Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents, Reagents, and Standard Preparation
2.2. Sol–Gel Sorbent Coated FPSE Media
2.3. Instrumentation
2.4. Sample Collection and Preparation
2.5. Statistical Analysis
2.6. FPSE Procedure and Target Hormone Quantification
3. Results and Discussion
3.1. Selection of Fabric Phase Sorptive Extraction Media
3.2. Optimization of FPSE Conditions
3.2.1. Factorial Experimental Designs for Selected FPSE Media
3.2.2. Interactions of Variables in Selected FPSE Membranes
3.3. Analytical Parameters
3.4. Effect of Lipids and Lactose on Extraction Efficiency
3.5. Application of the Optimized Methodology to Commercial Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fischer, W.J.; Schilter, B.; Tritscher, A.M.; Stadler, R.H. Contaminants of Milk and Dairy Products: Contamination Resulting from Farm and Dairy Practices. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Commission of the European Communities Commission Regulation (EC) No 665/2003 of 11 April 2003 Amending Annex III to Council Regulation (EEC) No 2377/90 Laying down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. 2003, pp. 7–10. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32003R0665 (accessed on 24 May 2020).
- Socas-Rodríguez, B.; Asensio-Ramos, M.; Hernández-Borges, J.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Chromatographic analysis of natural and synthetic estrogens in milk and dairy products. TrAC Trends Anal. Chem. 2013, 44, 58–77. [Google Scholar] [CrossRef]
- Norman, A.W. HORMONES | Steroid Hormones. In Encyclopedia of Food Sciences and Nutrition; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 3166–3174. ISBN 978-0-12-227055-0. [Google Scholar]
- Goyon, A.; Cai, J.Z.; Kraehenbuehl, K.; Hartmann, C.; Shao, B.; Mottier, P. Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk. Food Addit. Contam. Part A 2016, 33, 804–816. [Google Scholar] [CrossRef]
- Courtheyn, D.; Le Bizec, B.; Brambilla, G.; De Brabander, H.F.; Cobbaert, E.; Van De Wiele, M.; Vercammen, J.; De Wasch, K. Recent developments in the use and abuse of growth promoters. Anal. Chim. Acta 2002, 473, 71–82. [Google Scholar] [CrossRef]
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- The Council of the European Union COUNCIL DIRECTIVE 96/22/EC of 29 April 1996 concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists, and repealing Directives 81 /602/EEC, 88/146/EEC and 88/299/EEC. Off. J. Eur. Communities 1996, 88, 3–9.
- Bridges, J.W.; Bridges, O. Hormones as growth promoters: The precautionary principle or a political risk assessment? In Late Lessons from Early Warnings: The Precautionary Principle 1896–2000; Harremoës, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B., Guedes Vaz, S., Eds.; European Environment Agency: Luxembourg, 2002; p. 200. ISBN 92-9167-323-4. [Google Scholar]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courant, F.; Antignac, J.P.; Maume, D.; Monteau, F.; Andre, F.; Le Bizec, B. Determination of naturally occurring oestrogens and androgens in retail samples of milk and eggs. Food Addit. Contam. 2007, 24, 1358–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Oshima, T.; Ohyama, K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr. Int. 2010, 52, 33–38. [Google Scholar] [CrossRef]
- Afeiche, M.; Williams, P.L.; Mendiola, J.; Gaskins, A.J.; Jørgensen, N.; Swan, S.H.; Chavarro, J.E. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Hum. Reprod. 2013, 28, 2265–2275. [Google Scholar] [CrossRef]
- Macdonald, I.A.; Bokkenheuser, V.D.; Winter, J.; McLernon, A.M.; Mosbach, E.H. Degradation of steroids in the human gut. J. Lipid Res. 1983, 24, 675–700. [Google Scholar] [CrossRef]
- Pape-Zambito, D.A.; Roberts, R.F.; Kensinger, R.S. Estrone and 17β-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products. J. Dairy Sci. 2010, 93, 2533–2540. [Google Scholar] [CrossRef] [Green Version]
- Malekinejad, H.; Scherpenisse, P.; Bergwerff, A.A. Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). J. Agric. Food Chem. 2006, 54, 9785–9791. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.; Pellerano, R.G.; Pezza, L.; Pezza, H.R. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta 2018, 182, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [Green Version]
- Noppe, H.; Le Bizec, B.; Verheyden, K.; De Brabander, H.F. Novel analytical methods for the determination of steroid hormones in edible matrices. Anal. Chim. Acta 2008, 611, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Zhao, R.; Meng, J.; Xue, Y.; Wu, G.; Hu, J.; Tu, X. Simultaneous determination of residual hormonal chemicals in meat, kidney, liver tissues and milk by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2005, 548, 41–50. [Google Scholar] [CrossRef]
- Farlow, D.W.; Xu, X.; Veenstra, T.D. Quantitative measurement of endogenous estrogen metabolites, risk-factors for development of breast cancer, in commercial milk products by LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Gao, Q.; Li, X.S.; Huang, W.; Shi, Z.G.; Feng, Y.Q. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. J. Sep. Sci. 2011, 34, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Aufartová, J.; Mahugo-Santana, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: {An} overview. Anal. Chim. Acta 2011, 704, 33–46. [Google Scholar] [CrossRef]
- Zilfidou, E.; Kabir, A.; Furton, K.; Samanidou, V. Fabric Phase Sorptive Extraction: Current State of the Art and Future Perspectives. Separations 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Karageorgou, E.; Manousi, N.; Samanidou, V.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction for the fast isolation of sulfonamides residues from raw milk followed by high performance liquid chromatography with ultraviolet detection. Food Chem. 2016, 196, 428–436. [Google Scholar] [CrossRef]
- Samanidou, V.; Galanopoulos, L.-D.; Kabir, A.; Furton, K.G. Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection. Anal. Chim. Acta 2015, 855, 41–50. [Google Scholar] [CrossRef]
- Samanidou, V.; Michaelidou, K.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chem. 2017, 224, 131–138. [Google Scholar] [CrossRef]
- Mesa, R.; Kabir, A.; Samanidou, V.; Furton, K.G. Simultaneous determination of selected estrogenic endocrine disrupting chemicals and bisphenol A residues in whole milk using fabric phase sorptive extraction coupled to HPLC-UV detection and LC-MS/MS. J. Sep. Sci. 2019, 42, 598–608. [Google Scholar] [CrossRef]
- Soldin, S.J.; Soldin, O.P. Steroid Hormone Analysis by Tandem Mass Spectrometry. Clin. Chem. 2009, 55, 1061–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes-Alonso, R.; Ciofi, L.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Del Bubba, M.; Kabir, A.; Furton, K.G. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1437, 116–126. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Santana-Viera, S.; Montesdeoca-Esponda, S.; Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Application of microwave-assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples. Anal. Bioanal. Chem. 2016, 408. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. Food Chem. 2017, 237. [Google Scholar] [CrossRef] [PubMed]
- Tarley, C.R.T.; Silveira, G.; dos Santos, W.N.L.; Matos, G.D.; da Silva, E.G.P.; Bezerra, M.A.; Miró, M.; Ferreira, S.L.C. Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchem. J. 2009, 92, 58–67. [Google Scholar] [CrossRef]
- Hanrahan, G.; Lu, K. Application of Factorial and Response Surface Methodology in Modern Experimental Design and Optimization. Crit. Rev. Anal. Chem. 2006, 36, 141–151. [Google Scholar] [CrossRef]
- Kumar, R.; Kabir, A.; Furton, K.G.; Malik, A.K. Development of a fabric phase sorptive extraction with high-performance liquid chromatography and ultraviolet detection method for the analysis of alkyl phenols in environmental samples. J. Sep. Sci. 2015, 38, 3228–3238. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.; Kaltzi, I.; Kabir, A.; Furton, K.G. Simplifying sample preparation using fabric phase sorptive extraction technique for the determination of benzodiazepines in blood serum by high-performance liquid chromatography. Biomed. Chromatogr. 2016, 30, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Naldi, A.C.; Fayad, P.B.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 2016, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Boggs, A.S.P.; Bowden, J.A.; Galligan, T.M.; Guillette, L.J.; Kucklick, J.R. Development of a Multi-class Steroid Hormone Screening Method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS). Anal. Bioanal. Chem. 2016, 408, 4179–4190. [Google Scholar] [CrossRef] [Green Version]
- Courant, F.; Antignac, J.P.; Laille, J.; Monteau, F.; Andre, F.; Le Bizec, B. Exposure assessment of prepubertal children to steroid endocrine disruptors. 2. Determination of steroid hormones in milk, egg, and meat samples. J. Agric. Food Chem. 2008, 56, 3176–3184. [Google Scholar] [CrossRef] [PubMed]
Hormone | Chemical Structure | CAS Number | Log Kow | |
---|---|---|---|---|
ESTROGENS | Estrone (E1) | 53-16-7 | 3.13 | |
17β-Estradiol (E2) | 50-28-2 | 4.01 | ||
17α-Ethynylestradiol (EE) | 57-63-6 | 3.67 | ||
Estriol (E3) | 50-27-1 | 2.45 | ||
Diethylstilbestrol (DES) | 56-53-1 | 5.07 | ||
PROGESTOGENS | Levonorgestrel (NOR) | 797-63-7 | 3.8 | |
Norethisterone (NORET) | 68-22-4 | 2.97 | ||
Megestrol acetate (MGA) | 595-33-5 | 3.2 | ||
Progesterone (PRO) | 57-83-0 | 3.87 | ||
ANDROGENS | Testosterone (TES) | 58-22-0 | 3.32 | |
Boldenone (BOL) | 846-48-0 | 3.05 | ||
Nandrolone (NAN) | 434-22-0 | 2.62 | ||
GLUCOCORTICOIDS | Cortisone (COR) | 53-06-5 | 1.47 | |
Prednisone (PRD) | 53-03-2 | 1.46 | ||
Prednisolone (PRDNL) | 50-24-8 | 1.62 |
Variable | Low Value (−) | High Value (+) |
---|---|---|
Sample volume | 1 mL | 5 mL |
Extraction time | 10 min | 30 min |
Extractant volume | 1 mL | 2 mL |
Elution time | 5 min | 10 min |
Run Order | Sample Volume | Extraction Time | Elution Time | Extractant Volume |
---|---|---|---|---|
1 | + | + | − | + |
2 | + | + | + | + |
3 | − | − | + | + |
4 | − | + | + | − |
5 | − | + | − | + |
6 | − | − | − | − |
7 | + | + | + | − |
8 | + | + | − | − |
9 | + | − | + | + |
10 | + | − | − | − |
11 | + | − | + | − |
12 | − | − | − | + |
13 | − | + | − | − |
14 | − | − | + | − |
15 | − | + | + | + |
16 | + | − | − | + |
Hormone | Internal Standard | Linear Regression Coefficient (r2) | MDL (ng·mL−1) | MQL (ng·mL−1) | Recovery ± SD (%) |
---|---|---|---|---|---|
E1 | E1–d2 | 0.9936 | 0.27 | 0.91 | 46.47 ± 7.10 |
E2 | 0.9977 | 0.53 | 1.78 | 38.04 ± 8.64 | |
EE | 0.9938 | 1.24 | 4.14 | 28.60 ± 19.42 | |
E3 | 0.9940 | 0.32 | 1.07 | 25.41 ± 8.42 | |
DES | 0.9923 | 0.20 | 0.68 | 21.89 ± 4.63 | |
NOR | PRO–d9 | 0.9969 | 1.08 | 3.60 | 45.29 ± 8.45 |
NORET | 0.9935 | 0.05 | 0.15 | 53.51 ± 9.54 | |
MGA | 0.9928 | 0.01 | 0.04 | 45.48 ± 4.26 | |
PRO | 0.9924 | 0.14 | 0.46 | 49.57 ± 6.55 | |
TES | TES–d3 | 0.9940 | 0.21 | 0.69 | 50.09 ± 2.79 |
BOL | 0.9934 | 0.07 | 0.24 | 49.03 ± 7.25 | |
NAN | 0.9936 | 0.24 | 0.81 | 59.01 ± 5.30 | |
COR | PRO–d9 | 0.9944 | 0.01 | 0.04 | 22.07 ± 4.62 |
PRD | 0.9979 | 0.29 | 0.96 | 23.89 ± 6.78 | |
PRDNL | 0.9919 | 0.05 | 0.16 | 17.91 ± 2.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 343. https://doi.org/10.3390/foods10020343
Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ, Kabir A, Furton KG. Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2021; 10(2):343. https://doi.org/10.3390/foods10020343
Chicago/Turabian StyleGuedes-Alonso, Rayco, Zoraida Sosa-Ferrera, José J. Santana-Rodríguez, Abuzar Kabir, and Kenneth G. Furton. 2021. "Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry" Foods 10, no. 2: 343. https://doi.org/10.3390/foods10020343
APA StyleGuedes-Alonso, R., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., Kabir, A., & Furton, K. G. (2021). Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods, 10(2), 343. https://doi.org/10.3390/foods10020343