Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. HSI System and Image Acquisition
2.3. Preprocessing of Hyperspectral Images
2.3.1. Image Calibration
2.3.2. Infestation Region Acquisition
2.3.3. Spectral Extraction and Preprocessing
2.3.4. Dimensionality Reduction
2.3.5. Spectral Variable Selection
2.4. Development of Machine Learning Classifiers
3. Results and Discussion
3.1. Spectral Analysis
3.2. Pre-Processing and Feature Extraction Results
3.3. The Results of Machine Learning Classification
3.4. Performance of Classification Models Based on Apple Cultivar
3.5. Optimal Wavelength Selection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA Foreign Agricultural Service. Available online: https://www.fas.usda.gov/data/fresh-apples-grapes-and-pears-world-markets-and-trade (accessed on 11 June 2021).
- USApple Association. Available online: https://usapple.org/industry-at-a-glance (accessed on 2 October 2021).
- Balaško, M.K.; Bažok, R.; Mikac, K.M.; Lemic, D.; Živković, I.P. Pest Management Challenges and Control Practices in Codling Moth: A Review. Insects 2020, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Pajač, I.; Pejić, I.; Barić, B. Codling moth, Cydia pomonella (Lepidoptera: Tortricidae)–major pest in apple production: An overview of its biology, resistance, genetic structure and control strategies. Agric. Conspec. Sci. 2011, 76, 87–92. [Google Scholar]
- Walker, J.; Lo, P.; Horner, R.; Park, N.; Hughes, J.; Fraser, T. Codling moth (Cydia pomonella) mating disruption outcomes in apple orchards. N. Z. Plant Prot. 2013, 66, 259–263. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Non-Destructive Defect Detection of Apples by Spectroscopic and Imaging Technologies: A Review. Trans. ASABE 2017, 60, 1765–1790. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Plant Protection and Quarantine: USDA APHIS Annual Report 2017. 2017. Available online: https://www.aphis.usda.gov/publications/plant_health/report-ppq-2017.pdf (accessed on 15 October 2021).
- Fan, S.; Li, J.; Zhang, Y.; Tian, X.; Wang, Q.; He, X.; Zhang, C.; Huang, W. On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 2020, 286, 110102. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Huang, W.; Tian, X.; Xia, Y.; Xu, L.; Fan, S. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys. Technol. 2019, 98, 297–304. [Google Scholar] [CrossRef]
- Tian, X.; Fan, S.; Li, J.; Huang, W.; Chen, L. An optimal zone combination model for on-line nondestructive prediction of soluble solids content of apple based on full-transmittance spectroscopy. Biosyst. Eng. 2020, 197, 64–75. [Google Scholar] [CrossRef]
- Fathizadeh, Z.; Aboonajmi, M.; Beygi, S.R.H. Nondestructive firmness prediction of apple fruit using acoustic vibration response. Sci. Hortic. 2019, 262, 109073. [Google Scholar] [CrossRef]
- Ekramirad, N.; Chadwick, A.P.; Villanueva, R.T.; Donohue, K.D.; Adedeji, A.A. Low Frequency Signal Patterns for Codling Moth Larvae Activity in Apples. In Proceedings of the 2020 ASABE Annual International Virtual Meeting, Virtual, 13–15 July 2020; p. 1. [Google Scholar]
- Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Ultrasonic based determination of apple quality as a nondestructive technology. Sens. Bio-Sens. Res. 2018, 21, 22–26. [Google Scholar] [CrossRef]
- Cocetta, G.; Beghi, R.; Mignani, I.; Spinardi, A. Nondestructive Apple Ripening Stage Determination Using the Delta Absorbance Meter at Harvest and after Storage. HortTechnology 2017, 27, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Gongal, A.; Silwal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Apple crop-load estimation with over-the-row machine vision system. Comput. Electron. Agric. 2015, 120, 26–35. [Google Scholar] [CrossRef]
- Silwal, A.; Gongal, A.; Karkee, M. Apple identification in field environment with over the row machine vision system. Agric. Eng. Int. CIGR J. 2014, 16, 66–75. [Google Scholar]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest Biol. Technol. 2020, 173, 111417. [Google Scholar] [CrossRef]
- Li, M.; Ekramirad, N.; Rady, A.; Adedeji, A. Application of Acoustic Emission and Machine Learning to Detect Codling Moth Infested Apples. Trans. ASABE 2018, 61, 1157–1164. [Google Scholar] [CrossRef]
- Qu, J.-H.; Liu, D.; Cheng, J.-H.; Sun, D.-W.; Ma, J.; Pu, H.; Zeng, X.-A. Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2013, 55, 1939–1954. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Sun, D.-W. Principles of Hyperspectral Imaging Technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2010; pp. 3–43. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Irudayaraj, J. Surface-Enhanced Raman Spectroscopy Applied to Food Safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Church, J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Ma, J.; Sun, D.-W.; Qu, J.-H.; Liu, D.; Pu, H.; Gao, W.-H.; Zeng, X.-A. Applications of Computer Vision for Assessing Quality of Agri-food Products: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2014, 56, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; García-Navarrete, O.L.; Blasco, J. Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food Bioprocess Technol. 2011, 5, 1121–1142. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Fan, S.; Huang, W.; Zhao, C.; Liu, C.; Huang, D. Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Comput. Electron. Agric. 2015, 114, 14–24. [Google Scholar] [CrossRef]
- Peerbhay, K.; Mutanga, O.; Ismail, R. Random Forests Unsupervised Classification: The Detection and Mapping of Solanum mauritianum Infestations in Plantation Forestry Using Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3107–3122. [Google Scholar] [CrossRef]
- Wu, L.; He, J.; Liu, G.; Wang, S.; He, X. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 134–142. [Google Scholar] [CrossRef]
- Keresztes, J.C.; Goodarzi, M.; Saeys, W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques. Food Control 2016, 66, 215–226. [Google Scholar] [CrossRef]
- Ekramirad, N.; Khaled, A.Y.; Doyle, L.E.; Parrish, C.A.; Villanueva, R.T.; Donohue, K.D.; Adedeji, A.A. NIR hyperspectral imaging with machine learning to detect and classify codling moth infestation in apples. In Proceedings of the 2021 ASABE Annual International Virtual Meeting, Virtual, 12–16 July 2021; p. 1. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; Vigneault, C.; Qiao, J.; ElSayed, A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT 2008, 41, 337–345. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Liao, X.; Chen, F.; Zhao, G.; Wu, J.; Hu, X. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 2007, 40, 39–46. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Lu, R. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review. Appl. Sci. 2017, 7, 189. [Google Scholar] [CrossRef]
- Rady, A.; Ekramirad, N.; Adedeji, A.; Li, M.; Alimardani, R. Hyperspectral imaging for detection of codling moth infestation in GoldRush apples. Postharvest Biol. Technol. 2017, 129, 37–44. [Google Scholar] [CrossRef]
- Guo, Z.-m.; Huang, W.-q.; Peng, Y.-k.; Wang, X.; Li, J. Impact of region of interest selection for hyperspectral imaging and modeling of sugar content in apple. Mod. Food Sci. Technol. 2014, 30, 59–63. [Google Scholar]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Jamaludin, D.; Ibrahim, N.U.A. A comparative study on dimensionality reduction of dielectric spectral data for the classification of basal stem rot (BSR) disease in oil palm. Comput. Electron. Agric. 2020, 170, 105288. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I. Artificial intelligence for spectral classification to identify the basal stem rot disease in oil palm using dielectric spectroscopy measurements. Trop. Plant Pathol. 2021, 1–12. [Google Scholar] [CrossRef]
- Firtha, F. Development of data reduction function for hyperspectral imaging. Prog. Agric. Eng. Sci. 2007, 3, 67–88. [Google Scholar] [CrossRef]
- Firtha, F.; Fekete, A.; Kaszab, T.; Gillay, B.; Nogula-Nagy, M.; Kovács, Z.; Kantor, D.B. Methods for Improving Image Quality and Reducing Data Load of NIR Hyperspectral Images. Sensors 2008, 8, 3287–3298. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I.; Izzuddin, M.A. Development of classification models for basal stem rot (BSR) disease in oil palm using dielectric spectroscopy. Ind. Crop. Prod. 2018, 124, 99–107. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2018, 146, 12–21. [Google Scholar] [CrossRef]
- Žibrat, U.; Stare, B.G.; Knapič, M.; Susič, N.; Lapajne, J.; Širca, S. Detection of Root-Knot Nematode Meloidogyne luci Infestation of Potato Tubers Using Hyperspectral Remote Sensing and Real-Time PCR Molecular Methods. Remote Sens. 2021, 13, 1996. [Google Scholar] [CrossRef]
- Léo, R.F.L.; Miguel, F.D.S.-F.; Adalton, R.; Flávio, L.S. Relationship between fruit fly (Diptera: Tephritidae) infestation and the physicochemical changes in fresh fruits. Afr. J. Agric. Res. 2020, 15, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wei, K.; Liu, Q.; Pan, L.; Tu, K. Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis. Sensors 2018, 18, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Wang, Y.; Ning, J.; Zhang, Z. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118407. [Google Scholar] [CrossRef] [PubMed]
- Howard, C. The codling moth. Transvaal Agric. J. 1908, 6, 523–526. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy. Comput. Electron. Agric. 2018, 151, 469–477. [Google Scholar] [CrossRef]
- Garillos-Manliguez, C.A.; Chiang, J.Y. Multimodal Deep Learning and Visible-Light and Hyperspectral Imaging for Fruit Maturity Estimation. Sensors 2021, 21, 1288. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Zhao, Y.-R.; Liu, Z.-Y.; Li, X.-L.; Liu, F.; He, Y. Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat. Food Bioprocess. Technol. 2014, 7, 3077–3087. [Google Scholar] [CrossRef]
- Munera, S.; Gómez-Sanchís, J.; Aleixos, N.; Vila-Francés, J.; Colelli, G.; Cubero, S.; Soler, E.; Blasco, J. Discrimination of common defects in loquat fruit cv. ‘Algerie’ using hyperspectral imaging and machine learning techniques. Postharvest Biol. Technol. 2020, 171, 111356. [Google Scholar] [CrossRef]
- Susič, N.; Žibrat, U.; Sinkovič, L.; Vončina, A.; Razinger, J.; Knapič, M.; Sedlar, A.; Širca, S.; Stare, B.G. From Genome to Field—Observation of the Multimodal Nematicidal and Plant Growth-Promoting Effects of Bacillus firmus I-1582 on Tomatoes Using Hyperspectral Remote Sensing. Plants 2020, 9, 592. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Jayas, D.S. Use of spectroscopic data for automation in food processing industry. Sens. Instrum. Food Qual. Saf. 2009, 3, 3–11. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method. Postharvest Biol. Technol. 2018, 149, 235–246. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Stella, E.; Contini, M.; Monarca, D.; Cecchini, M.; Massantini, R. Feasibility of NIR spectroscopy to detect olive fruit infested by Bactrocera oleae. Postharvest Biol. Technol. 2015, 99, 58–62. [Google Scholar] [CrossRef]
- Saranwong, S.; Haff, R.P.; Thanapase, W.; Janhiran, A.; Kasemsumran, S.; Kawano, S. A Feasibility Study Using Simplified near Infrared Imaging to Detect Fruit Fly Larvae in Intact Fruit. J. Near Infrared Spectrosc. 2011, 19, 55–60. [Google Scholar] [CrossRef]
- Haff, R.P.; Saranwong, S.; Thanapase, W.; Janhiran, A.; Kasemsumran, S.; Kawano, S. Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes. Postharvest Biol. Technol. 2013, 86, 23–28. [Google Scholar] [CrossRef]
Sample Orientation | Classifier 1 | Training Set (%) | Validation Set (%) | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | Total Accuracy | Precision | Recall | Total Accuracy | ||
Stem | LDA | 95.00 | 94.00 | 94.70 | 57.00 | 58.00 | 62.50 |
kNN | 58.00 | 57.00 | 57.90 | 36.00 | 42.00 | 62.50 | |
RF | 100 | 100 | 100 | 83.00 | 92.00 | 87.50 | |
AdaBoost | 95.00 | 95.00 | 94.70 | 75.00 | 83.00 | 75.00 | |
PLS-DA | 100 | 100 | 100 | 83.00 | 92.00 | 87.50 | |
Calyx | LDA | 90.00 | 90.00 | 90.50 | 78.00 | 78.00 | 77.80 |
kNN | 63.00 | 61.00 | 61.90 | 68.00 | 68.00 | 67.00 | |
RF | 100 | 100 | 100 | 88.00 | 83.00 | 83.30 | |
AdaBoost | 100 | 100 | 100 | 92.00 | 88.00 | 88.90 | |
PLS-DA | 90.00 | 90.00 | 90.50 | 78.00 | 78.00 | 78.00 | |
Side | LDA | 100 | 100 | 100 | 83.00 | 80.00 | 77.80 |
kNN | 86.00 | 80.00 | 80.00 | 75.00 | 60.00 | 55.60 | |
RF | 100 | 100 | 100 | 83.00 | 80.00 | 77.80 | |
AdaBoost | 100 | 100 | 100 | 83.00 | 80.00 | 77.80 | |
PLS-DA | 100 | 100 | 100 | 90.00 | 90.00 | 88.90 | |
All | LDA | 80.00 | 80.00 | 79.00 | 71.00 | 73.00 | 72.00 |
kNN | 76.00 | 76.00 | 76.30 | 70.00 | 71.00 | 72.00 | |
RF | 100 | 100 | 100 | 91.00 | 94.00 | 92.00 | |
AdaBoost | 100 | 100 | 100 | 88.00 | 91.00 | 88.00 | |
PLS-DA | 98.00 | 98.00 | 98.00 | 91.00 | 94.00 | 92.00 |
Classifier 1 | Training Set (%) | Validation Set (%) | ||||
---|---|---|---|---|---|---|
Precision | Recall | Total Accuracy | Precision | Recall | Total Accuracy | |
LDA | 72.20 | 79.20 | 75.24 | 71.60 | 78.40 | 74.64 |
kNN | 100 | 99.20 | 99.52 | 99.60 | 98.80 | 99.06 |
RF | 100 | 100 | 100 | 99.20 | 99.60 | 99.24 |
AdaBoost | 100 | 100 | 100 | 98.00 | 98.4 | 98.20 |
PLS-DA | 84.60 | 88.80 | 86.40 | 80.60 | 82.60 | 80.18 |
Classifier | Raw Data (No Dimensionality Reduction) | PCA-Based | ||||||
---|---|---|---|---|---|---|---|---|
Gala | Granny Smith | Fuji | All | Gala | Granny Smith | Fuji | All | |
LDA | 65.38 ± 0.62 | 72.24 ± 0.23 | 70.46 ± 0.72 | 69.22 ± 0.10 | 65.38 ± 0.62 | 70.38 ± 0.17 | 66.94 ± 0.33 | 68.70 ± 0.14 |
SVM | 80.18 ± 0.06 | 76.42 ± 0.17 | 81.40 ± 0.44 | 72.54 ± 0.36 | 82.60 ± 0.70 | 77.20 ± 0.18 | 81.62 ± 0.33 | 73.84 ± 0.39 |
kNN | 93.72 ± 0.19 | 93.26 ± 0.15 | 95.46 ± 0.32 | 89.12 ± 0.12 | 93.80 ± 0.15 | 93.30 ± 0.07 | 95.69 ± 0.26 | 88.84 ± 0.11 |
RF | 89.66 ± 0.19 | 89.04 ± 0.18 | 91.52 ± 0.27 | 82.82 ± 0.14 | 94.28 ± 0.31 | 93.22 ± 0.25 | 96.62 ± 0.13 | 89.74 ± 0.13 |
GTB | 92.32 ± 0.37 | 91.00 ± 0.25 | 94.68 ± 0.39 | 84.66 ± 0.18 | 94.76 ± 0.16 | 93.66 ± 0.18 | 97.36 ± 0.28 | 90.00 ± 0.23 |
PLS-DA | 62.76 ± 0.66 | 71.64 ± 0.24 | 68.56 ± 0.15 | 69.14 ± 0.15 | 62.76 ± 0.66 | 71.34 ± 0.16 | 66.92 ± 0.35 | 68.72 ± 0.16 |
Cultivars | Classes | Precision | Recall | F1-Score | Overall Accuracy (%) |
---|---|---|---|---|---|
Fuji | Control | 0.98 | 0.96 | 0.97 | 97.36 |
Infested | 0.97 | 0.98 | 0.97 | ||
Gala | Control | 0.93 | 0.93 | 0.93 | 94.76 |
Infested | 0.95 | 0.96 | 0.95 | ||
Granny Smith | Control | 0.91 | 0.90 | 0.91 | 93.46 |
Infested | 0.95 | 0.95 | 0.95 |
No. of Wavelengths | Gala | Granny Smith | Fuji | |||
---|---|---|---|---|---|---|
Selected Wavelengths (nm) | Classification Accuracy | Selected Wavelengths (nm) | Classification Accuracy | Selected Wavelengths (nm) | Classification Accuracy | |
30 | 900.1, 903.5, 920.3, 970.6, 997.4, 100.7, 1014.1, 1071.0, 1077.7, 1261.4, 1278.1, 1281.4, 1298.1, 1324.7, 1328.1, 1361.4, 1384.7, 1408.0, 1447.9, 1464.5, 1447.8, 1477.8, 1627.1, 1647.0, 1653.7, 1657.0, 1663.6, 1666.9, 1676.8, 1693.4 | 88.5% | 900.1, 916.9, 977.2, 1010.7, 1020.8, 1030.8, 1047.6, 1074.3, 1178.0, 1181.3, 1204.7, 1274.7, 1284.7, 1294.7, 1298.1, 1304.7, 1308.1, 1371.4, 1414.6, 1471.1, 1481.1, 1494.4, 1653.7, 1660.3, 1666.9, 1673.5, 1680.2, 1683.5, 1686.8, 1693.4 | 87.7% | 977.2, 980.6, 1044.2, 1074.3, 1077.7, 1081.0, 1137.9, 1147.9, 1151.2, 1211.3, 1264.7, 1294.7, 1314.7, 1344.7, 1348.0, 1381.3, 1421.3, 1507.7, 1530.9, 1544.2, 1560.8, 1580.7, 1623.8, 1630.5, 1647.0, 1650.3, 1653.7, 1657.0, 1663.6, 1673.5 | 92.4% |
22 | 923.6, 973.9, 1000.7, 1067.6, 1081.0, 1084.4, 1127.8, 1268.1, 1281.4, 1308.1, 1351.4, 1401.3, 1411.3, 1461.2, 1491.1, 1607.3, 1643.7, 1663.6, 1670.2, 1676.8, 1690.1, 1693.4 | 87.8% | 903.5, 916.9, 987.3, 1047.6, 1081.0, 1131.2, 1141.2,1181.3, 1204.7, 1274.7, 1288.1, 1304.7, 1371.4, 1467.8, 1471.1, 1481.1, 1643.7, 1673.5, 1680.2, 1683.5, 1686.8, 1693.4 | 87.5% | 977.2, 983.9, 1050.9, 1064.3, 1081.0, 1151.28, 1184.6, 1228.0, 1248.1, 1288.1, 1351.4, 1447.9, 1530.9, 1554.2, 1574.1, 1590.7, 1627.1, 1647.0, 1653.7, 1657.0, 1663.6, 1680.2 | 91.6% |
15 | 903.5, 990.6, 997.3, 1071.0, 1084.4, 1281.4, 1294.7, 1371.4, 1384.7, 1447.9, 1477.8, 1663.6, 1673.5, 1680.2, 1690.1 | 86.2% | 1010.7, 1081.0, 1131.2, 1181.3, 1184.6, 1281.4, 1298.1, 1491.1, 1657.0, 1663.6, 1670.2, 1680.2, 1683.5, 1686.8, 1693.4 | 86.3% | 977.2, 983.9, 1050.9, 1074.3, 1081.0, 1311.4, 1381.3, 1401.3, 1447.9, 1507.7, 1627.1, 1637.1, 1647.0, 1653.7, 1673.5 | 91.0% |
5 | 997.3, 1084.4, 1281.4, 1663.6, 1693.4 | 81.5% | 1014.1, 1274.7, 1494.4, 1683.5, 1693.4 | 80.7% | 983.9, 1050.9, 1311.4, 1653.7, 1663.6 | 86.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekramirad, N.; Khaled, A.Y.; Doyle, L.E.; Loeb, J.R.; Donohue, K.D.; Villanueva, R.T.; Adedeji, A.A. Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection. Foods 2022, 11, 8. https://doi.org/10.3390/foods11010008
Ekramirad N, Khaled AY, Doyle LE, Loeb JR, Donohue KD, Villanueva RT, Adedeji AA. Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection. Foods. 2022; 11(1):8. https://doi.org/10.3390/foods11010008
Chicago/Turabian StyleEkramirad, Nader, Alfadhl Y. Khaled, Lauren E. Doyle, Julia R. Loeb, Kevin D. Donohue, Raul T. Villanueva, and Akinbode A. Adedeji. 2022. "Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection" Foods 11, no. 1: 8. https://doi.org/10.3390/foods11010008
APA StyleEkramirad, N., Khaled, A. Y., Doyle, L. E., Loeb, J. R., Donohue, K. D., Villanueva, R. T., & Adedeji, A. A. (2022). Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection. Foods, 11(1), 8. https://doi.org/10.3390/foods11010008