Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pilot-Scale Extrusion-Cooking with the BC21 Extruder
2.3. Industrial-Scale Extrusion-Cooking with the BC45 Extruder
2.4. Industrial-Scale Extrusion-Cooking with the BC72 Extruder
2.5. Determination of Bran Extractability
2.6. Determination of Bran Extract Viscosity
2.7. Determination of the Strong Water-Binding Capacity
3. Results and Discussion
3.1. Impact of Extrusion Scale on Extruded Wheat Bran Physicochemical Properties: A Systematic Comparison of BC21 and BC45
3.2. Comparing the Maximal Potential of Pilot- (BC21) and Industrial-Scale (BC45) Extrusion-Cooking to Modify Wheat Bran
3.3. Extrusion-Cooking with the BC72 Industrial-Scale Extruder: A Case Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Monro, J.A. Wheat bran equivalents based on faecal bulking indices for dietary management of faecal bulk. Asia Pac. J. Clin. Nutr. 2001, 10, 242–248. [Google Scholar] [CrossRef]
- Verspreet, J.; Pollet, A.; Cuyvers, S.; Vergauwen, R.; Van den Ende, W.; Delcour, J.A.; Courtin, C.M. A simple and accurate method for determining wheat grain fructan content and average degree of polymerization. J. Agric. Food Chem. 2012, 60, 2102–2107. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific opinion on dietary reference values for carbohydrates and dietary fibre—EFSA panel on dietetic products, nutrition, and allergies (NDA). EFSA J. 2010, 8, 77. [Google Scholar]
- Wong, J.M.; De Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Hemdane, S.; Jacobs, P.; Dornez, E.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Wheat (Triticum aestivum L.) bran in bread making: A critical review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Roye, C.; Bulckaen, K.; De Bondt, Y.; Liberloo, I.; Van De Walle, D.; Dewettinck, K.; Courtin, C.M. Side-by-side comparison of composition and structural properties of wheat, rye, oat and maize bran and their impact on in vitro fermentability. Cereal Chem. 2019, 97, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Lemmens, E.; De Brier, N.; Spiers, K.M.; Ryan, C.; Garrevoet, J.; Falkenberg, G.; Goos, P.; Smolders, E.; Delcour, J.A. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chem. 2018, 264, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.R.; Kubola, J.; Siriamornpun, S.; Herald, T.J.; Shi, Y.-C. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem. 2014, 152, 483–490. [Google Scholar] [CrossRef] [PubMed]
- De Bondt, Y.; Rosa-Sibakov, N.; Liberloo, I.; Roye, C.; Van de Walle, D.; Dewettinck, K.; Goos, P.; Nordlund, E.; Courtin, C.M. Study into the effect of microfluidisation processing parameters on the physicochemical properties of wheat (Triticum aestivum L.) bran. Food Chem. 2020, 305, 125436. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Sibakov, N.; Sibakov, J.; Lahtinen, P.; Poutanen, K. Wet grinding and microfluidization of wheat bran preparations: Improvement of dispersion stability by structural disintegration. J. Cereal Sci. 2015, 64, 1–10. [Google Scholar] [CrossRef]
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-cooking modifies physicochemical and nutrition related properties of wheat bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef]
- Ralet, M.C.; Thibault, J.F.; Della Valle, G. Influence of extrusion-cooking on the physico-chemical properties of wheat bran. J. Cereal Sci. 1990, 11, 249–259. [Google Scholar] [CrossRef]
- Andersson, A.M.; Andersson, R.; Jonsäll, A.; Andersson, J.; Fredriksson, H. Effect of different extrusion parameters on dietary fiber in wheat bran and rye bran. J. Food Sci. 2017, 82, 1344–1350. [Google Scholar] [CrossRef]
- Wang, W.M.; Klopfenstein, C.F. Effect of twin-screw extrusion on the nutritional quality of wheat, barley, and oats. Cereal Chem. 1993, 70, 712–715. [Google Scholar]
- Yan, X.; Ye, R.; Chen, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem. 2015, 180, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Rakha, A.; Anjum, F.M.; Ahmed, W.; Sohail, M. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. Int. J. Food Sci. Technol. 2015, 50, 1533–1537. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, L.; Zhang, F.; Qiu, Y. Chapter 31—Process Development and Scale-Up: Twin-Screw Extrusion. In Developing Solid Oral Dosage Forms, 2nd ed.; Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R.V., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 821–868. [Google Scholar]
- Roye, C.; Chanvrier, H.; Henrion, M.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Single-pass, double-pass and acid twin-screw extrusion-cooking impact physicochemical and nutrition related properties of wheat bran to different extent. Innov. Food Sci. Emerg. Technol. 2020, 66, 102520. [Google Scholar] [CrossRef]
- Fan, J.; Mitchell, J.R.; Blanshard, J.M.V. A computer simulation of the dynamics of bubble growth and shrinkage during extrudate expansion. J. Food Eng. 1994, 23, 337–356. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AACC International. Approved Methods of Analysis, 11th ed.; Method 44-15.02 Moisture—Air-oven Methods; AACC International: St. Paul, MN, USA, 1999. [Google Scholar]
- Berzin, F.; Tara, A.; Vergnes, B. Optimization and scale-up of starch cationization in a twin screw extruder. Polym. Eng. Sci. 2007, 47, 814–823. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; Method 56-11.02 Solvent Retention Capacity Profile; AACC International: St. Paul, MN, USA, 1999. [Google Scholar]
- Dhanasekharan, K.M.; Kokini, J.L. Design and scaling of wheat dough extrusion by numerical simulation of flow and heat transfer. J. Food Eng. 2003, 60, 421–430. [Google Scholar] [CrossRef]
- Domschke, T.; Justus, C. Heat transfer in single and twin screw extruders. Int. Polym. Process. 1993, 8, 294–307. [Google Scholar] [CrossRef]
- Della Valle, G.; Barres, C.; Plewa, J.; Tayeb, J.; Vergnes, B. Computer simulation of starchy products’ transformation by twin-screw extrusion. J. Food Eng. 1993, 19, 1–31. [Google Scholar] [CrossRef]
- Barres, C.; Vergnes, B.; Tayeb, J.; Della Valle, G. Transformation of wheat flour by extrusion cooking: Influence of screw configuration and operating conditions. Cereal Chem. 1990, 67, 427–433. [Google Scholar]
- Djuric, D.; Van Melkebeke, B.; Kleinebudde, P.; Remon, J.P.; Vervaet, C. Comparison of two twin-screw extruders for continuous granulation. Eur. J. Pharm. Biopharm. 2009, 71, 155–160. [Google Scholar] [CrossRef] [PubMed]
Extruder | Sample Coding | Moisture Content (%) | Last Barrel Set T (°C) | Acid Concentration (%) |
---|---|---|---|---|
BC21 | VHS23 | 23 | 120 | 0 |
VHS27 | 23 | 120 | 0 | |
VHS27T | 27 | 145 | 0 | |
VHSD27 | 27 | 120 | 0 | |
VHSA2% | 27 | 120 | 2 | |
BC45 | VHS19 | 19 | 120 | 0 |
VHS23 | 23 | 120 | 0 | |
VHS27 | 23 | 120 | 0 | |
VHS27T | 27 | 145 | 0 | |
VHSD27 | 27 | 120 | 0 | |
VHSA2% | 27 | 120 | 2 | |
BC72 | VHS21.5 | 21.5 | 90 | 0 |
Control | Single-Pass Extrusion | Double-Pass Extrusion | Acid Extrusion | ||||||
---|---|---|---|---|---|---|---|---|---|
VHS23 | VHS27 | VHSD27 | VHSA2% | ||||||
BC21 | BC45 | BC21 | BC45 | BC21 | BC45 | BC21 | BC45 | ||
Specific mechanical energy (kJ/kg) | / | 164 | 255 | 139 | 224 | 132/153 | 255/187 | 133 | 194 |
Pressure (Bar) | / | 53 | 72 | 45 | 59 | 37/57 | 72/62 | 39 | 49 |
Product T (°C) | 120 | 121 | 136 | 114 | 134 | 130/120 | 136/137 | 110 | 131 |
Strong water-binding capacity (g/g dm) | 0.88 (±0.01) | 1.05 (±0.03) | 1.18 (±0.04) | 0.95 (±0.08) | 1.28 (±0.02) | 1.37 (±0.03) | 1.29 (±0.01) | 0.82 (±0.03) | 1.20 (±0.01) |
Extract viscosity (mPa*s) | 1.27 (±0.01) | 2.96 (±0.02) | 3.78 (±0.06) | 1.92 (±0.03) | 2.96 (±0.08) | 3.54 (±0.03) | 4.75 (±0.08) | 2.55 (±0.02) | 4.06 (±0.06) |
Extractability (% dm) | 16.9 (±0.4) | 17.6 (±0.4) | 18.3 (±0.2) | 15.4 (±0.1) | 16.8 (±0.4) | 18.1 (±0.2) | 18.8 (±0.2) | 20.8 (±0.5) | 23.0 (±0.3) |
Control | VHS19 | VHS27T | VHS21.5 | |
---|---|---|---|---|
Extruder | / | BC45 | BC45 | BC72 |
Preconditioning (20% water) | No | No | Yes | No |
SME (kJ/kg) | / | 356 | 191 | 522 |
Pressure (Bar) | / | 96 | 40 | 65 |
Product T (°C) | 120 | 127 | 156 | 149 |
SWBC (g/g dm) | 0.88 (±0.01) | 1.07 (±0.08) | 1.45 (±0.03) | 1.21 (±0.03) |
Extract viscosity (mPa·s) | 1.27 (±0.01) | 6.69 (±0.09) | 3.29 (±0.06) | 2.55 (±0.04) |
Extractability (% dm) | 16.9 (±0.4) | 22.6 (±0.3) | 16.3 (±0.2) | 20.4 (±0.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roye, C.; Henrion, M.; Chanvrier, H.; Loret, C.; King, R.; Lamothe, L.; Courtin, C.M. Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study. Foods 2021, 10, 472. https://doi.org/10.3390/foods10020472
Roye C, Henrion M, Chanvrier H, Loret C, King R, Lamothe L, Courtin CM. Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study. Foods. 2021; 10(2):472. https://doi.org/10.3390/foods10020472
Chicago/Turabian StyleRoye, Chiara, Muriel Henrion, Hélène Chanvrier, Chrystel Loret, Roberto King, Lisa Lamothe, and Christophe M. Courtin. 2021. "Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study" Foods 10, no. 2: 472. https://doi.org/10.3390/foods10020472
APA StyleRoye, C., Henrion, M., Chanvrier, H., Loret, C., King, R., Lamothe, L., & Courtin, C. M. (2021). Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study. Foods, 10(2), 472. https://doi.org/10.3390/foods10020472