The Sensory Profiles of Flatbreads Made from Sorghum, Cassava, and Cowpea Flour Used as Wheat Flour Alternatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Single Flour Samples
2.2. Particles Size Distribution of Sorghum Flours
2.3. Preparation of Composite Flours
2.4. Descriptive Sensory Evaluation
2.4.1. Flatbread Model Preparation Procedure
2.4.2. Recruitment, Screening and Training of the Panel
2.4.3. Evaluation of the Flatbread Samples
2.5. Instrumental Colour Measurement of Flours and Flatbreads
2.6. Statistical Analysis of Data
3. Results
3.1. Particle Size Distribution of Sorghum Flours and the Effects on the Colour of Sorghum Flour and Sorghum Flatbread
3.2. The Effect of Sorghum Flour Particle Size Profile on the Sensory Properties of Sorghum Flatbread
3.3. The Effect of Sorghum Flour Particle Size Profile on the Colour Parameters of Sorghum Flour and Flatbread
3.4. Effects of Cowpea Variety and Milling Fraction on Cowpea Flour Colour Properties and Sensory Properties of Cowpea Flatbreads
3.5. Colour of Flatbreads Prepared from Composite Flours
4. Discussion
4.1. How Does Sorghum Flour Particle Size Affect the Sensory Properties of the Flatbread?
4.2. How Do Cowpea Variety and Milling Fraction (with and without Seed Coat, i.e., Dehulled) Affect the Sensory Profile of the Flatbread?
4.3. Sensory Properties of Flatbread-Type Food Models Prepared from Different Flours (Sorghum, Cowpea, and Cassava Starch) and Specific Flour Combinations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malinauskiene, L.; Isaksson, M. Protein contact dermatitis caused by allergy to chapatti flour. Acta Derm.-Venereol. 2013, 93, 91–92. [Google Scholar] [CrossRef]
- Kiguli, J.; Alvesson, H.M.; Mayega, R.W.; Kasujja, F.X.; Muyingo, A.; Kirunda, B.; Kiracho, E.E.; Nalwadda, C.K.; Naggayi, G.; Peterson, S. Dietary patterns and practices in rural eastern Uganda: Implications for prevention and management of type 2 diabetes. Appetite 2019, 143, 104409. [Google Scholar] [CrossRef]
- Odu, N.; Akano, U. The microbiological assessment of ready-to-eat-food (Shawarma) in Port Harcourt City, Nigeria. Nat. Sci. 2012, 10, 1–8. [Google Scholar]
- Tadesse, W.; Bishaw, Z.; Assefa, S. Wheat production and breeding in Sub-Saharan Africa: Challenges and opportunities in the face of climate change. Int. J. Clim. Change Strateg. Manag. 2018, 11, 696–715. [Google Scholar] [CrossRef] [Green Version]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Duodu, K.G. Assaying sorghum nutritional quality. In Sorghum; Springer: Berlin/Heidelberg, Germany, 2019; pp. 87–108. [Google Scholar] [CrossRef]
- Duodu, K.G.; Apea-Bah, F.B. African legumes: Nutritional and health-promoting attributes. In Gluten-Free Ancient Grains; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–269. [Google Scholar] [CrossRef]
- Bredeson, J.V.; Lyons, J.B.; Prochnik, S.E.; Wu, G.A.; Ha, C.M.; Edsinger-Gonzales, E.; Grimwood, J.; Schmutz, J.; Rabbi, I.Y.; Egesi, C. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 2016, 34, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkouaya Mbanjo, E.G.; Rabbi, I.Y.; Ferguson, M.E.; Kayondo, S.I.; Eng, N.H.; Tripathi, L.; Kulakow, P.; Egesi, C. Technological innovations for improving cassava production in sub-Saharan Africa. Front. Genet. 2020, 11, 1829. [Google Scholar] [CrossRef]
- Taylor, J. Overview: Importance of sorghum in Africa. In Proceedings of the Afripro: Workshop on the proteins of sorghum and millets: Enhancing nutritional and functional properties for Africa, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- Mabhaudhi, T.; Chibarabada, T.; Chimonyo, V.; Murugani, V.; Pereira, L.; Sobratee, N.; Govender, L.; Slotow, R.; Modi, A. Mainstreaming underutilized indigenous and traditional crops into food systems: A South African perspective. Sustainability 2019, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Taylor, J.R. Making kafirin, the sorghum prolamin, into a viable alternative protein source. J. Am. Oil Chem. Soc. 2018, 95, 969–990. [Google Scholar] [CrossRef] [Green Version]
- Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain structure and grain chemical composition. In Sorghum and Millets; AACC International Press: Washington, DC, USA, 2019; pp. 85–129. [Google Scholar] [CrossRef]
- Taylor, J.R.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 2014, 59, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Adjei-Fremah, S.; Worku, M.; De Erive, M.O.; He, F.; Wang, T.; Chen, G. Effect of microfluidization on microstructure, protein profile and physicochemical properties of whole cowpea flours. Innov. Food Sci. Emerg. Technol. 2019, 57, 102207. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits: Nutritional and health properties of cowpea. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Sonawane, S.K.; Arya, S. Chemometric approach-based characterization and screening of gluten free flours for development of Indian unleavened flatbread. J. Food Sci. Technol. 2021, 58, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioprocess Technol. 2010, 3, 577–585. [Google Scholar] [CrossRef]
- Parenti, O.; Guerrini, L.; Zanoni, B. Techniques and technologies for the breadmaking process with unrefined wheat flours. Trends Food Sci. Technol. 2020, 99, 152–166. [Google Scholar] [CrossRef]
- Amonsou, E.O.; Houssou, P.A.; Sakyi-Dawson, E.; Saalia, F.K. Dehulling characteristics, sensory and functional properties of flours from selected cowpea varieties. J. Sci. Food Agric. 2009, 89, 1587–1592. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Timitey, A.; Adinsi, L.; Madodé, Y.E.; Cissé, F.; Akissoé, N.; Hounhouigan, D.J. Technological, physico-chemical and sensory changes during cowpea processing into shô basi, a couscous-like product from Sahelian Africa. Legume Sci. 2021, e115. [Google Scholar] [CrossRef]
- Akinjayeju, O.; Enude, O. Effects of dehulling on some properties of cowpea (Vigna uniguiculata Walp.L) flours. Ital. J. Food Sci. 2002, 14, 53. [Google Scholar]
- Amonsou, E.; Sakyi-Dawson, E.; Saalia, F. Effects of cowpea flour fractionation on sensory qualities and acceptability of kpejigaou (a griddled cowpea paste food). J. Food Qual. 2010, 33, 61–78. [Google Scholar] [CrossRef]
- Henshaw, F.; McWatters, K.; Akingbala, J.; Hung, Y. Functional characterization of flour of selected cowpea (Vigna unguiculata) varieties: Canonical discriminant analysis. Food Chem. 2002, 79, 381–386. [Google Scholar] [CrossRef]
- Adebooye, O.C.; Singh, V. Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Innov. Food Sci. Emerg. Technol. 2008, 9, 92–100. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Breuninger, W.F.; Piyachomkwan, K.; Sriroth, K. Tapioca/cassava starch: Production and use. In Starch; Elsevier: Amsterdam, The Netherlands, 2009; pp. 541–568. [Google Scholar] [CrossRef]
- Sayaslan, A.; Chung, O.K.; Seib, P.A.; Seitz, L.M. Volatile compounds in five starches. Cereal Chem. 2000, 77, 248–253. [Google Scholar] [CrossRef]
- Sigüenza-Andrés, T.; Gallego, C.; Gómez, M. Can cassava improve the quality of gluten free breads? LWT-Food Sci. Technol. 2021, 149, 111923. [Google Scholar] [CrossRef]
- Kebakile, M.M.; Rooney, L.W.; de Kock, H.L.; Taylor, J.R. Effects of sorghum type and milling process on the sensory characteristics of sorghum porridge. Cereal Chem. 2008, 85, 307–313. [Google Scholar] [CrossRef]
- Dovi, K.A.; Chiremba, C.; Taylor, J.R.; de Kock, H.L. Rapid sensory profiling and hedonic rating of whole grain sorghum-cowpea composite biscuits by low income consumers. J. Sci. Food Agric. 2018, 98, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1101–1122. [Google Scholar] [CrossRef]
- Caul, J.F. The profile method of flavor analysis. In Advances in Food Research; Elsevier Academic Press Inc.: New York, NY, USA, 1957; Volume 7, pp. 1–40. [Google Scholar]
- Heiniö, R.-L.; Katina, K.; Wilhelmson, A.; Myllymäki, O.; Rajamäki, T.; Latva-Kala, K.; Liukkonen, K.-H.; Poutanen, K. Relationship between sensory perception and flavour-active volatile compounds of germinated, sourdough fermented and native rye following the extrusion process. LWT-Food Sci. Technol. 2003, 36, 533–545. [Google Scholar] [CrossRef]
- Kayitesi, E.; Duodu, K.G.; Minnaar, A.; de Kock, H.L. Effect of micronisation of pre-conditioned cowpeas on cooking time and sensory properties of cooked cowpeas. J. Sci. Food Agric. 2013, 93, 838–845. [Google Scholar] [CrossRef]
- Aina, A.J.; Falade, K.O.; Akingbala, J.O.; Titus, P. Physicochemical properties of twenty-one Caribbean sweet potato cultivars. Int. J. Food Sci. Technol. 2009, 44, 1696–1704. [Google Scholar] [CrossRef]
- Kurimoto, Y.; Shelton, D. The effect of flour particle size on baking quality and other flour attributes. Cereal Foods World 1988, 33, 429–433. [Google Scholar]
- Trappey, E.F.; Khouryieh, H.; Aramouni, F.; Herald, T. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Sci. Technol. Int. 2015, 21, 188–202. [Google Scholar] [CrossRef]
- Nkhabutlane, P.; du Rand, G.E.; de Kock, H.L. Quality characterization of wheat, maize and sorghum steamed breads from Lesotho. J. Sci. Food Agric. 2014, 94, 2104–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, J.R.; Boehm, M.W.; Baier, S.K. Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 2013, 18, 349–359. [Google Scholar] [CrossRef] [Green Version]
- de la Hera, E.; Gomez, M.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Lapčíková, B.; Lapčík, L.; Valenta, T.; Majar, P.; Ondroušková, K. Effect of the rice flour particle size and variety type on water holding capacity and water diffusivity in aqueous dispersions. LWT-Food Sci. Technol. 2021, 142, 111082. [Google Scholar] [CrossRef]
- Schober, T.J. Manufacture of gluten-free specialty breads and confectionery products. In Gluten-Free Food Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 130–180. [Google Scholar]
- Ivanovski, B.; Seetharaman, K.; Duizer, L. Development of soy-based bread with acceptable sensory properties. J. Food Sci. 2012, 77, S71–S76. [Google Scholar] [CrossRef]
- Bott, L.; Chambers IV, E. Sensory characteristics of combinations of chemicals potentially associated with beany aroma in foods. J. Sens. Stud. 2006, 21, 308–321. [Google Scholar] [CrossRef]
- Rackis, J.; Sessa, D.; Honig, D. Flavor problems of vegetable food proteins. J. Am. Oil Chem. Soc. 1979, 56, 262–271. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A comprehensive characterisation of volatile and fatty acid profiles of legume seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef] [Green Version]
- Kayitesi, E. Micronisation of Cowpeas: The Effects on Sensory Quality, Phenolic Compounds and Bioactive Properties. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Penicela, L. The Influence of Seed Coat and Cotyledon Structure on Cooking Characteristics of Cowpeas. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2010. [Google Scholar]
- Kayitesi, E.; Duodu, K.G.; Minnaar, A.; de Kock, H.L. Sensory quality of marama/sorghum composite porridges. J. Sci. Food Agric. 2010, 90, 2124–2132. [Google Scholar] [CrossRef]
- Nyembwe, P.; Minnaar, A.; Duodu, K.G.; de Kock, H.L. Sensory and physicochemical analyses of roasted marama beans [Tylosema esculentum (Burchell) A. Schreiber] with specific focus on compounds that may contribute to bitterness. Food Chem. 2015, 178, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Plahar, W.; Annan, N.; Nti, C. Cultivar and processing effects on the pasting characteristics, tannin content and protein quality and digestibility of cowpea (Vigna unguiculata). Plant Foods Hum. Nutr. 1997, 51, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Prigent, S.V.; Gruppen, H.; Visser, A.J.; Van Koningsveld, G.A.; De Jong, G.A.; Voragen, A.G. Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins. J. Agric. Food Chem. 2003, 51, 5088–5095. [Google Scholar] [CrossRef] [PubMed]
- Apea-Bah, F.B.; Serem, J.C.; Bester, M.J.; Duodu, K.G. Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake. Food Chem. 2017, 237, 247–256. [Google Scholar] [CrossRef]
- Onigbinde, A.; Akinyele, I. Oligosaccharide content of 20 varieties of cowpeas in Nigeria. J. Food Sci. 1983, 48, 1250–1251. [Google Scholar] [CrossRef]
- Pal, R.; Bhartiya, A.; Yadav, P.; Kant, L.; Mishra, K.; Aditya, J.; Pattanayak, A. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). J. Food Sci. Technol. 2017, 54, 909–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, S.; Dutta, A.; Singh, Y.; Raghuvanshi, R.; Agrawal, S. Effect of dehulling and splitting on nutritional, organoleptic quality, and storage stability of cowpea (Vigna unguiculata (L). Walp). Curr. J. Appl. Sci. Technol. 2017, 24, 1–9. [Google Scholar] [CrossRef]
- Dovi, K.A.P. Whole Grain Sorghum and Whole Grain Cowpea Biscuits as a Complementary Food for Improved Child Nutrition. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Anyango, J.O.; de Kock, H.L.; Taylor, J.R.N. Evaluation of the functional quality of cowpea-fortified traditional African sorghum foods using instrumental and descriptive sensory analysis. LWT-Food Sci. Technol. 2011, 44, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Duodu, K.; Nunes, A.; Delgadillo, I.; Parker, M.; Mills, E.; Belton, P.; Taylor, J. Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci. 2002, 35, 161–174. [Google Scholar] [CrossRef]
- Serrem, C.A.; de Kock, H.L.; Taylor, J.R. Nutritional quality, sensory quality and consumer acceptability of sorghum and bread wheat biscuits fortified with defatted soy flour. Int. J. Food Sci. Technol. 2011, 46, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E.; Koch, K.; Tortoe, C.; Akonor, P.; Baidoo, E. Physicochemical, functional and pasting characteristics of three varieties of cassava in wheat composite flours. Br. J. Appl. Sci. Technol. 2014, 4, 1609–1621. [Google Scholar] [CrossRef]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Mohammed, O.; Bin, X. Review on the physicochemical properties, modifications, and applications of starches and its common modified forms used in noodle products. Food Hydrocoll. 2020, 112, 106286. [Google Scholar] [CrossRef]
- Glover, J.; Walker, C.; Mattern, P. Functionality of sorghum flour components in a high ratio cake. J. Food Sci. 1986, 51, 1280–1283. [Google Scholar] [CrossRef]
- Cauvain, S.P. Breadmaking: Improving quality. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 2nd ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; p. 774. [Google Scholar]
- Benesi, I.R.; Labuschagne, M.T.; Dixon, A.G.; Mahungu, N.M. Stability of native starch quality parameters, starch extraction and root dry matter of cassava genotypes in different environments. J. Sci. Food Agric. 2004, 84, 1381–1388. [Google Scholar] [CrossRef]
- Grace, M. Cassava Processing; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 1977. [Google Scholar]
- Nout, M.R. Rich nutrition from the poorest–cereal fermentations in Africa and Asia. Food Microbiol. 2009, 26, 685–692. [Google Scholar] [CrossRef]
Flours | (%) | Abbreviations | Images of the Flatbreads | |
---|---|---|---|---|
Single flours | ||||
Wheat | Wheat | 100 | WH | |
Sorghum | Fine sorghum flour | 100 | FSorg | |
Extra fine sorghum fine | 100 | XFSorg | ||
Cowpea | Whole red cowpea | 100 | WRC | |
Whole white cowpea | 100 | WWC | ||
Dehulled red cowpea | 100 | DRC | ||
Dehulled white cowpea | 100 | DWC | ||
Composite flours | ||||
Sorghum-cowpea | Sorghum/whole red cowpea | 70:30 | XFSorg-WRC | |
Sorghum/whole white cowpea | 70:30 | XFSorg-WWC | ||
Sorghum/dehulled red cowpea | 70:30 | XFSorg-DRC | ||
Sorghum/dehulled white cowpea | 70:30 | XFSorg-DWC | ||
Sorghum-cassava-cowpea | Sorghum/cassava/whole red cowpea | 35:35:30 | XFSorg-CS-WRC | |
Sorghum/cassava/whole white cowpea | 35:35:30 | XFSorg-CS-WWC | ||
Sorghum/cassava/dehulled red cowpea | 35:35:30 | XFSorg-CS-DRC | ||
Sorghum/cassava/dehulled white cowpea | 35:35:30 | XFSorg-CS-DWC | ||
Cassava-cowpea | Cassava/whole red cowpea | 70:30 | CS-WRC | |
Cassava/whole white cowpea | 70:30 | CS-WWC | ||
Cassava/dehulled red cowpea | 70:30 | CS-DRC | ||
Cassava/dehulled white cowpea | 70:30 | CS-DWC |
Colour Parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flours | Flatbreads | |||||||||
L* | a* | b* | C* | H* | L* | a* | b* | C* | H* | |
Effect of remilling sorghum flour | ||||||||||
Fine sorghum FSorg | 79.8 (0.1) | 4.6 (0.1) | 11.9 (0.1) | 12.8 (0.1) | 68.8 (0.3) | 50.9 (0.3) | 10.0 (0.3) | 13.4 (0.2) | 16.8 (0.0) | 53.2 (1.2) |
Extra fine sorghum XFSorg | 82.4 (0.0) | 4.4 (0.0) | 10.9 (0.0) | 11.7 (0.0) | 68.2 (0.1) | 43.6 (0.5) | 6.7 (0.3) | 8.6 (0.2) | 10.9 (0.3) | 52.1 (1.0) |
p-value | ** | * | * | ** | NS | *** | * | ** | ** | NS |
Cowpea variety | ||||||||||
Red cowpea RCTTKKWhite cowpea WC | 87.3 (0.1) | 1.0 (0.0) | 10.6 (0.1) | 10.6 (0.1) | 84.2 (0.2) | 59.0 (0.2) | 4.47 (0.1) | 17.5 (0.3) | 18.5 (0.3) | 72.9 (0.5) |
89.8 (0.0) | 0.6 (0.0) | 9.7 (0.1) | 9.7 (0.1) | 86.2 (0.1) | 61.2 (0.4) | 2.7 (0.2) | 17.5 (0.4) | 17.8 (0.4) | 79.2 (0.6) | |
p-value | *** | *** | *** | *** | *** | ** | *** | NS | NS | *** |
Cowpea milling fraction | ||||||||||
Whole cowpea | 85.4 (0.1) | 1.5 (0.0) | 8.9 (0.1) | 9.1 (0.1) | 80.8 (0.2) | 52.9 (0.3) | 5.7 (0.1) | 12.4 (0.2) | 13.7 (0.1) | 65.6 (0.7) |
Dehulled cowpea | 91.6 (0.0) | 0.1 (0.0) | 11.3 (0.0) | 11.3 (0.0) | 89.6 (0.0) | 67.3 (0.2) | 1.4 (0.2) | 22.5 (0.5) | 22.6 (0.5) | 86.5 (0.4) |
p-value | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Interaction of cowpea variety and milling fraction | ||||||||||
Whole red WRC | 84.3 (0.3) a | 1.8 (0.1) d | 9.4 (0.1) a | 9.6 (0.1) a | 79.2 (0.3) a | 51.3 (0.2) | 7.3 (0.1) a | 12.6 (0.3) a | 14.6 (0.2) b | 59.9 (0.9) a |
Whole white WWC | 86.5 (0.0) a | 1.1 (0.0) c | 8.5 (0.2) a | 8.6 (0.2) a | 82.5 (0.1) b | 54.4 (0.7) a | 4.1 (0.2) b | 12.2 (0.2) a | 12.9 (0.1) a | 71.4 (1.2) b |
Dehulled red DRC | 90.2 (0.1) a | 0.2 (0.0) b | 11.7 (0.0) a | 11.7 (0.0) a | 89.2 (0.0) c | 66.9 (0.3) a | 1.6 (0.2) a | 22.3 (0.6) b | 22.4 (0.6) c | 85.8 (0.4) c |
Dehulled white DWC | 93.0 (0.1) a | 0.0 (0.0) a | 10.9 (0.0) a | 10.9 (0.0) a | 90.0 (0.0) c | 68.0 (0.3) a | 1.2 (0.3) a | 22.7 (0.8) b | 22.7 (0.8) c | 87.1 (0.6) c |
p-value | NS | *** | NS | NS | *** | NS | *** | ** | ** | * |
Colour Parameters | |||||
---|---|---|---|---|---|
Flatbread | L* | a* | b* | C* | H* |
Control wheat | 58.8 (0.4) ef | 0.4(0.1) a | 15.3(0.0) f | 15.3 (0.0) ef | 88.5 (0.2) g |
Sorghum-cowpea | |||||
XFSorg-WRC | 51.3 (3.5) bc | 8.1 (0.7) i | 18.2 (0.9) g | 19.9 (1.0) g | 66.0 (2.0) d |
XFSorg-WWC | 56.7 (0.5) e | 5.0 (0.1) f | 11.2 (0.4) ab | 12.3 (0.4) abc | 65.8 (0.6) d |
XFSorg-DRC | 52.5 (0.4) c | 7.0 (0.4) h | 13.1 (0.4) de | 14.8 (0.5) def | 61.9 (0.7) c |
XFSorg-DWC | 62.2 (0.6) fg | 4.8 (0.1) e | 12.9 (0.8) cde | 13.7 (0.8) cde | 69.6 (0.8) e |
Sorghum-cassava-cowpea | |||||
XFSorg-CS-WRC | 47.1 (0.3) a | 8.0 (0.1) i | 10.8 (0.5) a | 13.4 (0.4) bcd | 53.4 (1.5) a |
XFSorg-CS-WWC | 52.9 (0.3) c | 5.4 (0.1) g | 10.5 (0.4) a | 11.8 (0.4) ab | 62.8 (1.4) cd |
XFSorg-CS-DRC | 53.3 (0.5) cd | 6.5 (0.2) h | 14.2 (0.3) ef | 15.8 (0.2) f | 65.5 (1.0) d |
XFSorg-CS-DWC | 56.3 (1.6) de | 4.4 (0.2) d | 11.7 (0.2) abcd | 12.5 (0.2) abc | 69.6 (0.6) e |
Cassava-cowpea | |||||
CS-WRC | 47.9 (0.1) ab | 7.6 (1.0) hi | 11.5 (0.8) abc | 13.7 (1.2) cde | 57.0 (1.9) b |
CS-WWC | 57.0 (0.4) e | 2.8 (0.2) c | 11.1 (0.3) a | 11.6 (0.3) a | 75.73 (0.8) f |
CS-DRC | 62.4 (0.7) g | 1.0 (0.1) b | 12.7 (0.2) bcd | 12.7 (0.2) abc | 85.5 (0.3) g |
CS-DWC | 62.7 (0.3) g | 0.6 (0.1) a | 12.9 (0.5) cde | 12.9 (0.5) abc | 87.3 (0.6) g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dankwa, R.; Aisala, H.; Kayitesi, E.; de Kock, H.L. The Sensory Profiles of Flatbreads Made from Sorghum, Cassava, and Cowpea Flour Used as Wheat Flour Alternatives. Foods 2021, 10, 3095. https://doi.org/10.3390/foods10123095
Dankwa R, Aisala H, Kayitesi E, de Kock HL. The Sensory Profiles of Flatbreads Made from Sorghum, Cassava, and Cowpea Flour Used as Wheat Flour Alternatives. Foods. 2021; 10(12):3095. https://doi.org/10.3390/foods10123095
Chicago/Turabian StyleDankwa, Rita, Heikki Aisala, Eugenie Kayitesi, and Henriette L. de Kock. 2021. "The Sensory Profiles of Flatbreads Made from Sorghum, Cassava, and Cowpea Flour Used as Wheat Flour Alternatives" Foods 10, no. 12: 3095. https://doi.org/10.3390/foods10123095
APA StyleDankwa, R., Aisala, H., Kayitesi, E., & de Kock, H. L. (2021). The Sensory Profiles of Flatbreads Made from Sorghum, Cassava, and Cowpea Flour Used as Wheat Flour Alternatives. Foods, 10(12), 3095. https://doi.org/10.3390/foods10123095