In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Fried Products (Magwinya)
2.3. Sample Preparation for Starch Digestion
2.4. Starch Digestibility Protocol
2.5. Glycaemic Index Estimation of Fried Products
2.6. Statistical Analysis
3. Results and Discussion
3.1. Rapidly and Slowly Available Glucose Content of Fried Products
3.2. Unavailable Glucose Content of Fried Products
3.3. Estimated Glycaemic Index of Fried Products
3.3.1. Estimated Glycaemic Index of Fried Dough
3.3.2. Estimated Glycaemic Index of Fried Batter
3.4. Relationship Between Estimated Glycaemic Index, and Other Variables in the Study
3.4.1. Wheat Bran Fried Products
3.4.2. Oat bran Fried Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Contardo, I.; Parada, J.; Leiva, A.; Bouchon, P. The effect of vacuum frying on starch gelatinization and its in vitro digestibility in starch–gluten matrices. Food Chem. 2016, 197, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Gourineni, V.; Stewart, M.L.; Skorge, R.; Sekula, B.C. Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence. Nutrients 2017, 9, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, J.D.; Dueik, V.; Carré, D.; Bouchon, P. Effect of the addition of soluble dietary fibre and green tea polyphenols on acrylamide formation and in vitro starch digestibility in baked starchy matrices. Molecules 2019, 24, 3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada, J.; Santos, J.L. Interactions between Starch, Lipids, and Proteins in Foods: Microstructure Control for Glycemic Response Modulation. Crit. Rev. Food Sci. Nutr. 2015, 56, 2362–2369. [Google Scholar] [CrossRef]
- Kumar, N.; Puri, N.; Marotta, F.; Dhewa, T.; Calabrò, S.; Puniya, A.K.; Carter, J. Diabesity: An epidemic with its causes, prevention and control with special focus on dietary regime. Funct. Foods Health Dis. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Englyst, K.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329–339. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, M.; Sikora, E.; Dobosz, A.; Kapusta-Duch, J. Glycaemic index of wheat bread. Starch Stärke 2017, 70, 1700022. [Google Scholar] [CrossRef]
- Wolever, T.; Vorster, H.H.; Björck, I.; Brand-Miller, J.; Brighenti, F.; Mann, J.I.; Ramdath, D.D.; Granfeldt, Y.; Holt, S.; Perry, T.L.; et al. Determination of the glycaemic index of foods: Interlaboratory study. Eur. J. Clin. Nutr. 2003, 57, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Odenigbo, A.; Rahimi, J.; Ngadi, M.; Amer, S.; Mustafa, A. Starch digestibility and predicted glycemic index of fried sweet potato cultivars. Funct. Foods Health Dis. 2012, 2, 280. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [Green Version]
- Magallanes-Cruz, P.A.; Flores-Silva, P.C.; Bello-Pérez, L.A. Starch Structure Influences Its Digestibility: A Review. J. Food Sci. 2017, 82, 2016–2023. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.S. Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Taye, A.; Engidawork, E.; Urga, K. An in vitro estimation of glycemic index of white bread and improvement of the dietary fibre. Adv. Food Technol. Nutr. Sci. 2016, 2, 83–87. [Google Scholar]
- Sozer, N.; Cicerelli, L.; Heiniö, R.-L.; Poutanen, K. Effect of wheat bran addition on in vitro starch digestibility, physico-mechanical and sensory properties of biscuits. J. Cereal Sci. 2014, 60, 105–113. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C.M. Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Ahmed, F.; Sairam, S.; Urooj, A. In vitro hypoglycemic effects of selected dietary fibre sources. J. Food Sci. Technol. 2011, 48, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Pérez, F.; Salazar-García, M.G.; Romero-Baranzini, A.L.; Islas-Rubio, A.R.; Ramírez-Wong, B. Estimated glycemic index and dietary fibre content of cookies elaborated with extruded wheat bran. Plant Food Hum. Nutr. 2013, 68, 52–56. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Onipe, O.O.; Beswa, D.; Jideani, A.I.O. The socioeconomic benefits, production and consumption statistics of magwinya in Limpopo province, South Africa. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 15007–15028. [Google Scholar] [CrossRef]
- Onipe, O.O.; Beswa, D.; Jideani, A.I.O. Confocal laser scanning microscopy and image analysis for elucidating crumb and crust microstructure of bran-enriched South African fried dough and batter. Foods 2020, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Germaine, K.A.; Samman, S.; Fryirs, C.G.; Griffiths, P.J.; Johnson, S.K.; Quail, K.J. Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. J. Sci. Food Agric. 2008, 88, 652–658. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem. 2018, 245, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Annor, G.A.; Marcone, M.; Corredig, M.; Bertoft, E.; Seetharaman, K. Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). J. Cereal Sci. 2015, 64, 76–81. [Google Scholar] [CrossRef]
- Englyst, H.N.; Veenstra, J.; Hudson, G.J. Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response. Br. J. Nutr. 1996, 75, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noort, M.W.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality—Evidence for fibre–protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J. Review: Starch Matrices and the Glycemic Response. Food Sci. Technol. Int. 2011, 17, 187–204. [Google Scholar] [CrossRef]
- Lanzerstorfer, P.; Rechenmacher, E.; Lugmayr, O.; Stadlbauer, V.; Höglinger, O.; Vollmar, A. Effects of various commercial whole-grain breads on postprandial blood glucose response and glycemic index in healthy subjects. Austin J. Clin. Med. 2018, 5, 1031–1037. [Google Scholar]
- Foster-Powell, K.; A Holt, S.H.; Brand-Miller, J. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.B.; Prabhasankar, P. Shelf stability of low glycemic index noodles: Its physicochemical evaluation. J. Food Sci. Technol. 2018, 55, 4811–4822. [Google Scholar] [CrossRef] [PubMed]
- Dona, A.C.; Pages, G.; Gilbert, R.G.; Kuchel, P. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 2010, 80, 599–617. [Google Scholar] [CrossRef]
- Ghidurus, M.; Turtoi, M.; Boskou, G.; Niculita, P.; Stan, V. Nutritional and health aspects related to frying (I). Rom. Biotechnol. Lett. 2010, 15, 5675–5682. [Google Scholar]
- Mangala, S.; Udayasankar, K.; Tharanathan, R. Resistant starch from processed cereals: The influence of amylopectin and non-carbohydrate constituents in its formation. Food Chem. 1999, 64, 391–396. [Google Scholar] [CrossRef]
- Yadav, B.S. Effect of frying, baking and storage conditions on resistant starch content of foods. Br. Food J. 2011, 113, 710–719. [Google Scholar] [CrossRef]
Bran Concentration (g) | Fried Dough | Fried Batter | ||||
---|---|---|---|---|---|---|
RAG | SAG | UG | RAG | SAG | UG | |
Control | 60.31 e ± 1.51 | 2.62 a ± 0.03 | 37.07 ab ± 0.24 | 90.07 e ± 1.80 | 6.88 a ± 0.78 | 3.05 a ± 0.61 |
WB1 | 56.81 d ± 0.12 | 4.69 b ± 0.20 | 38.50 b ± 1.08 | 83.17 d ± 1.13 | 9.45 b ± 0.43 | 7.39 c ± 0.30 |
WB5 | 53.67 c ± 1.31 | 11.06 de ± 0.42 | 35.27 a ± 0.11 | 80.14 c ± 0.25 | 10.93 b ± 0.62 | 8.93 d ± 0.36 |
WB8 | 48.10 a ± 0.20 | 10.45 d ± 0.05 | 41.46 c ± 0.15 | 76.09 b ± 0.05 | 18.76 d ± 0.05 | 5.15 b ± 0.01 |
WB10 | 49.18 ab ± 0.85 | 12.56 e ± 0.12 | 38.26 b ± 0.27 | 73.38 a ± 0.58 | 17.99 d ± 0.76 | 8.63 d ± 0.18 |
WB15 | 51.12 b ± 0.33 | 5.67 bc ± 0.17 | 43.21 c ± 1.63 | 78.58 c ± 0.18 | 14.77 c ± 0.68 | 6.65 c ± 0.51 |
WB20 | 47.11 a ± 0.25 | 7.45 c ± 0.50 | 45.44 d ± 1.25 | 72.33 a ± 1.78 | 18.11 d ± 0.85 | 9.57 d ± 0.07 |
Control | 60.31 c ± 1.51 | 2.62 a ± 0.03 | 37.07 a ± 0.24 | 90.07 d ± 1.80 | 6.88 ab ± 0.78 | 3.05 a ± 0.61 |
OB1 | 45.70 b ± 1.77 | 2.48 a ± 0.48 | 51.82 c ± 1.30 | 82.25 c ± 0.28 | 14.07 c ± 0.78 | 3.68 a ± 0.59 |
OB5 | 44.27 b ± 0.11 | 4.35 ab ± 0.21 | 51.38 c ± 0.11 | 76.46 ab ± 0.72 | 9.72 c ± 0.59 | 13.82 c ± 0.13 |
OB8 | 43.71 ab ± 1.03 | 8.45 c ± 0.98 | 47.84 b ± 0.21 | 75.41 ab ± 0.91 | 13.49 c ± 0.76 | 11.10 b ± 0.15 |
OB10 | 41.47 a ± 0.25 | 3.79 a ± 0.10 | 54.74 d ± 1.15 | 71.84 a ± 0.75 | 11.30 bc ± 0.71 | 16.86 d ± 0.96 |
OB15 | 43.25 ab ± 0.40 | 10.18 c ± 0.41 | 46.57 b ± 0.21 | 79.82 bc ± 0.57 | 4.62 a ± 0.57 | 15.57 cd ± 0.14 |
OB20 | 43.58 ab ± 0.22 | 5.00 b ± 0.85 | 51.43 c ± 0.37 | 80.31 bc ± 0.87 | 8.98 abc ± 0.17 | 10.71 b ± 0.70 |
Magwinya samples | Wheat bran magwinya | |
---|---|---|
Fried dough | Fried batter | |
Control | 58.11 f ± 0.55 | 80.62 f ± 0.07 |
Wheat bran 1 | 58.39 ef ± 0.13 | 65.93 a ± 0.19 |
Wheat bran 5 | 57.97 cde ± 0.21 | 66.95 b ± 0.18 |
Wheat bran 8 | 56.46 a ± 0.05 | 68.21 e ± 0.53 |
Wheat bran 10 | 57.43 bc ± 0.11 | 67.59 cd ± 0.07 |
Wheat bran 15 | 57.11 b ± 0.65 | 67.22 bc ± 0.04 |
Wheat bran 20 | 57.62 bcd ± 0.15 | 67.84 de ± 0.33 |
Oat bran magwinya | ||
Fried dough | Fried batter | |
Control | 58.11 b ± 0.55 | 80.62 f ± 0.07 |
Oat bran 1 | 56.96 a ± 0.57 | 80.03 ef ± 0.42 |
Oat bran 5 | 56.34 a ± 0.66 | 78.36 cd ± 0.42 |
Oat bran 8 | 56.64 a ± 0.52 | 73.57 a ± 0.10 |
Oat bran 10 | 56.65 a ± 0.47 | 74.69 b ± 0.27 |
Oat bran 15 | 56.98 a ± 0.05 | 77.58 c ± 0.72 |
Oat bran 20 | 57.27 ab ± 0.32 | 79.13 de ± 0.29 |
Dependent Variables | Initial Moisture Content | Bran Concentration | RAG | SAG | UG | eGI |
---|---|---|---|---|---|---|
Wheat bran magwinya | ||||||
RAG | 0.931 ** | −0.310 * | ||||
SAG | 0.596 ** | 0.488 ** | 0.313 * | |||
UG | −0.985 ** | 0.118 | −0.957 ** | −0.574 ** | ||
eGI | 0.865 ** | −0.211 | 0.916 ** | 0.338 * | −0.892 ** | |
Fat | 0.561 ** | −0.087 | 0.542 ** | 0.403 ** | −0.590 ** | 0.495 ** |
Oat bran magwinya | ||||||
RAG | 0.942 ** | −0.195 | ||||
SAG | 0.557 ** | 0.095 | 0.397 ** | |||
UG | −0.963 ** | 0.155 | −0.981 ** | −0.565 ** | ||
eGI | 0.985 ** | −0.052 | 0.962 ** | 0.518 ** | −0.973 ** | |
Fat | 0.636 ** | −0.361 * | 0.702 ** | 0.148 | −0.661 ** | 0.655 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onipe, O.O.; Beswa, D.; Jideani, A.I.O. In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran. Foods 2020, 9, 1374. https://doi.org/10.3390/foods9101374
Onipe OO, Beswa D, Jideani AIO. In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran. Foods. 2020; 9(10):1374. https://doi.org/10.3390/foods9101374
Chicago/Turabian StyleOnipe, Oluwatoyin O., Daniso Beswa, and Afam I. O. Jideani. 2020. "In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran" Foods 9, no. 10: 1374. https://doi.org/10.3390/foods9101374
APA StyleOnipe, O. O., Beswa, D., & Jideani, A. I. O. (2020). In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran. Foods, 9(10), 1374. https://doi.org/10.3390/foods9101374