Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition
Abstract
:1. Introduction
2. Analytical and Chemometric Methodologies for Element and Stable-Isotope Analysis of Fish and Seafood
2.1. Sample Digestion Procedures for Elemental Analysis
2.2. Multivariate Data Analysis and Machine Learning
3. Authentic Elemental Signature of Fish and Seafood
3.1. Fish
3.2. Echinoderms and Crustaceans
3.3. Mollusks
4. Why Are Aquatic Animals Ideal Candidates for Multi-Elemental Analysis?
5. Final Remarks and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Warner, K.; Mustain, P.; Lowell, B.; Geren, S.; Talmage, S. Deceptive Dishes: Seafood Swaps Found Worldwide; Oceana Reports; Oceana: New York, NY, USA, 2016; Available online: https://usa.oceana.org/publications/reports/deceptive-dishes-seafood-swaps-found-worldwide (accessed on 16 September 2020).
- Giusti, A.; Ricci, E.; Guarducci, M.; Gasperetti, L.; Davidovich, N.; Guidi, A.; Armani, A. Emerging risks in the European seafood chain: Molecular identification of toxic Lagocephalus spp. in fresh and processed products. Food Control 2019, 91, 311–320. [Google Scholar] [CrossRef]
- Kusche, H.; Hanel, R. Consumers of mislabeled tropical fish exhibit increased risks of ciguatera intoxication: A report on substitution patterns in fish imported at Frankfurt Airport, Germany. Food Control 2021, 121, 107647. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Laursen, K.H. To target or not to target? Definitions and nomenclature for targeted versus non-targeted analytical food authentication. Trends Food Sci. Technol. 2019, 86, 537–543. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Hwang, I.M.; Lee, G.H.; Park, Y.M.; Choi, J.Y.; Jamila, N.; Khan, N.; Kim, K.S. Geographical origin authentication of pork using multi-element and multivariate data analyses. Meat Sci. 2017, 123, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Magdas, D.A.; Feher, I.; Cristea, G.; Voica, C.; Tabaran, A.; Mihaiu, M.; Cordea, V.D.; Balteaunu, V.A.; Dan, D.S. Geographical origin and species differentiation of Transylvanian cheese. Comparative study of isotopic and elemental profiling vs. DNA results. Food Chem. 2019, 277, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. (20/12/2006). Off. J. Eur. Union 2006, L364, 5–24.
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Callao, M.P.; Ruisánchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control 2018, 86, 283–293. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food authentication: State of the art and prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Georgiou, C.A. Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the provenance and authenticity of seafood: A review of current methodologies. Trends Food Sci. Technol. 2019, 91, 294–304. [Google Scholar] [CrossRef]
- Adebiyi, F.M.; Ore, O.T.; Ogunjimi, I.O. Evaluation of human health risk assessment of potential toxic metals in commonly consumed crayfish (Palaemon hastatus) in Nigeria. Heliyon 2020, 6, e03092. [Google Scholar] [CrossRef] [Green Version]
- Jinadasa, B.K.K.K.; Chathurika, G.S.; Jayasinghe, G.D.T.M.; Jayaweera, C.D. Mercury and cadmium distribution in yellowfin tuna (Thunnus albacares) from two fishing grounds in the Indian Ocean near Sri Lanka. Heliyon 2019, 5, e01875. [Google Scholar] [CrossRef] [Green Version]
- Stancheva, M.; Makedonski, L.; Peycheva, K. Determination of heavy metal concentrations of most consumed fish species from Bulgarian Black Sea coast. Bulg. Chem. Comm. 2014, 46, 195–203. [Google Scholar]
- Santos, L.F.P.; Trigueiro, I.N.S.; Lemos, V.A.; da Nóbrega Furtunato, D.M.; Cardoso, R.D.C.V. Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food Control 2013, 33, 193–199. [Google Scholar] [CrossRef]
- De Andrade, R.M.; De Gois, J.S.; Toaldo, I.M.; Batista, D.B.; Luna, A.S.; Borges, D.L. Direct determination of trace elements in meat samples via high-resolution graphite furnace atomic absorption spectrometry. Food Anal. Methods 2017, 10, 1209–1215. [Google Scholar] [CrossRef]
- Chaguri, M.P.; Maulvault, A.L.; Nunes, M.L.; Santiago, D.A.; Denadai, J.C.; Fogaça, F.H.; Sant’Ana, L.S.; Ducatti, C.; Bandarra, N.; Carvalho, M.L.; et al. Different tools to trace geographic origin and seasonality of croaker (Micropogonias furnieri). LWT Food Sci. Technol. 2015, 61, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Skałecki, P.; Florek, M.; Kędzierska-Matysek, M.; Poleszak, E.; Domaradzki, P.; Kaliniak-Dziura, A. Mineral and trace element composition of the roe and muscle tissue of farmed rainbow trout (Oncorhynchus mykiss) with respect to nutrient requirements: Elements in rainbow trout products. J. Trace Elem. Med. Biol. 2020, 62, 126619. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Dai, R.; Liu, Y.; Jiang, X.; Xiong, X.; Huang, K. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration. Microchem. J. 2017, 133, 518–523. [Google Scholar] [CrossRef]
- Li, L.; Boyd, C.E.; Racine, P.; McNevin, A.A.; Somridhivej, B.; Minh, H.N.; Tinh, H.Q.; Godumala, R. Assessment of elemental profiling for distinguishing geographic origin of aquacultured shrimp from India, Thailand and Vietnam. Food Control 2017, 80, 162–169. [Google Scholar] [CrossRef]
- Liu, X.; Xue, C.; Wang, Y.; Li, Z.; Xue, Y.; Xu, J. The classification of sea cucumber (Apostichopus japonicus) according to region of origin using multi-element analysis and pattern recognition techniques. Food Control 2012, 23, 522–527. [Google Scholar] [CrossRef]
- Costas-Rodríguez, M.; Lavilla, I.; Bendicho, C. Classification of cultivated mussels from Galicia (Northwest Spain) with European Protected Designation of Origin using trace element fingerprint and chemometric analysis. Anal. Chim. Acta 2010, 664, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Combined use of stable isotope analysis and elemental profiling to determine provenance of black tiger prawns (Penaeus monodon). Food Control 2019, 95, 242–248. [Google Scholar] [CrossRef]
- Melucci, D.; Casolari, S.; De Laurentiis, F.; Locatelli, C. Determination of toxic metals in marine bio-monitors by multivariate analysis of voltametric and spectroscopic data. Application to mussels, algae and fishes of the Northern Adriatic Sea. Fresenius Environ. Bull. 2017, 26, 3756–3763. [Google Scholar]
- Moon, J.H.; Ni, B.F.; Theresia, R.M.; Salim, N.A.; Arporn, B.; Vu, C.D. Analysis of consumed fish species by neutron activation analysis in six Asian countries. J. Radioanal. Nucl. 2015, 303, 1447–1452. [Google Scholar] [CrossRef]
- Fabiano, K.C.; Lima, A.P.; Vasconcellos, M.B.; Moreira, E.G. Contribution to food safety assurance of fish consumed at São Paulo city by means of trace element determination. J. Radioanal. Nucl. 2016, 309, 383–388. [Google Scholar] [CrossRef]
- Rentería-Cano, M.E.; Sánchez-Velasco, L.; Shumilin, E.; Lavín, M.F.; Gómez-Gutiérrez, J. Major and trace elements in zooplankton from the Northern Gulf of California during summer. Biol. Trace Elem. Res. 2011, 142, 848–864. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Milton, M.J.T. Analytical techniques for trace element analysis: An overview. TrAC Trends Anal. Chem. 2005, 24, 266–274. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Hedegaard, R.V.; Larsen, E.H.; Sloth, J.J. Development and validation of an SPE HG-AAS method for determination of inorganic arsenic in samples of marine origin. Anal. Bioanal. Chem. 2012, 403, 2825–2834. [Google Scholar] [CrossRef]
- Panichev, N.A.; Panicheva, S.E. Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry. Food Chem. 2015, 166, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Boyd, C.E.; Odom, J.; Dong, S. Identification of Ictalurid Catfish Fillets to Rearing Location Using Elemental Profiling. J. World Aquac. Soc. 2013, 44, 405–414. [Google Scholar] [CrossRef]
- De Sá, I.P.; Higuera, J.M.; Costa, V.C.; Costa, J.A.S.; Da Silva, C.M.P.; Nogueira, A.R.A. Determination of trace elements in meat and fish samples by MIP OES using solid-phase extraction. Food Anal. Methods 2020, 13, 238–248. [Google Scholar] [CrossRef]
- Ríos, S.E.G.; Peñuela, G.A.; Botero, C.M.R. Method validation for the determination of mercury, cadmium, lead, arsenic, copper, iron, and zinc in fish through microwave-induced plasma optical emission spectrometry (MIP OES). Food Anal. Methods 2017, 10, 3407–3414. [Google Scholar] [CrossRef]
- Zmozinski, A.V.; Carneado, S.; Ibáñez-Palomino, C.; Sahuquillo, À.; López-Sánchez, J.F.; Da Silva, M.M. Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control 2014, 46, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Bulska, E.; Ruszczyńska, A. Analytical techniques for trace element determination. Phys. Sci. Rev. 2017, 1–14. [Google Scholar] [CrossRef]
- Yeung, V.; Miller, D.D.; Rutzke, M.A. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry, 1st ed.; Nielsen, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 129–150. [Google Scholar]
- Sneddon, J.; Vincent, M.D. ICP-OES and ICP-MS for the determination of metals: Application to oysters. Anal. Lett. 2008, 41, 1291–1303. [Google Scholar] [CrossRef]
- Lum, T.S.; Leung, K.S.Y. Strategies to overcome spectral interference in ICP-MS detection. J. Anal. At. Spectrom. 2016, 31, 1078–1088. [Google Scholar] [CrossRef]
- Husáková, L.; Urbanová, I.; Šrámková, J.; Černohorský, T.; Krejčová, A.; Bednaříková, M.; Frýdová, E.; Nedělková, I.; Pilařová, L. Analytical capabilities of inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) for multi-element analysis of food and beverages. Food Chem. 2011, 129, 1287–1296. [Google Scholar] [CrossRef]
- Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology–insights from highly time-resolved measurements. J. Anal. At. Spectrom. 2019, 34, 135–146. [Google Scholar] [CrossRef]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively coupled plasma–Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra) trace elements—A tutorial review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Y.; Li, Y.; Zhang, X.; Qi, H. Authentication of the sea cucumber (Apostichopus japonicus) using amino acids carbon stable isotope fingerprinting. Food Control 2018, 91, 128–137. [Google Scholar] [CrossRef]
- Molkentin, J.; Lehmann, I.; Ostermeyer, U.; Rehbein, H. Traceability of organic fish–Authenticating the production origin of salmonids by chemical and isotopic analyses. Food Control 2015, 53, 55–66. [Google Scholar] [CrossRef]
- Remaud, G.S.; Giraudeau, P.; Lesot, P.; Akoka, S. Isotope Ratio Monitoring by NMR: Part 1—Recent Advances. In Modern Magnetic Resonance; Webb, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 1353–1378. [Google Scholar]
- Aursand, M.; Mabon, F.; Martin, G.J. Characterization of farmed and wild salmon (Salmo salar) by a combined use of compositional and isotopic analyses. J. Am. Oil Chem. Soc. 2000, 77, 659–666. [Google Scholar] [CrossRef]
- Farabegoli, F.; Pirini, M.; Rotolo, M.; Silvi, M.; Testi, S.; Ghidini, S.; Zanardi, E.; Remondini, D.; Bonaldo, A.; Parma, L.; et al. Toward the Authentication of European Sea Bass Origin through a Combination of Biometric Measurements and Multiple Analytical Techniques. J. Agric. Food Chem. 2018, 66, 6822–6831. [Google Scholar] [CrossRef]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Isotopic and elemental profiling to trace the geographic origins of farmed and wild-caught Asian seabass (Lates calcarifer). Aquaculture 2019, 502, 56–62. [Google Scholar] [CrossRef]
- Machado, R.C.; Andrade, D.F.; Babos, D.V.; Castro, J.P.; Costa, V.C.; Sperança, M.A.; Garcia, J.A.; Gamela, R.R.; Pereira-Filho, E.R. Solid sampling: Advantages and challenges for chemical element determination—A critical review. J. Anal. At. Spectrom. 2020, 35, 54–77. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends Food Sci. Technol. 2017, 65, 80–93. [Google Scholar] [CrossRef]
- Pozebon, D.; Scheffler, G.L.; Dressler, V.L.; Nunes, M.A. Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J. Anal. At. Spectrom. 2014, 29, 2204–2228. [Google Scholar] [CrossRef]
- Dunphy, B.J.; Millet, M.A.; Jeffs, A.G. Elemental signatures in the shells of early juvenile green-lipped mussels (Perna canaliculus) and their potential use for larval tracking. Aquaculture 2011, 311, 187–192. [Google Scholar] [CrossRef]
- Flem, B.; Moen, V.; Finne, T.E.; Viljugrein, H.; Kristoffersen, A.B. Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries. Fish. Res. 2017, 190, 183–196. [Google Scholar] [CrossRef]
- Limbeck, A.; Bonta, M.; Nischkauer, W. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques. J. Anal. At. Spectrom. 2017, 32, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Von der Au, M.; Karbach, H.; Bell, A.M.; Bauer, O.B.; Karst, U.; Meermann, B. Determination of metal uptake in single organisms, Corophium volutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laser ablation/inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 2021, 35, e8953. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, C.A.; Pedrotti, M.F.; Silva, J.S.; Barin, J.S.; Nóbrega, J.A.; Flores, E.M.M. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J. Anal. At. Spectrom. 2017, 32, 1448–1466. [Google Scholar] [CrossRef]
- Marini, F. Classification Methods in Chemometrics. Curr. Anal. Chem. 2010, 6, 72–79. [Google Scholar] [CrossRef] [Green Version]
- López, M.I.; Colomer, N.; Ruisánchez, I.; Callao, M.P. Validation of multivariate screening methodology. Case study: Detection of food fraud. Anal. Chim. Acta 2014, 827, 28–33. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; González-Casado, A.; Bagur-González, M.G.; Cuadros-Rodríguez, L. Alternative data mining / machine learning methods for the analytical evaluation of food quality and authenticity—A review. Food Res. Int. 2019, 122, 25–39. [Google Scholar] [CrossRef]
- Anderson, K.A.; Hobbie, K.A.; Smith, B.W. Chemical profiling with modeling differentiates wild and farm-raised salmon. J. Agric. Food Chem. 2010, 58, 11768–11774. [Google Scholar] [CrossRef]
- Varrà, M.O.; Ghidini, S.; Zanardi, E.; Badiani, A.; Ianieri, A. Authentication of European sea bass according to production method and geographical origin by light stable isotope ratio and rare earth elements analyses combined with chemometrics. Ital. J. Food Saf. 2019, 8. [Google Scholar] [CrossRef]
- Kang, X.; Zhao, Y.; Shang, D.; Zhai, Y.; Ning, J.; Sheng, X. Elemental analysis of sea cucumber from five major production sites in China: A chemometric approach. Food Control 2018, 94, 361–367. [Google Scholar] [CrossRef]
- Li, L.; Boyd, C.E.; Odom, J. Identification of Pacific white shrimp (Litopenaeus vannamei) to rearing location using elemental profiling. Food Control 2014, 45, 70–75. [Google Scholar] [CrossRef]
- Ortea, I.; Gallardo, J.M. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: An exploratory analysis. Food Chem. 2015, 170, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.F.; Tinggi, U.; Yang, X.; Fry, B. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness. Food Chem. 2015, 170, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Jiang, T.; Chen, X.; Zheng, C.; Liu, H.; Yang, J. Determination of geographic origin of Chinese mitten crab (Eriocheir sinensis) using integrated stable isotope and multi-element analyses. Food Chem. 2019, 274, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Han, C.; Dong, S.; Boyd, C.E. Use of elemental profiling and isotopic signatures to differentiate Pacific white shrimp (Litopenaeus vannamei) from freshwater and seawater culture areas. Food Control 2019, 95, 249–256. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, S. Effects of sediment, seawater, and season on multi-element fingerprints of Manila clam (Ruditapes philippinarum) for authenticity identification. Food Control 2016, 66, 62–68. [Google Scholar] [CrossRef]
- Bua, G.D.; Albergamo, A.; Annuario, G.; Zammuto, V.; Costa, R.; Dugo, G. High-Throughput ICP-MS and Chemometrics for Exploring the Major and Trace Element Profile of the Mediterranean Sepia Ink. Food Anal. Methods 2017, 10, 1181–1190. [Google Scholar] [CrossRef]
- Kelly, S.; Brodie, C.; Hilkert, A. Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS). In Modern Techniques for Food Authentication, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 349–413. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Tech. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Hites, R.A.; Foran, J.A.; Carpenter, D.O.; Hamilton, M.C.; Knuth, B.A.; Schwager, S.J. Global Assessment of Organic Contaminants in Farmed Salmon. Science 2004, 303, 226–229. [Google Scholar] [CrossRef]
- Aceto, M. The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies, Improving Quality Throughout the Food Chain, 1st ed.; Espiñeira, M., Santaclara, F.J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 137–164. [Google Scholar]
- Food and Agriculture Organization (FAO). FAO Yearbook. Fishery and Aquaculture Statistics 2018. 2020. Available online: http://www.fao.org/fishery/static/Yearbook/YB2018_USBcard/booklet/web_CB1213T.pdf (accessed on 16 September 2020).
- Iguchi, J.; Takashima, Y.; Namikoshi, A.; Yamashita, Y.; Yamashita, M. Origin identification method by multiple trace elemental analysis of short-neck clams produced in Japan, China, and the Republic of Korea. Fish. Sci. 2013, 79, 977–982. [Google Scholar] [CrossRef]
- Northern, T.J.; Smith, A.M.; McKinnon, J.F.; Bolstad, K.S.R. Trace elements in beaks of greater hooked squid Onykia ingens: Opportunities for environmental tracing. Molluscan Res. 2019, 39, 29–34. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry (IUPAC). Compendium of Chemical Terminology (the “Gold Book”), 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997; p. 1551. Available online: http://goldbook.iupac.org/ (accessed on 20 September 2020).
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Adeel, M.; Lee, J.Y.; Zain, M.; Rizwan, M.; Nawab, A.; Ahmad, M.A.; Shafiq, M.; Yi, H.; Jilani, G.; Javed, R.; et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environ. Int. 2019, 127, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Migaszewski, Z.M.; Galuszka, A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
- Reinholds, I.; Bartkevics, V.; Silvis, I.C.J.; van Ruth, S.M.; Esslinger, S. Analytical techniques combined with chemometrics for authentication and determination of contaminants in condiments: A review. J. Food Compos. Anal. 2015, 44, 56–72. [Google Scholar] [CrossRef]
- Kelly, B.C.; Ikonomou, M.G.; Higgs, D.A.; Oakes, J.; Dubetz, C. Mercury and other trace elements in farmed and wild salmon from British Columbia, Canada. Environ. Toxicol. Chem. 2008, 27, 1361–1370. [Google Scholar] [CrossRef]
- Parks, J.L.; Edwards, M. Critical Reviews in Environmental Science and Technology Boron in the Environment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 81–114. [Google Scholar] [CrossRef]
- Zkeri, E.; Aloupi, M.; Gaganis, P. Seasonal and spatial variation of arsenic in groundwater in a rhyolithic volcanic area of Lesvos Island, Greece. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef]
- Hanson, P.J.; Zdanowicz, V.S. Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. J. Fish Biol. 1999, 54, 656–668. [Google Scholar] [CrossRef]
- Sturrock, A.M.; Hunter, E.; Milton, J.A.; Johnson, R.C.; Waring, C.P.; Trueman, C.N. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 2015, 6, 806–816. [Google Scholar] [CrossRef]
- Rainbow, P.S. Trace Metals in the Environment and Living Organisms: The British Isles as a Case Study; Cambridge University Press: Cambridge, UK, 2018; pp. 1–472. [Google Scholar]
- Cubadda, F.; Raggi, A.; Coni, E. Element fingerprinting of marine organisms by dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 887–896. [Google Scholar] [CrossRef] [PubMed]
Product | Classification Objective | Input Data | Technique for Elemental Analysis | Elements | Data Analysis | Validation | Reference |
---|---|---|---|---|---|---|---|
Fish | |||||||
Salmon | Production method | Elemental profile Stable isotope ratio | ICP-OES | As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, Zn | PCA, CDA, LDA, QDA, ANNs, PNNs, NNB | Cross-validation External validation | [61] |
Catfish | Geographical origin | Elemental profile | ICP-OES | Al, Ca, Cr, Cu, Fe, K, Mg, Na, P, S, Zn | PCA, CDA, k-NN | Cross-validation | [33] |
Croacker | Geographical origin Seasonality | Elemental profile Stable isotope ratio Proximate composition | EDXRF | As, Br, Ca, Cd, Cl, Cu, Fe, Hg, K, Pb, Rb S, Se, Zn, | PCA | – | [19] |
European seabass | Geographical origin Production method | Elemental profile Stable isotope ratio Biometric measures Fatty acids | ICP-OES | As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, S, Se, Zn | PCA | Cross-validation | [48] |
Asian seabass | Geographical origin Production method | Elemental profile Stable isotope ratio | XRF | Al, As, At, Bi, Br, Ca, Cd, Cl, Cr, Cu, Fe, Hf, K, Mg, Mn, Nd, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn, Sr, Ti, U, Y, Zn, Zr | PCA, LDA, RF | Cross-validation External validation | [49] |
European seabass | Geographical origin Production method | Element profile Stable isotope ratio | ICP-MS | Er, Eu, Ho, La, Lu, Tb | PCA, OLPS-DA | Cross-validation External validation | [62] |
Echinoderms | |||||||
Sea cucumber | Geographical origin | Elemental profile | ICP-MS | Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, V, Zn | PCA, CA, LDA | Cross-validation | [23] |
Sea cucumber | Geographical origin | Elemental profile | ICP-OES ICP-MS | Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Gd, Ho, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, Pb, Pr, Sc, Se, Sm, Sn, Sr, Tb, Tm, V, Y, Yb, Zn | PCA, LDA | Cross-validation | [63] |
Crustaceans | |||||||
Pacific white shrimp | Geographical origin | Elemental profile | ICP-OES | Al, As, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S, Se, Ti, Zn, Zr | PCA, CDA, k-NN | Cross-validation | [64] |
Shrimps | Geographical origin Production method Species | Elemental profile Stable isotope ratio | ICP-OES ICP-MS | As, Cd, P, Pb, S | PCA, CA, LDA, k-NN | Cross-validation | [65] |
Prawns | Geographical origin | Elemental profile Stable isotope ratio | ICP-MS | Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mn, Mo, Ni, Se, Sr, Ti, V, Zn | PCA, CDA | Cross-validation | [66] |
Pacific white shrimps | Geographical origin | Elemental profile | ICP-OES | Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Se, Si, Ti, Zn, Zr | PCA, CDA, S-LDA | Cross-validation | [22] |
Chinese mitten crab | Geographical origin | Elemental profile Stable isotope ratio | ICP-MS | Al, Ba, Ca, Cu, K, Mg, Mn, Na, Sr, Zn | LDA, SVM | Cross-validation External validation | [67] |
Pacific white shrimps | Seawater vs. Freshwater | Elemental profile Stable isotope ratio | ICP-MS | Ag, Al, As, Ba, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ho, Li, Lu, Mn, Nd, Ni, Pb, Pr, Rb, Sm, Sr, Tb, Th, Tm, U, V, Y, Yb, Zn | PCA, CDA, S-LDA | Cross-validation | [68] |
Black tiger prawn | Geographical origin Production method | Elemental profile Stable isotope ratio | XRF | Al, As, At, Bi, Br, Ca, Cd, Cl, Cr, Cu, Fe, Hf, K, Mg, Mn, Nd, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn, Sr, Ti, U, Y, Zn, Zr | LDA, RF | Cross-validation External validation | [25] |
Mollusks | |||||||
Mussels | Geographical origin | Elemental profile | ICP-MS | Ag, As, Ba, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Ga, Gd, Ho, La, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Te, Th, Tl, Tm, U, V, Y, Yb, Zn, Zr | LDA, SIMCA, ANNs | Cross-validation | [24] |
Manila clams | Geographical origin | Elemental profile | ICP-MS | Al, As, Ba, Cd, Ce, Co, Cs, Cu, Fe, K, La, Mg, Mn, Na, Mo, Pb, Pd, Rb, Sb, Se, Sr, Sn, U, V, Zn | S-LDA | Cross-validation | [69] |
Cuttlefish (ink) | Geographical origin | Elemental profile | ICP-MS | As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, V, Zn | PCA | – | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varrà, M.O.; Ghidini, S.; Husáková, L.; Ianieri, A.; Zanardi, E. Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition. Foods 2021, 10, 270. https://doi.org/10.3390/foods10020270
Varrà MO, Ghidini S, Husáková L, Ianieri A, Zanardi E. Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition. Foods. 2021; 10(2):270. https://doi.org/10.3390/foods10020270
Chicago/Turabian StyleVarrà, Maria Olga, Sergio Ghidini, Lenka Husáková, Adriana Ianieri, and Emanuela Zanardi. 2021. "Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition" Foods 10, no. 2: 270. https://doi.org/10.3390/foods10020270
APA StyleVarrà, M. O., Ghidini, S., Husáková, L., Ianieri, A., & Zanardi, E. (2021). Advances in Troubleshooting Fish and Seafood Authentication by Inorganic Elemental Composition. Foods, 10(2), 270. https://doi.org/10.3390/foods10020270