Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Metabolic Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61, 930. [Google Scholar] [CrossRef]
- Grosso, G. Effects of Polyphenol-Rich Foods on Human Health. Nutrients 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef] [Green Version]
- Asgary, S.; Karimi, R.; Momtaz, S.; Naseri, R.; Farzaei, M.H. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019, 20, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Oak, M.-H.; Auger, C.; Belcastro, E.; Park, S.-H.; Lee, H.-H.; Schini-Kerth, V.B. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic. Biol. Med. 2018, 122, 161–170. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol. Res. 2018, 129, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Tocci, G.; Presta, V.; Fratter, A.; Borghi, C.; Cicero, A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 59, 1605–1618. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, R.; Wang, B.; Mi, M.-T. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2014, 99, 1510–1519. [Google Scholar] [CrossRef] [Green Version]
- Minzer, S.; Estruch, R.; Casas, R. Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules 2020, 25, 5045. [Google Scholar] [CrossRef]
- Kawada, T. Coffee consumption and metabolic syndrome: A dose-response relationship. Int. J. Food Sci. Nutr. 2019, 70, 651. [Google Scholar] [CrossRef]
- Marventano, S.; Salomone, F.; Godos, J.; Pluchinotta, F.; Del Rio, D.; Mistretta, A.; Grosso, G. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2016, 35, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li Volti, G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr. 2014, 65, 925–936. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Topor-Mądry, R.; Szafraniec, K.; Pająk, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platania, A.; Castiglione, D.; Sinatra, D.; Urso, M.D.; Marranzano, M. Fluid Intake and Beverage Consumption Description and Their Association with Dietary Vitamins and Antioxidant Compounds in Italian Adults from the Mediterranean Healthy Eating, Aging and Lifestyles (MEAL) Study. Antioxidants 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef]
- Navarro, A.M.; Martinez-Gonzalez, M.Á.; Gea, A.; Grosso, G.; Martín-Moreno, J.M.; Lopez-Garcia, E.; Martin-Calvo, N.; Toledo, E. Coffee consumption and total mortality in a Mediterranean prospective cohort. Am. J. Clin. Nutr. 2018, 108, 1113–1120. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Galvano, F.; Pajak, A.; Mistretta, A. Factors associated with metabolic syndrome in a mediterranean population: Role of caffeinated beverages. J. Epidemiol. 2014, 24, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Bazal, P.; Gea, A.; Navarro, A.M.; Salas-Salvadó, J.; Corella, D.; Alonso-Gómez, A.; Fitó, M.; Muñoz-Bravo, C.; Estruch, R.; Fiol, M.; et al. Caffeinated coffee consumption and risk of atrial fibrillation in two Spanish cohorts. Eur. J. Prev. Cardiol. 2020. [Google Scholar] [CrossRef]
- Cosmi, F.; Di Giulio, P.; Masson, S.; Finzi, A.; Marfisi, R.M.; Cosmi, D.; Scarano, M.; Tognoni, G.; Maggioni, A.P.; Porcu, M.; et al. GISSI-HF Investigators Regular wine consumption in chronic heart failure: Impact on outcomes, quality of life, and circulating biomarkers. Circ. Heart Fail. 2015, 8, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Bazal, P.; Gea, A.; Martínez-González, M.A.; Salas-Salvadó, J.; Asensio, E.M.; Muñoz-Bravo, C.; Fiol, M.; Muñoz, M.A.; Lapetra, J.; Serra-Majem, L.L.; et al. Mediterranean alcohol-drinking pattern, low to moderate alcohol intake and risk of atrial fibrillation in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 676–683. [Google Scholar] [CrossRef]
- Sayon-Orea, C.; Bes-Rastrollo, M.; Nuñez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Martinez-Gonzalez, M.A. Type of alcoholic beverage and incidence of overweight/obesity in a Mediterranean cohort: The SUN project. Nutrition 2011, 27, 802–808. [Google Scholar] [CrossRef]
- Barrio-Lopez, M.T.; Bes-Rastrollo, M.; Sayon-Orea, C.; Garcia-Lopez, M.; Fernandez-Montero, A.; Gea, A.; Martinez-Gonzalez, M.A. Different types of alcoholic beverages and incidence of metabolic syndrome and its components in a Mediterranean cohort. Clin. Nutr. 2013, 32, 797–804. [Google Scholar] [CrossRef]
- Landais, E.; Moskal, A.; Mullee, A.; Nicolas, G.; Gunter, M.J.; Huybrechts, I.; Overvad, K.; Roswall, N.; Affret, A.; Fagherazzi, G.; et al. Coffee and Tea Consumption and the Contribution of Their Added Ingredients to Total Energy and Nutrient Intakes in 10 European Countries: Benchmark Data from the Late 1990s. Nutrients 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Bes-Rastrollo, M.; Galvano, F.; Martinez-Gonzalez, M.A. Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis. Nutrients 2017, 9, 890. [Google Scholar] [CrossRef]
- Han, J.; Shon, J.; Hwang, J.-Y.; Park, Y.J. Effects of Coffee Intake on Dyslipidemia Risk According to Genetic Variants in the ADORA Gene Family among Korean Adults. Nutrients 2020, 12, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palatini, P.; Ceolotto, G.; Ragazzo, F.; Dorigatti, F.; Saladini, F.; Papparella, I.; Mos, L.; Zanata, G.; Santonastaso, M. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J. Hypertens. 2009, 27, 1594–1601. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Ahmad, W.A.N.W.; Budin, S.B.; Zainalabidin, S. Implication of dietary phenolic acids on inflammation in cardiovascular disease. Rev. Cardiovasc. Med. 2020, 21, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Palomo, I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascul. Pharmacol. 2014, 63, 155–161. [Google Scholar] [CrossRef]
- Yamagata, K. Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? An assessment of the current evidence. Antioxidants 2018, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Bresciani, L. Dietary fibre modifies gut microbiota: What’s the role of (poly)phenols? Int. J. Food Sci. Nutr. 2020, 71, 783–784. [Google Scholar] [CrossRef]
- Igho-Osagie, E.; Cara, K.; Wang, D.; Yao, Q.; Penkert, L.P.; Cassidy, A.; Ferruzzi, M.; Jacques, P.F.; Johnson, E.J.; Chung, M.; et al. Short-Term Tea Consumption Is Not Associated with a Reduction in Blood Lipids or Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2020, 150, 3269–3279. [Google Scholar] [CrossRef]
- Liu, W.; Wan, C.; Huang, Y.; Li, M. Effects of tea consumption on metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Phytother. Res. 2020, 34, 2857–2866. [Google Scholar] [CrossRef]
- Costanzo, S.; Mukamal, K.J. Editorial Commentary: Alcohol consumption and cardiovascular health: The challenges of complexity. Trends Cardiovasc. Med. 2017, 27, 539–541. [Google Scholar] [CrossRef]
- Costanzo, S.; de Gaetano, G.; Di Castelnuovo, A.; Djoussé, L.; Poli, A.; van Velden, D.P. Moderate alcohol consumption and lower total mortality risk: Justified doubts or established facts? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Alcohol Collaborators Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [CrossRef] [Green Version]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol consumption and mortality in patients with cardiovascular disease: A meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- de Gaetano, G.; Costanzo, S. Alcohol and health: Praise of the J curves. J. Am. Coll. Cardiol. 2017, 70, 923–925. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Gallus, S.; Tavani, A.; Bosetti, C.; Negri, E.; La Vecchia, C. Alcohol consumption and acute myocardial infarction: A benefit of alcohol consumed with meals? Epidemiology 2004, 15, 767–769. [Google Scholar] [CrossRef]
- Vieira, B.A.; Luft, V.C.; Schmidt, M.I.; Chambless, L.E.; Chor, D.; Barreto, S.M.; Duncan, B.B. Timing and Type of Alcohol Consumption and the Metabolic Syndrome—ELSA-Brasil. PLoS ONE 2016, 11, e0163044. [Google Scholar] [CrossRef] [PubMed]
- Kabagambe, E.K.; Baylin, A.; Ruiz-Narvaez, E.; Rimm, E.B.; Campos, H. Alcohol intake, drinking patterns, and risk of nonfatal acute myocardial infarction in Costa Rica. Am. J. Clin. Nutr. 2005, 82, 1336–1345. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and cardiovascular health: The dose makes the poison…or the remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Di Castelnuovo, A.; Costanzo, S.; di Giuseppe, R.; de Gaetano, G.; Iacoviello, L. Alcohol consumption and cardiovascular risk: Mechanisms of action and epidemiologic perspectives. Future Cardiol. 2009, 5, 467–477. [Google Scholar] [CrossRef]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017, 43, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Stevens, Y.; Rymenant, E.V.; Grootaert, C.; Camp, J.V.; Possemiers, S.; Masclee, A.; Jonkers, D. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients 2019, 11, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.U.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef] [PubMed]
- Assini, J.M.; Mulvihill, E.E.; Huff, M.W. Citrus flavonoids and lipid metabolism. Curr. Opin. Lipidol. 2013, 24, 34–40. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.-P.; Li, H.-B. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int. J. Mol. Sci. 2017, 18, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Galvano, F.; Mistretta, A.; Marventano, S.; Nolfo, F.; Calabrese, G.; Buscemi, S.; Drago, F.; Veronesi, U.; Scuderi, A. Red orange: Experimental models and epidemiological evidence of its benefits on human health. Oxid. Med. Cell. Longev. 2013, 2013, 157240. [Google Scholar] [CrossRef]
Tea | Coffee | Fresh Citrus Juice | ||||
---|---|---|---|---|---|---|
T1 | T3 | T1 | T3 | T1 | T3 | |
Sex | ||||||
Male | 283 (44.6) | 233 (34.1) | 229 (45.1) | 321 (40.6) | 271 (39.6) | 286 (42.6) |
Female | 351 (55.4) | 451 (65.9) ** | 279 (54.9) | 470 (59.4) | 414 (60.4) | 385 (57.4) |
Age group | ||||||
<30 | 104 (16.4) | 134 (19.6) | 122 (24.0) | 131 (16.6) | 109 (15.9) | 138 (20.6) |
30–44 | 185 (29.2) | 182 (26.6) | 154 (30.3) | 203 (25.7) | 150 (21.9) | 199 (29.7) |
44–65 | 216 (34.1) | 265 (38.7) | 154 (30.3) | 318 (40.2) | 245 (35.7) | 249 (37.1) |
>65 | 129 (20.3) | 104 (15.2) * | 78 (15.4) | 139 (17.6) ** | 182 (26.5) | 85 (12.7) ** |
Educational level | ||||||
Low | 239 (37.7) | 239 (34.9) | 151 (29.7) | 309 (39.1) | 337 (49.2) | 178 (26.5) |
Medium | 252 (39.7) | 246 (36.0) | 214 (42.1) | 289 (36.5) | 203 (29.6) | 290 (43.2) |
High | 143 (22.6) | 199 (29.1) | 143 (28.1) | 193 (24.4) * | 145 (21.2) | 203 (30.3) ** |
Smoking status | ||||||
Non-smoker | 378 (59.6) | 431 (63.0) | 369 (72.6) | 427 (54.0) | 383 (55.9) | 442 (65.9) |
Current smoker | 154 (24.3) | 170 (24.9) | 83 (16.3) | 224 (28.3) | 160 (23.4) | 153 (22.8) |
Former smoker | 102 (16.1) | 83 (12.1) | 56 (11.0) | 140 (17.7) ** | 142 (20.7) | 76 (11.3) ** |
Physical activity level | ||||||
Low | 111 (19.7) | 103 (16.9) | 95 (20.9) | 117 (17.2) | 138 (25.7) | 92 (14.3) |
Medium | 266 (47.2) | 333 (54.8) | 200 (44.0) | 369 (54.2) | 290 (54.0) | 298 (46.2) |
High | 187 (33.2) | 172 (28.3) * | 160 (35.2) | 195 (28.6) * | 109 (20.3) | 255 (39.5) ** |
BMI categories | ||||||
Normal | 263 (44.6) | 340 (54.1) | 245 (53.0) | 322 (43.6) | 264 (42.2) | 313 (49.7) |
Overweight | 206 (34.9) | 215 (34.2) | 156 (33.8) | 266 (36.0) | 216 (34.6) | 238 (37.8) |
Obese | 121 (20.5) | 73 (11.6) ** | 61 (13.2) | 151 (20.4) * | 145 (23.2) | 79 (12.5) ** |
Mediterranean diet adherence | ||||||
Low | 362 (57.1) | 356 (52.0) | 281 (55.3) | 415 (52.5) | 387 (56.5) | 311 (46.3) |
Medium | 212 (33.4) | 252 (36.8) | 167 (32.9) | 294 (37.2) | 260 (38.0) | 259 (38.6) |
High | 60 (9.5) | 76 (11.1) | 60 (11.8) | 82 (10.4) | 38 (5.5) | 101 (15.1) ** |
Red Wine | White Wine | Beer | ||||
---|---|---|---|---|---|---|
T1 | T3 | T1 | T3 | T1 | T3 | |
Sex | ||||||
Male | 253 (37.8) | 135 (44.4) | 390 (40.5) | 29 (32.2) | 238 (36.6) | 298 (46.9) |
Female | 416 (62.2) | 169 (55.6) | 573 (59.5) | 61 (67.8) | 413 (63.4) | 337 (53.1) * |
Age group | ||||||
<30 | 130 (19.4) | 24 (7.9) | 181 (18.8) | 7 (7.8) | 97 (14.9) | 134 (21.1) |
30–44 | 196 (29.3) | 53 (17.4) | 244 (25.3) | 23 (25.6) | 161 (24.7) | 195 (30.7) |
44–65 | 197 (29.4) | 131 (43.1) | 315 (32.7) | 40 (44.4) | 214 (32.8) | 242 (38.1) |
>65 | 147 (21.9) | 96 (31.6) ** | 224 (23.2) | 20 (22.2) ** | 180 (27.6) | 64 (10.1) ** |
Educational level | ||||||
Low | 280 (41.9) | 148 (48.7) | 387 (40.2) | 41 (45.6) | 280 (43.0) | 165 (26.0) |
Medium | 239 (35.7) | 80 (26.3) | 327 (34.0) | 28 (31.1) | 222 (34.1) | 254 (40.0) |
High | 150 (22.4) | 76 (25.0) ** | 249 (25.9) | 21 (23.3) ** | 149 (22.9) | 216 (34.0) ** |
Smoking status | ||||||
Non-smoker | 426 (63.7) | 168 (55.3) | 598 (62.1) | 47 (52.2) | 394 (60.5) | 385 (60.6) |
Current smoker | 148 (22.1) | 66 (21.7) | 211 (21.9) | 21 (23.3) | 138 (21.2) | 180 (28.3) |
Former smoker | 95 (14.2) | 70 (23.0) ** | 154 (16.0) | 22 (24.4) ** | 119 (18.3) | 70 (11.0) ** |
Physical activity level | ||||||
Low | 138 (23.9) | 42 (16.3) | 194 (23.1) | 4 (5.4) | 133 (24.4) | 92 (15.1) |
Medium | 296 (51.3) | 136 (52.7) | 441 (52.6) | 46 (62.2) | 282 (51.6) | 296 (48.7) |
High | 143 (24.8) | 80 (31.0) ** | 204 (24.3) | 24 (32.4) ** | 131 (24.0) | 220 (36.2) ** |
BMI categories | ||||||
Normal | 311 (50.4) | 112 (39.7) | 418 (46.4) | 42 (47.7) | 281 (46.2) | 285 (48.1) |
Overweight | 179 (29.0) | 119 (42.2) | 302 (33.6) | 40 (45.5) | 198 (32.6) | 233 (39.3) |
Obese | 127 (20.6) | 51 (18.1) ** | 180 (20.0) | 6 (6.8) * | 129 (21.2) | 75 (12.6) * |
Mediterranean diet adherence | ||||||
Low | 418 (62.5) | 126 (41.4) | 575 (59.7) | 40 (44.4) | 363 (55.8) | 340 (53.5) |
Medium | 209 (31.2) | 145 (47.7) | 318 (33.0) | 33 (36.7) | 238 (36.6) | 214 (33.7) |
High | 42 (6.3) | 33 (10.9) ** | 70 (7.3) | 17 (18.9) ** | 50 (7.7) | 81 (12.8) * |
Tea | Coffee | Fresh Citrus Juice | ||||
---|---|---|---|---|---|---|
T1 | T3 | T1 | T3 | T1 | T3 | |
Total polyphenols (mg/d) | 650.5 (833.3) | 767.4 (430.1) ** | 713.4 (899.0) | 674.3 (396.6) * | 669.2 (492.4) | 666.4 (798.8) |
Flavonoids (mg/d) | 208.7 (189.6) | 354.5 (222.4) ** | 276.6 (241.6) | 263.8 (194.5) * | 265.9 (188.6) | 251.8 (217.7) |
Phenolic acids (mg/d) | 368.9 (302.9) | 396.6 (735.8) * | 366.5 (276.2) | 391.7 (792.0) * | 361.7 (404.3) | 374.4 (694.8) |
Stilbenes (mg/d) | 2.1 (4.0) | 1.7 (3.4) | 1.03 (1.81) | 2.3 (4.2) ** | 2.6 (4.4) | 0.9 (1.5) ** |
Lignans (mg/d) | 2.7 (2.8) | 2.8 (2.5) | 2.9 (3.1) | 2.7 (2.3) | 2.6 (2.2) | 2.8 (3.0) |
Red Wine | White Wine | Beer | ||||
---|---|---|---|---|---|---|
T1 | T3 | T1 | T3 | T1 | T3 | |
Total polyphenols (mg/d) | 535.2 (357.1) | 896.6 (589.6) ** | 584.2 (458.9) | 964.1 (524.2) ** | 606.1 (529.4) | 681.1 (455.4) * |
Flavonoids (mg/d) | 206.0 (171.9) | 381.6 (182.9) ** | 229.5 (177.7) | 444.9 (210.1) ** | 250.7 (197.1) | 265.3 (208.1) |
Phenolic acids (mg/d) | 293.0 (261.3) | 465.1 (548.3) ** | 317.1 (372.6) | 464.0 (434.4) ** | 318.0 (437.6) | 370.8 (306.6) * |
Stilbenes (mg/d) | 0.1 (0.4) | 8.4 (4.8) ** | 1.5 (3.6) | 7.7 (4.7) ** | 1.8 (4.0) | 1.7 (2.3) |
Lignans (mg/d) | 2.4 (1.9) | 3.2 (2.6) ** | 2.6 (2.4) | 3.6 (2.9) * | 2.6 (2.2) | 2.7 (2.9) |
Hypertension | Type-2 Diabetes | Dyslipidemia | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Tea | |||||||||
Model 1 a | 1 | 1.45 (1.14–1.84) | 0.86 (0.69–1.07) | 1 | 1.42 (0.89–2.27) | 1.03 (0.66–1.63) | 1 | 0.94 (0.67–1.30) | 0.75 (0.50–1.12) |
Model 2 b | 1 | 1.42 (1.06–1.90) | 1.00 (0.76–1.30) | 1 | 1.19 (0.69–2.05) | 1.44 (0.84–2.48) | 1 | 0.88 (0.59–1.31) | 0.84 (0.64–1.10) |
Model 3 c | 1 | 1.39 (1.04–1.86) | 0.95 (0.73–1.25) | 1 | 1.15 (0.67–1.98) | 1.39 (0.81–2.40) | 1 | 0.90 (0.60–1.34) | 0.91 (0.64–1.28) |
Coffee | |||||||||
Model 1 a | 1 | 1.25 (0.97–1.60) | 0.96 (0.76–1.22) | 1 | 0.99 (0.60–1.64) | 0.92 (0.57–1.47) | 1 | 1.08 (0.77–1.50) | 0.90 (0.66–1.22) |
Model 2 b | 1 | 1.01 (0.76–1.36) | 0.66 (0.50–0.88) | 1 | 0.72 (0.40–1.31) | 0.74 (0.42–1.30) | 1 | 0.80 (0.53–1.19) | 0.64 (0.43–0.95) |
Model 3 c | 1 | 1.00 (0.74–1.34) | 0.64 (0.48–0.86) | 1 | 0.72 (0.39–1.30) | 0.74 (0.42–1.31) | 1 | 0.79 (0.53–1.17) | 0.64 (0.43–0.95) |
Fresh citrus juice | |||||||||
Model 1 a | 1 | 0.63 (0.45–0.86) | 0.65 (0.52–0.81) | 1 | 1.44 (0.85–2.43) | 0.31 (0.17–0.56) | 1 | 0.67 (0.45–1.02) | 0.29 (0.21–0.41) |
Model 2 b | 1 | 0.73 (0.51–1.06) | 0.79 (0.61–1.02) | 1 | 1.07 (0.67–1.73) | 0.41 (0.22–0.77) | 1 | 0.83 (0.52–1.32) | 0.33 (0.22–0.49) |
Model 3 c | 1 | 0.71 (0.49–1.03) | 0.80 (0.62–1.04) | 1 | 1.17 (0.62–2.22) | 0.43 (0.23–0.80) | 1 | 0.84 (0.53–1.35) | 0.32 (0.22–0.48) |
Hypertension | Type-2 Diabetes | Dyslipidemia | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Red wine | |||||||||
Model 1 a | 1 | 0.61 (0.44–0.85) | 0.71 (0.52–0.97) | 1 | 0.43 (0.25–0.73) | 0.65 (0.39–1.09) | 1 | 0.62 (0.43–0.90) | 0.81 (0.56–1.16) |
Model 2 b | 1 | 0.55 (0.37–0.82) | 0.61 (0.41–0.90) | 1 | 0.34 (0.18–0.64) | 0.63 (0.35–1.15) | 1 | 0.41 (0.26–0.66) | 0.74 (0.47–1.16) |
Model 3 c | 1 | 0.57 (0.38–0.86) | 0.61 (0.41–0.90) | 1 | 0.37 (0.19–0.71) | 0.65 (0.36–1.18) | 1 | 0.39 (0.24–0.63) | 0.71 (0.45–1.12) |
White wine | |||||||||
Model 1 a | 1 | 0.78 (0.61–1.00) | 0.67 (0.41–1.10) | 1 | 0.89 (0.56–1.42) | 0.42 (0.15–1.17) | 1 | 0.82 (0.60–1.13) | 0.85 (0.47–1.53) |
Model 2 b | 1 | 0.85 (0.63–1.14) | 0.69 (0.38–1.25) | 1 | 0.76 (0.44–1.30) | 0.15 (0.03–0.76) | 1 | 0.79 (0.54–1.16) | 1.03 (0.51–2.09) |
Model 3 c | 1 | 0.85 (0.63–1.15) | 0.69 (0.38–1.26) | 1 | 0.75 (0.43–1.28) | 0.14 (0.03–0.75) | 1 | 0.81 (0.55–1.18) | 1.00 (0.49–2.04) |
Beer | |||||||||
Model 1 a | 1 | 0.79 (0.62–1.00) | 0.59 (0.46–0.76) | 1 | 0.88 (0.58–1.34) | 0.38 (0.22–0.66) | 1 | 0.94 (0.71–1.26) | 0.78 (0.56–1.08) |
Model 2 b | 1 | 0.78 (0.58–1.04) | 0.61 (0.45–0.83) | 1 | 0.94 (0.57–1.56) | 0.51 (0.28–0.91) | 1 | 1.03 (0.71–1.48) | 1.13 (0.77–1.67) |
Model 3 c | 1 | 0.78 (0.58–1.04) | 0.61 (0.45–0.83) | 1 | 0.94 (0.57–1.56) | 0.51 (0.28–0.92) | 1 | 1.05 (0.73–1.52) | 1.14 (0.77–1.68) |
Polyphenol-Rich Beverage Consumption | ||||
---|---|---|---|---|
T1 | T2 | T3 | ptrend | |
Tea (mL/d) | 77.5 (180.3) | 75.7 (135.3) | 68.0 (136.9) | 0.294 |
Coffee (mL/d) | 47.6 (51.9) | 58.9 (44.9) | 67.6 (39.5) | <0.001 |
Red wine (mL/d) | 6.0 (26.7) | 43.1 (91.3) | 53.9 (80.4) | <0.001 |
White wine (mL/d) | 3.4 (37.0) | 8.7 (34.8) | 26.4 (44.1) | <0.001 |
Beer (mL/d) | 3.3 (14.3) | 37.1 (104.7) | 100.1 (160.0) | <0.001 |
Fresh citrus juice (mL/d) | 11.8 (49.3) | 25.2 (70.1) | 41.0 (92.9) | <0.001 |
Energy intake (kcal/d) | 2051.0 (717.3) | 2039.8 (798.6) | 2246.8 (905.6) | <0.001 |
Energy intake (kJ/d) | 8296.3 (2938.4) | 8238.0 (3324.9) | 9163.8 (3741.4) | <0.001 |
Macronutrients | ||||
Carbohydrates (g/d) | 309.0 (121.8) | 298.2 (129.9) | 317.1 (129.9) | 0.209 |
Fiber (g/d) | 31.4 (11.9) | 31.1 (13.3) | 32.2 (16.5) | 0.319 |
Protein (g/d) | 85.2 (28.4) | 82.1 (27.5) | 86.4 (31.5) | 0.361 |
Fat (g/d) | 60.2 (22.0) | 59.9 (26.5) | 67.6 (32.9) | <0.001 |
Cholesterol (mg/d) | 195.6 (100.7) | 182.4 (82.3) | 197.9 (88.3) | 0.472 |
SFA % | 23.5 (9.3) | 22.4 (9.4) | 25.2 (10.4) | 0.002 |
MUFA % | 25.2 (8.0) | 24.6 (8.5) | 26.3 (9.9) | 0.030 |
PUFA % | 11.1 (4.7) | 12.1 (6.5) | 14.9 (9.7) | <0.001 |
Total Omega-3 g | 1.7 (0.8) | 1.6 (0.9) | 1.6 (0.7) | 0.019 |
Micronutrients | ||||
Vitamin A (Retinol) | 831.2 (357.8) | 891.6 (438.3) | 856.5 (455.4) | 0.473 |
Vitamin C (mg/d) | 140.9 (80.7) | 159.0 (84.9) | 167.4 (120.6) | <0.001 |
Vitamin E (mg/d) | 8.2 (2.9) | 8.5 (3.1) | 9.0 (3.8) | <0.001 |
Vitamin B12 | 6.2 (4.5) | 6.1 (3.8) | 6.6 (6.1) | 0.093 |
Vitamin D | 5.6 (6.1) | 5.3 (4.7) | 5.2 (4.7) | 0.159 |
Sodium (mg/d) | 2770.1 (1183.4) | 2752.6 (1008.2) | 3036.7 (1137.3) | <0.001 |
Potassium (mg/d) | 3471.2 (1109.6) | 3627.4 (1276.0) | 3805.9 (1644.6) | <0.001 |
Polyphenols | ||||
Total polyphenols | 516.9 (339.5) | 698.4 (775.0) | 715.4 (475.8) | <0.001 |
Flavonoids | 211.3 (189.3) | 263.4 (186.4) | 286.3 (217.6) | <0.001 |
Phenolic acids | 271.7 (242.4) | 393.1 (701.3) | 381.6 (316.0) | 0.002 |
Stilbenes | 0.4 (1.2) | 2.1 (4.0) | 2.7 (3.7) | <0.001 |
Lignans | 2.4 (1.8) | 2.9 (2.7) | 2.7 (2.8) | 0.076 |
Hypertension | Type-2 Diabetes | Dyslipidemia | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Polyphenol-rich beverage consumption | |||||||||
Model 1 a | 1 | 0.73 (0.57–0.92) | 0.57 (0.44–0.73) | 1 | 0.54 (0.36–0.81) | 0.41 (0.26–0.66) | 1 | 0.67 (0.51–0.89) | 0.41 (0.29–0.57) |
Model 2 b | 1 | 0.80 (0.60–1.08) | 0.70 (0.51–0.95) | 1 | 0.75 (0.45–1.26) | 0.71 (0.40–1.26) | 1 | 0.82 (0.57–1.17) | 0.73 (0.49–1.09) |
Model 3 c | 1 | 0.79 (0.59–1.06) | 0.69 (0.50–0.94) | 1 | 0.71 (0.42–1.19) | 0.66 (0.37–1.18) | 1 | 0.82 (0.57–1.18) | 0.73 (0.49–1.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micek, A.; Godos, J.; Cernigliaro, A.; Cincione, R.I.; Buscemi, S.; Libra, M.; Galvano, F.; Grosso, G. Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy. Foods 2021, 10, 383. https://doi.org/10.3390/foods10020383
Micek A, Godos J, Cernigliaro A, Cincione RI, Buscemi S, Libra M, Galvano F, Grosso G. Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy. Foods. 2021; 10(2):383. https://doi.org/10.3390/foods10020383
Chicago/Turabian StyleMicek, Agnieszka, Justyna Godos, Achille Cernigliaro, Raffaele Ivan Cincione, Silvio Buscemi, Massimo Libra, Fabio Galvano, and Giuseppe Grosso. 2021. "Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy" Foods 10, no. 2: 383. https://doi.org/10.3390/foods10020383
APA StyleMicek, A., Godos, J., Cernigliaro, A., Cincione, R. I., Buscemi, S., Libra, M., Galvano, F., & Grosso, G. (2021). Polyphenol-Rich and Alcoholic Beverages and Metabolic Status in Adults Living in Sicily, Southern Italy. Foods, 10(2), 383. https://doi.org/10.3390/foods10020383