 = 0.97, RMSECV = 1.14% R2 = 0.96, RMSECV = 2.61% | [56] |
Grape juice | Vis/NIRs | SSC pH | 325–1075 nm | R2 = 0.979, RPD = 6.971 R2 = 0.951, RPD = 5.432 | [54] |
Grape juice | MIR/NIR | TAC TPC | 10,000–829.11 cm−1 10,000–823.52 cm−1 | R2 = 0.81, RMSEP = 4.22–4.44 mg/100 mL R2 = 0.90, RMSEP = 0.21–0.37 GAE mg/100 mL | [60] |
Mango juice | MIRs | ASC TSS RJC | 4000–650 cm−1 | R2 = 0.996 R2 = 0.997 R2 = 0.986 | [58] |
Pomegranate juice | NIRs/MIRs | TSS TA TSS/TA | 12,500–4000 cm−1 | R2 = 0.923, RMSEP = 0.31%, RPD = 3.63 R2 = 0.862, RMSEP = 0.11%, RPD = 2.7 R2 = 0.817, RMSEP = 1.04%, RPD = 2.35 | [59] |
Strawberry juice | MIRs | Glucose, sucrose, fructose | 1200–900 cm−1 | R2 ≥ 0.97 | [52] |
Satsuma mandarin | Vis/NIRs | SSC TA | 600–1100 nm | R2 = 0.92, SEP = 0.42 °Brix R2 = 0.56, SEP = 0.14% | [51] |
Tomato juice | NIRs | SSC pH | 800–2400 nm | 100% accuracy | [52] |
Tomato juice | MIRs | Glucose, fructose, TSS, viscosity | 1460–950 cm−1 | Rpred ≥ 0.82 | [53] |
2.2.3. Oil Products
3. Hyperspectral Imaging (HSI) and Multispectral Imaging (MSI)
3.1. Overview of Hyperspectral Imaging (HSI) and Multispectral Imaging (MSI)
3.2. Application of Hyperspectral Imaging (HSI) and Multispectral (MSI) for Assessment of Processed Horticultural Products
3.2.1. Dried Horticultural Products
3.2.2. Juice Products
3.2.3. Oil Products
4. X-ray Micro-Computed Tomography
4.1. Overview of X-ray Micro-Computed Tomography
4.2. Application of X-ray Computed Tomography for Assessment of Processed Horticultural Products
Products | Tube Voltage and Current | Spatial Resolution | Application | Reference |
---|---|---|---|---|
Banana slices | 60 kV, 167 mA | 15 µm | Effect of far-infrared radiation on the microstructure | [98] |
Coffee beans | 29 kV, 175 µm | 2.8 µm | Microstructural changes induced by roasting | [100] |
Coffee beans | 19 and 20 keV | 9 µm | Evaluation of microstructural properties | [99] |
Minimally processed pomegranate arils | 200 kV, 100 µA | 71.4 µm | Characterization and estimation of pomegranate arils | [97] |
Pomegranate juice | 245 kV, 300 µA | 71.4 µm | Characterization and estimation of pomegranate juice, aril, and peel | [96] |
Pomegranate fruit parts | 100 kV, 200 µA | 71.4 µm | Estimation of pomegranate whole fruit and different parts | [94] |
5. Raman Spectroscopy
5.1. Overview of Raman Spectroscopy
5.2. Application of Raman Spectroscopy for Assessment of Processed Horticultural Products
5.2.1. Dried Horticultural Products
5.2.2. Juice Products
5.2.3. Oil Products
6. Nuclear Magnetic Resonance (NMR)
6.1. Overview of Nuclear Magnetic Resonance
6.2. Application of Nuclear Magnetic Resonance to Assessment of Processed Horticultural Products
6.2.1. Juice Products
6.2.2. Oil Products
Products | Parameters | Wavelength Range | Predictor’s Accuracy | References |
---|---|---|---|---|
EVOO | Stability of oil | 300 MHz | Order of stability are MO > EVOO > AKO > SO. | [129] |
Different blend of edible oil | Free fatty acid | 400.17 MHz | Relative sensitivity = 0.90% | [126] |
Different blends of vegetable oils | SFA, linoleic acid | 200 MHz | methoxyl (δ = 3.70) and glyceryl methylene (δ = 4.10–4.40) protons, respectively. | [127] |
7. Other Spectroscopy Technologies
7.1. Dielectric Spectroscopy
7.1.1. Overview of Dielectric Spectroscopy to Assessment of Processed Horticultural Products
7.1.2. Application of Dielectric Spectroscopy to the Assessment of Processed Horticultural Products
7.2. Fluorescence Spectroscopy
7.2.1. Overview of Fluorescence Spectroscopy to Assessment of Processed Horticultural Products
7.2.2. Application of Fluorescence Spectroscopy to Assessment of Processed Horticultural Products
8. Future Prospects
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, W.H.; Sun, D.W. Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Barringer, N.S.S.A. Fruits and Vegetables—Processing Technologies and Applications, First Publ. Food Processing: Principles and Applications, 2nd ed.; Wiley: Blackwell, UK, 2014. [Google Scholar]
- Asselt, E.D.; der Fels-Klerx, H.; Marvin, H.; Bokhorst-van de, V.H.; Groot, M.N. Overview of food safety hazards in the European dairy supply chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mishra, H. A rapid FT-NIR method for estimation of aflatoxin B1 in red chili powder. Food Control 2009, 20, 840–846. [Google Scholar] [CrossRef]
- Inarejos-García, A.; Gómez-Alonso, S.; Fregapane, G.; Salvador, M.D. Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy. Food Res. Int. 2013, 50, 250–258. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Approaches to analysis and modeling texture in fresh and processed foods—A review. J. Food Eng. 2013, 119, 497–507. [Google Scholar] [CrossRef]
- Malegori, C.; Marques, J.E.N.; Freitas, T.S.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the ana-lytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Gowen, A.; O’Donnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Moghaddam, T.M.; Razavi, S.M.A.; Taghizadeh, M. Applications of hyperspectral imaging in grains and nuts quality and safety assessment: A review. J. Food Meas. Charact. 2013, 7, 129–140. [Google Scholar] [CrossRef]
- Das, T.; Agrawal, R.S. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spec.-Trosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive characterization and volume esti-mation of pomegranate fruit external and internal morphological fractions using X-ray computed tomog-raphy. J. Food Eng. 2016, 186, 42–49. [Google Scholar] [CrossRef]
- Arendse, E.; Nieuwoudt, H.; Magwaza, L.S.; Nturambirwe, J.F.I.; Fawole, O.A.; Opara, U.L. Recent ad-vancements on vibrational spectroscopic techniques for the detection of authenticity and adulteration in horticultural products with a specific focus on oils, juices and powders. Food Bioprocess Technol. 2020, 14, 1–22. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Mohtasebi, S.S. Principles and applications of light backscattering im-aging in quality evaluation of agro-food products: A review. Food Bioproc. Tech. 2012, 5, 1465–1485. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Camelo, A.F.L. The quality in fruits and vegetables. In Manual for the Preparation and Sale of Fruits and Vegetables; Agricultural Services Bulletin; FAO: Italy, Rome, 2004; Volume 151, pp. 88–90. [Google Scholar]
- Ireson, W.G.; Juran, J.M. Quality-Control Handbook; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Crosby, P.B. Quality Is Free; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Bement, T.R.; Ross, P.J. Taguchi Techniques for Quality Engineering; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Kader, A.A. Quality of horticultural products. Acta Hortic. 2000, 517, 17–18. [Google Scholar] [CrossRef]
- Straker, D. What is Quality? Part 1. Quality World, April Issue. J; Chart. Qual. Institute: London, UK, 2001. [Google Scholar]
- Straker, D. What is Quality? Part 2. Quality World, May Issue. J; Chart. Qual. Institute: London, UK, 2001; Available online: http://syque.com/articles/what_is_quality/what_is_quality.htm (accessed on 30 November 2021).
- Kader, A.A. Quality in Relation to Marketability of Fresh Fruits and Vegetables. 1986. Available online: https://ucanr.edu/sites/Postharvest_Technology_Center_/files/231804.pdf (accessed on 30 November 2021).
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharvest Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Watada, A.E. Quality evaluation of horticultural crops the problems. Hortic. Sci. 1980, 15, 47–51. [Google Scholar]
- Opara, L.U.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties, vitamin C content, and antimicro-bial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- Kader, A. Quality assurance of harvested horticultural perishables. Acta Hortic. 2001, 553, 51–56. [Google Scholar] [CrossRef]
- Opara, U.L.; Pathare, P.B. Postharvest biology and technology bruise damage measurement and analysis of fresh horticultural produce—A review. Postharvest Biol. Technol. 2014, 91, 9–24. [Google Scholar] [CrossRef]
- Flores, K.; Sánchez, M.; Pérez-Marín, D.; López, M.; Guerrero, J.; Garrido-Varo, A. Prediction of Total Soluble Solid Content in Intact and Cut Melons and Watermelons Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2008, 16, 91–98. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.R.; Saeys, W. NIR spectroscopy applications for in-ternal and external quality analysis of citrus fruit—A review. Food Bioproc. Technol. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Kelly, J.F.D.; Downey, G.; Fourtier, V. Initial study of honey adulteration by sugar solutions using mid in-frared (MIR) spectroscopy and chemometrics. J. Agric. Food Chem. 2004, 52, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Fourier transform near infrared dif-fuse reflectance spectroscopy and two spectral acquisition modes for evaluation of external and internal quality of intact pomegranate fruit. Postharvest Biol. Technol. 2018, 138, 91–98. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Chaitep, S.; Guo, Z. Simultaneous analysis of main catechins contents in green tea (Ca-mellia sinensis (L.)) by Fourier transform near infrared reflectance (FT-NIR) spectroscopy. Food Chem. 2009, 113, 1272–1277. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, D.; Chen, E.C.Y.; Li-Chan, E.; Grant, E.; Lu, X. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta 2015, 143, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; He, Y. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics. Sci. Rep. 2016, 6, 30313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohumi, S.; Lee, S.; Cho, B.-K. Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sens. Actuators B Chem. 2015, 216, 622–628. [Google Scholar] [CrossRef]
- Chen, H.-Z.; Song, Q.-Q.; Tang, G.-Q.; Xu, L.-L. An optimization strategy for waveband selection in FT-NIR quantitative analysis of corn protein. J. Cereal Sci. 2014, 60, 595–601. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Y.; Dong, N.; Lai, C.; Zhao, G. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy. Food Chem. 2013, 141, 3103–3109. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Chan, D. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods 2016, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Wang, S.; Ning, J.; Xu, R.; Wang, Y.; Xing, Z.; Wan, X.; Zhang, Z. Quantitative analysis and geo-graphical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS). Food Res. Int. 2013, 53, 822–826. [Google Scholar] [CrossRef]
- Tugnolo, A.; Beghi, R.; Giovenzana, V.; Guidetti, R. Characterization of green, roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two devices. J. Near Infrared Spectrosc. 2019, 27, 93–104. [Google Scholar] [CrossRef]
- Adnan, A.; Naumann, M.; Mörlein, D.; Pawelzik, E. Reliable Discrimination of Green Coffee Beans Species: A Comparison of UV-Vis-Based Determination of Caffeine and Chlorogenic Acid with Non-Targeted Near-Infrared Spectroscopy. Foods 2020, 9, 788. [Google Scholar] [CrossRef]
- Tugnolo, A.; Giovenzana, V.; Malegori, C.; Oliveri, P.; Casson, A.; Curatitoli, M.; Guidetti, R.; Beghi, R. A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. Food Control 2021, 130, 108312. [Google Scholar] [CrossRef]
- Haughey, S.A.; Galvin-King, P.; Ho, Y.-C.; Bell, S.E.; Elliott, C.T. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control 2015, 48, 75–83. [Google Scholar] [CrossRef]
- Hu, L.; Yin, C.; Ma, S.; Liu, Z. Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics. Comput. Electron. Agric. 2018, 154, 491–500. [Google Scholar] [CrossRef]
- Li, X.; Sun, C.; Luo, L.; He, Y. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques. Comput. Electron. Agric. 2015, 112, 28–35. [Google Scholar] [CrossRef]
- Xie, L.; Ye, X.; Liu, D.; Ying, Y. Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS. Food Chem. 2009, 114, 1135–1140. [Google Scholar] [CrossRef]
- Włodarska, K.; Khmelinskii, I.; Sikorska, E. Evaluation of Quality Parameters of Apple Juices Using Near-Infrared Spectroscopy and Chemometrics. J. Spectrosc. 2018, 2018, 5191283. [Google Scholar] [CrossRef]
- Masithoh, R.E.; Haff, R.; Kawano, S. Determination of Soluble Solids Content and Titratable Acidity of Intact Fruit and Juice of Satsuma Mandarin Using a Hand-Held near Infrared Instrument in Transmittance Mode. J. Near Infrared Spectrosc. 2016, 24, 83–88. [Google Scholar] [CrossRef]
- Cassani, L.; Santos, M.; Gerbino, E.; Moreira, M.D.R.; Gómez-Zavaglia, A. A Combined Approach of Infrared Spectroscopy and Multivariate Analysis for the Simultaneous Determination of Sugars and Fructans in Strawberry Juices during Storage. J. Food Sci. 2018, 83, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, H.; Sierra-Cadavid, A.; Aykas, D.P.; Mulqueeney, B.; Sullivan, S.; Rodriguez-Saona, L.E. Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multi-variate analysis. Food Control 2016, 66, 79–86. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Nie, P.; Cao, F.; Bao, Y. Hybrid variable selection in visible and near-infrared spectral analy-sis for non-invasive quality determination of grape juice. Anal. Chim. Acta 2010, 659, 229–237. [Google Scholar] [CrossRef]
- Xie, L.; Ying, Y. Use of near-infrared spectroscopy and least-squares support vector machine to determine quality change of tomato juice. J. Zhejiang Univ. Sci. 2009, 10, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Camps, C.; Robic, R.; Bruneau, M.; Laurens, F. Rapid determination of soluble solids content and acidity of Black currant (Ribes nigrum L.) juice by mid-infrared spectroscopy performed in series. LWT 2010, 43, 1164–1167. [Google Scholar] [CrossRef]
- Bahrami, M.E.; Honarvar, M.; Ansari, K.; Jamshidi, B. Measurement of quality parameters of sugar beet juices using near-infrared spectroscopy and chemometrics. J. Food Eng. 2020, 271, 109775. [Google Scholar] [CrossRef]
- Jha, S.N.; Gunasekaran, S. Authentication of sweetness of mango juice using Fourier transform infra-red-attenuated total reflection spectroscopy. J. Food Eng. 2010, 101, 337–342. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Comparing the analytical perfor-mance of near and mid infrared spectrometers for evaluating pomegranate juice quality. Food Sci. Technol. 2018, 91, 180–190. [Google Scholar]
- Caramês, E.T.S.; Alamar, P.D.; Poppi, R.J.; Pallone, J.A.L. Rapid assessment of total phenolic and anthocya-nin contents in grape juice using infrared spectroscopy and multivariate calibration. Food Anal. Methods 2017, 10, 1609–1615. [Google Scholar] [CrossRef]
- Xie, L.-J.; Ye, X.-Q.; Liu, D.-H.; Ying, Y.-B. Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy. J. Zhejiang Univ. Sci. B 2008, 9, 982–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šnurkovič, P. Quality assessment of fruit juices by NIR spectroscopy. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Snyder, M.M.; Sweeney, A.B.; Rodriguez-Saona, C.F.; Giusti, L.E. Rapid authentication of concord juice concentration in a grape juice blend using Fourier-transform infrared spectroscopy and chemometric analysis. Food Chem. 2014, 147, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marina, A.M.; Wan Rosli, W.I.; Noorhidayah, M. Quantitative analysis of peroxide value in virgin coconut oil by ATR-FTIR spectroscopy A.M. Open Conf. Proc. J. 2013, 4, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Marina, A.M.; Wan Rosli, W.I.; Noorhidayah, M. Rapid quantification of free fatty acids in virgin coconut oil by FTIR spectroscopy. Malaysian Appl. Biol. 2015, 44, 45–49. [Google Scholar]
- Mba, O.I.; Adewale, P.; Dumont, M.-J.; Ngadi, M. Application of near-infrared spectroscopy to characterize binary blends of palm and canola oils. Ind. Crop. Prod. 2014, 61, 472–478. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Tuchiya, T.; Miao, Y.; Chen, J.Y. Rapid Determination of Degradation of Frying Oil Using Near-Infrared Spectroscopy. Food Sci. Technol. Res. 2014, 20, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Maggio, R.M.; Kaufman, T.S.; Carlo, M.D.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitor-ing of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem. 2009, 114, 1549–1554. [Google Scholar] [CrossRef]
- Cayuela, A.; García, J.F. Nondestructive measurement of squalene in olive oil by near infrared spectrosco-py. Food Sci. Technol. 2018, 88, 103–108. [Google Scholar]
- Özdemir, I.S.; Dağ, Ç.; Özinanç, G.; Suçsoran, Ö.; Ertaş, E.; Bekiroğlu, S. Quantification of sterols and fatty acids of extra virgin olive oils by FT-NIR spectroscopy and multivariate statistical analyses. LWT 2018, 91, 125–132. [Google Scholar] [CrossRef]
- Gurdeniz, G.; Ozen, B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 2009, 116, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Sinelli, N.; Cerretani, L.; Di Egidio, V.; Bendini, A.; Casiraghi, E. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity. Food Res. Int. 2010, 43, 369–375. [Google Scholar] [CrossRef]
- Dupuy, N.; Galtier, O.; Ollivier, D.; Vanloot, P.; Artaud, J. Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta 2010, 666, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Basri, K.N.; Hussain, M.N.; Bakar, J.; Sharif, Z.; Khir, M.F.A.; Zoolfakar, A.S. Classification and quantifica-tion of palm oil adulteration via portable NIR spectroscopy. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2017, 173, 335–342. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- Zhang, B.H.; Li, J.B.; Fan, S.X.; Huang, W.Q.; Zhang, C.; Wang, Q.Y. Principles, developments and applica-tions of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Baiano, A. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. J. Food Eng. 2017, 214, 10–15. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S.; Lu, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Wang, L.; Sun, D.-W.; Pu, H.; Cheng, J.-H. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Crit. Rev. Food Sci. Nutr. 2017, 57, 1524–1538. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Deleuran, L.C.; Gislum, R. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics. J. Spectr. Imaging 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Shetty, N.; Olesen, M.H.; Gislum, R.; Deleuran, L.C.; Boelt, B. Use of partial least squares discriminant anal-ysis on visible near-infrared multispectral image data to examine germination ability and germ length in spinach seeds. J. Chemom. 2012, 26, 462–476. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.S.; Lim, H.-S.; Park, E.; Lee, W.H.; Cho, B.K. Detection of cucumber green mottle mosaic vi-rus-infected watermelon seeds using a near-infrared (NIR) hyperspectral imaging system: Application to seeds of the ‘Sambok Honey’ cultivar. Biosyst. Eng. 2016, 148, 138–147. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging. Food Chem. 2022, 371, 131159. [Google Scholar] [CrossRef] [PubMed]
- Forchetti, D.A.P.; Poppi, R.J. Detection and quantification of adulterants in roasted and ground coffee by NIR hyperspectral imaging and multivariate curve resolution. Food Anal. Methods 2020, 13, 44–49. [Google Scholar] [CrossRef]
- Fu, X.; Chen, J.; Fu, F.; Wu, C. Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging. Biosyst. Eng. 2020, 190, 120–130. [Google Scholar] [CrossRef]
- Guo, Y.; Ding, H.; Xu, J.; Xu, H. Clustering analysis based on hyperspectral DN values of waste oil. Remote Sens. Land Resour. 2014, 26, 37–41. [Google Scholar]
- Martinez-Gila, D.; Cano-Marchal, P.; Gámez-Garcia, J.; Gómez, O.J. Hyperspectral imaging for determination of some quality parameters for olive oil. In Proceedings of the 18th International Conference on Automation and Computing (ICAC), Loughborough, UK, 7–8 September 2012; pp. 7–8. [Google Scholar]
- Xiong, Z.L.; Liu, C.; Pan, C.; Ma, W.; Xiong, F.; Qi, C.; Chen, L.; Lu, X.; Yang, J. Non-destructive determination of total polyphenols content and classification of storage periods of iron buddha tea using multispec-tral imaging system. Food Chem. 2015, 176, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; van Ruth, S.M.; van Raamsdonk, L.W.; Minaei, S. Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. LWT 2019, 104, 61–69. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Bulens, I.; De Baerdemaker, J.; De Ketelaere, B.; Hertog, M.L.A.T.M.; Verboven, P.; Lemmertyn, J. Non-destructive evaluation: Detection of external and internal attributes frequently associated with quality and damage. In Postharvest Handling: A Systems Approach; Florkowiski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009; pp. 421–442. [Google Scholar]
- Kotwaliwale, N.; Singh, K.; Kalne, A.; Jha, S.N.; Seth, N.; Kar, A. X-ray imaging methods for internal quality evaluation of agricultural produce. J. Food Sci. Technol. 2011, 51, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Curry, T.S.; Dowdey, J.E.; Murry, R.C., Jr. Christensen’s Physics of Diagnostic Radiology, 4th ed.; Williams Wilkins: Philadelphia, PA, USA, 1990. [Google Scholar]
- Arendse, E.; Fawole, O.; Magwaza, L.; Opara, U.L. Estimation of the density of pomegranate fruit and their fractions using X-ray computed tomography calibrated with polymeric materials. Biosyst. Eng. 2016, 148, 148–156. [Google Scholar] [CrossRef]
- Casasent, D.A.; Sipe, M.A.; Schatzki, T.F.; Keagy, P.M.; Lee, L.C. Neural Net Classification of X-ray Pistachio Nut Data. LWT 1998, 31, 122–128. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive estimation of pomegranate juice content of intact fruit using X-ray computed tomography. Acta Hortic. 2018, 1201, 297–302. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Investigating non-destructive quantification and characterization of pome-granate fruit internal structure using X-ray computed tomography. Postharvest Biol. Technol. 2014, 95, 1–6. [Google Scholar] [CrossRef]
- Léonard, A.; Blacher, S.; Nimmol, C.; Devahastin, S. Effect of far-infrared radiation assisted drying on mi-crostructure of banana slices: An illustrative use of X-ray microtomography in microstructural evaluation of a food product. J. Food Eng. 2008, 85, 154–162. [Google Scholar] [CrossRef]
- Pittia, P.; Sacchetti, G.; Mancini, L.; Voltolini, M.; Sodini, N.; Tromba, G.; Zanini, F. Evaluation of Microstructural Properties of Coffee Beans by Synchrotron X-ray Microtomography: A Methodological Approach. J. Food Sci. 2011, 76, E222–E231. [Google Scholar] [CrossRef]
- Frisullo, P.; Barnabà, M.; Navarini, L.; Del Nobile, M. Coffea arabica beans microstructural changes induced by roasting: An X-ray microtomographic investigation. J. Food Eng. 2012, 108, 232–237. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Kandpal, L.M.; Bae, H.; Rahman, A.; Cho, B.-K. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration. PLoS ONE 2018, 13, e0195253. [Google Scholar] [CrossRef]
- Yang, D.; Ying, Y. Applications of Raman spectroscopy in agricultural products and food analysis: A re-view. Appl. Spectrosc. Rev. 2011, 46, 539–560. [Google Scholar] [CrossRef]
- Ilaslan, K.; Boyaci, I.H.; Topcu, A. Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy. Food Control 2015, 48, 56–61. [Google Scholar] [CrossRef]
- Saleem, M.; Amin, A.; Irfan, M. Raman spectroscopy based characterization of cow, goat and buffalo fats. J. Food Sci. Technol. 2021, 58, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Jin, D.; Ma, P.; Wang, D.; Yang, Q.; Song, D.; Wang, X. Rapid Determination of Rhodamine B in Chili Powder by Surface-Enhanced Raman Spectroscopy. Anal. Lett. 2015, 48, 1918–1929. [Google Scholar] [CrossRef]
- Pei, L.; Ou, Y.; Yu, W.; Fan, Y.; Huang, Y.; Lai, K. Au-Ag Core-Shell Nanospheres for surface-enhanced Ra-man scattering detection of Sudan I and Sudan II in chili powder. J. Nanomater. 2015, 16, 215. [Google Scholar]
- Li, X.-L.; Sun, C.J.; Luo, L.B.; He, Y. Nondestructive detection of lead chrome green in tea by Raman spec-troscopy. Sci. Rep. 2015, 5, 15729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.-H.; Zhang, J.; Hong, Y.-C.; Wang, Y.-R.; Chen, X. Determination of carbendazim in tea using surface enhanced Raman spectroscopy. Chin. Chem. Lett. 2015, 26, 1455–1459. [Google Scholar] [CrossRef]
- Shende, C.; Inscore, F.; Sengupta, A.; Stuart, J.; Farquharson, S. Rapid extraction and detection of trace Chlorpyrifos-methyl in orange juice by surface-enhanced Raman spectroscopy. Sens. Instrum. Food Qual. Saf. 2010, 4, 101–107. [Google Scholar] [CrossRef]
- Malekfar, R.; Nikbakht, A.M.; Abbasian, S.; Sadech, F.; Mozaffari, M. Evaluation of tomato juice quality us-ing surface enhanced Raman spectroscopy. Acta Phys. Pol. A 2010, 117, 971–973. [Google Scholar] [CrossRef]
- Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B.; Chis, V.; Pinzaru, S.C. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 2018, 242, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Lai, K.; Rasco, B.A.; Huang, Y. Analyses of phosmet residues in apples with surface-enhanced Ra-man spectroscopy. Food Control 2014, 37, 153–157. [Google Scholar] [CrossRef]
- Pan, T.; Sun, D.W.; Pu, H.; Wei, Q.; Xiao, W.; Wang, Q.J. Detection of A. Alternata from pear juice using sur-face-enhanced Raman spectroscopy-based silver nanodots array. J. Food Eng. 2017, 215, 147–155. [Google Scholar] [CrossRef]
- Eason, J.R.; Sansom, C.E.; Killeen, D.P.; Gordon, K.C.; Perry, N.B.; Lill, R.E. Quantitative Raman spectrosco-py for the analysis of carrot bioactives. J. Agric. Food Chem. 2013, 61, 2701–2708. [Google Scholar]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Assessment of conventional and microwave heating induced degradation of carotenoids in olive oil by VIS Raman spectroscopy and classical methods. Food Res. Int. 2010, 43, 694–700. [Google Scholar] [CrossRef]
- Ahmad, N.; Saleem, M.; Ali, H.; Bilal, M.; Khan, S.; Ullah, R.; Ahmed, M.; Mahmood, S. Defining the tem-perature range for cooking with extra virgin olive oil using Raman spectroscopy. Laser Phys. Lett. 2017, 14, 095603. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Dai, Q.; Sun, D.-W.; Zeng, X.-A.; Liu, D.; Pu, H.-B. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci. Technol. 2013, 34, 18–31. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I. Non-Destructive Measurement of Internal Fruit Quality Using SQUID-NMR Techniques. Master’s Thesis, Cape Town, Stellenbosch University, Stellenbosch, South Africa, December 2012. [Google Scholar]
- Erikson, U.; Standal, I.B.; Aursand, I.G.; Veliyulin, E.; Aursand, M. Use of NMR in fish processing optimiza-tion: A review of recent progress. Magn. Reson. Chem. 2012, 50, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Butz, P.; Hofmann, C.; Tauscher, B. Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetable Internal Quality Analysis. J. Food Sci. 2006, 70, R131–R141. [Google Scholar] [CrossRef]
- Koda, M.; Furihata, K.; Wei, F.; Miyakawa, T.; Tanokura, M. Metabolic Discrimination of Mango Juice from Various Cultivars by Band-Selective NMR Spectroscopy. J. Agric. Food Chem. 2012, 60, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.W.M.; Colnago, L.; Ferreira, M.; Spoto, M. Prediction of Orange juice sensorial attributes from intact fruits by TD-NMR. Microchem. J. 2016, 128, 113–117. [Google Scholar] [CrossRef]
- Vigneau, E.; Thomas, F. Model calibration and feature selection for orange juice authentication by 1H NMR spectroscopy. Chemom. Intell. Lab. Syst. 2012, 117, 22–30. [Google Scholar] [CrossRef]
- Zhang, L.; McCarthy, M.J. Assessment of pomegranate postharvest quality using nuclear magnetic reso-nance. Postharvest Biol. Technol. 2013, 77, 59–66. [Google Scholar] [CrossRef]
- Caroline, A.B.; da Silva, W.; Grandizoli, P.; Campos, F.R.; Simonelli, F. Grape juice quality control by means of 1H NMR spectroscopy and chemometric analyses. Química Nova 2014, 37, 1227–1232. [Google Scholar]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Holzgrabe, U.; Diehl, B. Determination of free fatty acids in edible oils by H NMR spectroscopy. Lipid Technol. 2012, 24, 279–281. [Google Scholar] [CrossRef]
- Andrade, D.F.; Mazzei, J.L.; Kaiser, C.R.; D’Avila, L.A. Assessment of Different Measurement Methods Using 1H-NMR Data for the Analysis of the Transesterification of Vegetable Oils. J. Am. Oil Chem. Soc. 2011, 89, 619–630. [Google Scholar] [CrossRef]
- Sega, A.; Zanardi, I.; Chiasserini, L.; Gabbrielli, A.; Bocci, V.; Travagli, V. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem. Phys. Lipids 2010, 163, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Almoselhy, R.I.; Allam, M.H.; El-Kalyoubi, M.; El-Sharkawy, A. 1H NMR spectral analysis as a new aspect to evaluate the stability of some edible oils. Ann. Agric. Sci. 2014, 59, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Lizhi, H.; Toyoda, K.; Ihara, I. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. J. Food Eng. 2010, 96, 167–171. [Google Scholar] [CrossRef]
- Toyoda, K. The utilization of electric properties. In The Handbook of Non-Destructive Detec-Tion; Sumio, K., Ed.; Science Forum: Tokyo, Japan, 2003; Volume 8, pp. 108–126. [Google Scholar]
- Jha, S.N.; Narsaiah, K.; Basediya, A.L.; Sharma, R.; Jaiswal, P.; Kumar, R.; Bhardwaj, R. Measurement tech-niques and application of electrical properties for nondestructive quality evaluation of foods-a review. J. Food Sci. Technol. 2011, 48, 387–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Garcia, R.M.; Manzano-Agugliaro, F. Fruit and Vegetable Quality Assessment via Dielectric Sensing. Sensors 2015, 15, 15363–15397. [Google Scholar] [CrossRef]
- Sosa-Morales, M.E.; Tiwari, G.; Wang, S.; Tang, J.; Garcia, H.S.; Lopez-Malo, A. Dielectric heating as a po-tential post-harvest treatment of disinfesting mangoes, Part I: Relation between dielectric properties and ripening. Biosyst. Eng. 2009, 103, 297–303. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−Quality Relationships—A Review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef]
- Boubellouta, T.; Dufour, É. Cheese-Matrix Characteristics During Heating and Cheese Melting Temperature Prediction by Synchronous Fluorescence and Mid-infrared Spectroscopies. Food Bioprocess Technol. 2010, 5, 273–284. [Google Scholar] [CrossRef]
- Saito, Y. Monitoring Raw Material by Laser-Induced Fluorescence Spectroscopy in the Production; CRC: New York, NY, USA, 2009; Volume 25, p. 319. [Google Scholar]
- Nturambirwe, J.F.I. Advances in Spectral Techniques for Fruit Quality Evaluation: Case of ULF-NMR and NIRS. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, March 2017. [Google Scholar]
Products | Non-Invasive Method | Regression Analysis | Parameters | Wavelength Range | Predictors Accuracy | References |
---|---|---|---|---|---|---|
Extra virgin olive oil | NIRs | PLS | TSC SFA MUFA PUFA | 9403–749 cm−1 6800–6098, 5450–4597 cm−1 5450–4597 cm−1 9403–7498, 5025–4597 cm−1 | R2 = 0.839, RPD = 2.64 R2 = 0.998, RPD = 21.8 R2 = 0.997, RPD = 18.7 R2 = 0.998, RPD = 25.1 | [70] |
Olive oil | ATR-FT-MIRs | PLS | MUFA PUFA SFA PV | 3033–700 cm−1 3033–700 cm−1 3033–700 cm−1 4000–700 cm−1 | R2 = 0.89, REP = 1% R2 = 0.98, REP = 4% R2 = 0.71, REP = 6% R2 = 0.99, REP = 20% | [68] |
Olive oil | NIRs Vis/NIRs | PLS | Squalene Squalene | 350–2500 nm 1100–2300 nm | R2 = 0.83, RPD = 2.31 R2 = 0.74, RPD = 1.94 | [69] |
Virgin olive oil | NIRs | PLS | SFA PV TPC | 12,500–4000 cm−1 | R2 = 0.42, RPD = 1.13 R2 = 0.79, RPD = 1.64 R2 = 0.79, RPD = 1.71 | [5] |
Virgin coconut oil | ATR-FT-MIRs | PV | 4000–650 cm−1 | R2 = 0.982, RMSEP = 0.497 | [64] | |
Virgin coconut oil | ATR-FT-MIRs | FFA | 1730–1690 cm−1 | R2 = 0.928, RMSEP = 0.126 | [65] | |
Rapeseed and canola oil blend | NIRs | PLS | AV TPC | 1800–2200 nm 1100–1800 nm | R2 = 0.99, RPD = 12.8 R2 = 0.98, RPD = 7.8 | [67] |
Palm and canola oil blend | NIRs | PLS | IV FFA PV | 9404–7498 cm−1 7502–6098 cm−1 6102–5446 cm−1 | R2 = 0.98, RPD = 6.11 R2 = 0.99, RPD = 11.60 R2 = 0.97, RPD = 6.40 | [66] |
Product | Non-Invasive Method | Regression Analysis | Parameters | Wavelength Range | Predictors Accuracy | Reference |
---|---|---|---|---|---|---|
Coffee beans | HSI | PLS | Aroma compounds | 1000–2500 nm | R2 = 0.21–0.71, RPD = 0.84–1.87 | [84] |
Tea | HSI | PLS | Polyphenols | 405–970 nm | R2 = 0.915 | [89] |
Tomato seed | MSI | PLS-DA | Variety discrimination | 375–970 nm | Classification = 94–100% | [81] |
Tomato seed | HSI | PLS-DA | Variety discrimination | 375–970 nm | ≥82% | [80] |
Spinach seed | HSI | PLS-DA | Germination ability | 395–970 nm | 68% | [82] |
Nutmeg powder | HSI | PCA, ANN and PLS-DA | Spent powder | 400–1000 nm | R2 = 0.98, LOD = 5% | [90] |
Virgin olive oil | HSI | PLS GA-PLS | Acidity, Peroxide value, Humidity content Acidity Peroxide value humidity content | 900–1700 nm 900–1700 nm | R2 = 0.95 R2 = 0.98 R2 = 0.91 R2 = 0.93 R2 = 0.92 R2 = 0.92 | [88] |
Watermelon seeds | HSI | PLA-DA | Virus infection | 1411–1867 nm | 83.3% | [83] |
Cooking oil blend | HSI | PLS | Classification | 350–2500 nm | 100% | [87] |
Products | Parameters | Wavelength Range | Multivariate Analysis | Predictors Accuracy | References |
---|---|---|---|---|---|
Chilli powder | Sudan I dye adulterant | 2000–200 cm−1 | SG, SNV, PCA, PCR, PLS-DA | R2 = 0.891–0.994 | [46] |
Chilli powder | Sudan I, Sudan II adulterants | 1700–400 cm−1 | PCA | Detection of 0.6 mg/kg and 0.4 mg/kg for Sudan I and II, respectively | [106] |
Turmeric powder | Melanil yellow | 3700–100 cm−1 | SG, MSC, BR | LOD = 1% | [41] |
Tea powder | Lead chrome green | 2804–230 cm−1 | PLSR, SPA | R2 = 0.858 | [107] |
Chilli powder | Rhodamine B | 1800–200 cm−1 | – | Linearity = 0.999, LOD = 0.08% | [105] |
Paprika powder | Sudan I adulterant | 2200–200 cm−1 | PCA, PLSR | R2 = 0.788–0.983 | [36] |
Products | Parameters | Wavelength Range | Predictors Accuracy | References |
---|---|---|---|---|
Apple juice | Detection of phosmet concentration in standard apply | 2000–200 cm−1 | R2 = 0.905–0.984 | [112] |
Citrus juice | Degree of freshness | 1800–100 cm−1 | Cfresh range from 2.8 to 3.5 | [111] |
Pear juice | Detection of A. alternate | 1800–400 cm−1 | LOD = 1.0 × 103 cfu/mL | [113] |
Tomato juice | Carbohydrates, protein | 3900–400 cm−1 | 738 cm−1, 1333 cm−1 and 2930 cm−1 assigned to carbohydrates | [110] |
Orange juice | Chlorpyrifos-methyl (CPM) | 1800–400 cm−1 | LOD = 50 ppb | [109] |
Carrot juice | Polyacetylenes, carotenoids | 2300–200 cm−1 | LOD = 1400 μg/g | [114] |
Products | Parameters | Frequency Range | Multivariate Analysis | Predictor’s Accuracy | References |
---|---|---|---|---|---|
Mango juice | Discrimination of different cultivars | 0.8 MHz | PCA | LOD = 3.0–5.5 ppm | [121] |
Orange juice | TSS pH | 8.5 MHz | PLSR, S-GA | SEP = 0.88 SEP = 0.17 | [122] |
Orange juice | Discrimination of pure and adulterated orange juice | 400 MHz | PLSR, PCR, GA-PLS | R2 = 0.79 | [123] |
Pomegranate juice | TA TSS pH | 1.7 MHz | PLS | R2 = 0.54 R2 = 0.60 R2 = 0.63 | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okere, E.E.; Arendse, E.; Nieuwoudt, H.; Fawole, O.A.; Perold, W.J.; Opara, U.L. Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review. Foods 2021, 10, 3061. https://doi.org/10.3390/foods10123061
Okere EE, Arendse E, Nieuwoudt H, Fawole OA, Perold WJ, Opara UL. Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review. Foods. 2021; 10(12):3061. https://doi.org/10.3390/foods10123061
Chicago/Turabian StyleOkere, Emmanuel Ekene, Ebrahiema Arendse, Helene Nieuwoudt, Olaniyi Amos Fawole, Willem Jacobus Perold, and Umezuruike Linus Opara. 2021. "Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review" Foods 10, no. 12: 3061. https://doi.org/10.3390/foods10123061
APA StyleOkere, E. E., Arendse, E., Nieuwoudt, H., Fawole, O. A., Perold, W. J., & Opara, U. L. (2021). Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review. Foods, 10(12), 3061. https://doi.org/10.3390/foods10123061