Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standard Solutions
2.2. Sample Collection
2.3. Sample Preparation
2.4. ICP-MS Analysis
2.5. Method Validation Procedure
2.6. Estimation of Dietary Intake
2.7. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Results
3.3. Principal Component Analysis
3.4. Elements Uptake by Honeys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Med. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Rashed, M.N.; Soltan, M.E. Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. J. Food Compos Anal. 2004, 17, 725–735. [Google Scholar] [CrossRef]
- Pohl, P. Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal. Chem. 2009, 28, 117–128. [Google Scholar] [CrossRef]
- Ajlouni, S.; Sujirapinyokul, P. Hydroxymethylfurfuraldehyde and amylase contents in Australian honey. Food Chem. 2010, 119, 1000–1005. [Google Scholar] [CrossRef]
- Kahraman, T.; Buyukunal, S.K.; Vural, A.; Altunatmaz, S.S. Physico-chemical properties in honey from different regions of Turkey. Food Chem. 2010, 123, 41–44. [Google Scholar] [CrossRef]
- Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal. 2016, 50, 61–69. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of honey from its bee origin via chemical profiles and mineral content. Food Anal. Methods 2017, 10, 19–30. [Google Scholar] [CrossRef]
- Lo Turco, V.; Di Bella, G.; Potortì, A.G.; Tropea, A.; Casale, E.K.; Fede, M.R.; Dugo, G. Determination of plasticisers and BPA in Sicilian and Calabrian nectar honeys by selected ion monitoring GC/MS. Food Addit. Contam. Part A 2016, 33, 1693–1699. [Google Scholar] [CrossRef]
- Saitta, M.; Di Bella, G.; Fede, M.R.; Lo Turco, V.; Potortì, A.G.; Rando, R.; Russo, M.T.; Dugo, G. Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples. Food Addit. Contam. Part A 2017, 34, 800–808. [Google Scholar] [CrossRef]
- Hernandez, O.M.; Fraga, J.M.G.; Jimenez, A.I.; Jimenez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 2005, 93, 449–458. [Google Scholar] [CrossRef]
- Tuzen, M.; Silici, S.; Mendil, D.; Soylak, M. Trace element levels in honeys from different regions of Turkey. Food Chem. 2007, 103, 325–330. [Google Scholar] [CrossRef]
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities L 2002, 10, 47–52.
- Fiamegos, Y.; Dumitrascu, C.; Ghidotti, M.; de la Calle Guntiñas, M.B. Use of energy-dispersive X-ray fluorescence combined with chemometric modelling to classify honey according to botanical variety and geographical origin. Anal. Bioanal. Chem. 2020, 412, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Bua, G.D.; Licata, P.; Cicero, N.; Dugo, G. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Addit. Contam. Part B 2015, 8, 175–181. [Google Scholar] [CrossRef]
- Di Bella, G.; Lo Turco, V.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Di Bella, G.; Naccari, C.; Bua, G.D.; Rastrelli, L.; Lo Turco, V.; Potortì, A.G.; Dugo, G. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 2016, 67, 239–248. [Google Scholar] [CrossRef]
- Di Bella, G.; Licata, P.; Potortì, A.G.; Crupi, R.; Nava, V.; Qada, B.; Rando, R.; Bartolomeo, G.; Dugo, G.; Lo Turco, V. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Lo Turco, V.; Rando, R.; Dugo, G. Non-toxic and potentially toxic elements in Italian donkey milk by ICP-MS and multivariate analysis. J. Food Compos. Anal. 2013, 31, 161–172. [Google Scholar] [CrossRef]
- Potortì, A.G.; Lo Turco, V.; Saitta, M.; Bua, G.D.; Tropea, A.; Dugo, G.; Di Bella, G. Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat. Prod. Res. 2017, 31, 1000–1005. [Google Scholar] [CrossRef]
- Potortì, A.G.; Bua, G.D.; Lo Turco, V.; Ben Tekaya, A.; Beltifa, A.; Ben Mansour, H.; Dugo, G.; Di Bella, G. Major, minor and trace element concentrations in spices and aromatic herbs from Sicily (Italy) and Mahdia (Tunisia) by ICP-MS and multivariate analysis. Food Chem. 2020, 313. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Guide, 2nd ed.; Ellison, S.L.R.; Rosslein, M.; Williams, A. (Eds.) Eurachem: Teddington, UK, 2000. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization Statistic Database. 2013. Available online: http://faostat3.fao.org/faostat-gateway/go/to/home/E (accessed on 14 February 2021).
- European Communities Commission. COMMISSION DIRECTIVE 2008/100/EC of 28 October 2008 Amending Council Directive 90/496. EEC on Nutrition Labelling for Foodstuffs as Regards Recommended Daily Allowances, Energy Conversion Factors and Definitions; European Communities Commission: Luxembourg, 2008. [Google Scholar]
- EFSA (European Food Safety Authority). Dietary reference values for nutrients Summary report. EFSA Supporting Publ. 2017, 14, e15121E. [Google Scholar]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on food additives, favourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to a 2nd list of substances for food contact materials. EFSA J. 2004, 24, 1–13. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- EFSA (European Food Safety Authority). Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the risk for public health related to the presence of mercury and methyl-mercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific opinion on safety and efficacy of cobalt compounds (E3) as feed additives for all animal species: Cobaltous acetate tetrahydrate, basic cobaltous carbonate monohydrate and cobaltous sulphate heptahydrate, based on a dossier submitted by TREACEEIG. EFSA J. 2012, 10, 2971. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar] [CrossRef] [Green Version]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and Conclusions—Fifty-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- WHO (World Health Organization). Arsenic. Joint Expert WHO/FAO Expert Committee on Food Additives and Contaminants; Food Additives Series No. 24; WHO: Geneva, Switzerland, 1988. [Google Scholar]
- WHO (World Health Organization). Lead. In Safety Evaluation of Certain Food Additives and Contaminants. Fiftythird Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series No. 44; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- WHO (World Health Organization). Cadmium. In Safety Evaluation of Certain Food Additives and Contaminants. Sixtyfirst Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series No. 52; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- WHO (World Health Organization). Nickel in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2005. Available online: http://www.who.int/water_sanitation_health/gdwqrevision/nickel2005.pdf (accessed on 8 February 2021).
- Fechner, D.C.; Hidalgo, M.J.; Díaz, J.D.R.; Gil, R.A.; Pellerano, R.G. Geographical origin authentication of honey produced in Argentina. Food Biosci. 2020, 33, 100483. [Google Scholar] [CrossRef]
- Mohamed, H.; Haris, P.I.; Brima, E.I. Estimated dietary intake of essential elements from four selected staple foods in Najran City, Saudi Arabia. BMC Chem. 2019, 13, 73. [Google Scholar] [CrossRef] [PubMed]
RF Power | 1550 W |
---|---|
Plasma/auxiliary/carrier gas flow rate | 14/0.8/0.93 L⋅min−1 |
Helium collision gas flow rate | 4.5 mL⋅min−1 |
Spray chamber temperature | 2.7 °C |
Sample depth | 9 mm |
Sample introduction flow rate | 1 mL⋅min−1 |
Nebulizer pump | 0.1rps |
Extract lens 1 | 1.5 V |
Octopole collision system setting | He mode for Na, Mg, K, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, As, Se; No-gas mode for Mn, Zn, Cd, Sb, Hg, and Pb |
Monitored isotopes | 23Na, 24Mg, 39K, 44Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 78Se, 111Cd, 121Sb, 202Hg and 208Pb |
On-line internal standards | 45Sc for Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe and Co; 72Ge for Ni, Cu, Zn, As and Se; 103Rh for Cd and Sb; 209Bi for Hg and Pb |
Integration times | 0.8 s/point for Se; 0.5 s/point for As; 0.2 s/point for Cu, Cr and Ni; 0.1 s/point for the other elements |
Point for mass | 3 (3 replicates acquisitions) |
Element | R2 | MDLs (µg·Kg−1) | MQLs (µg·Kg−1) | Recovery (%) | Repeatability (RSD%) | Intermediate Precision (RSD%) |
---|---|---|---|---|---|---|
K | 0.9996 | 1.055 | 3.165 | 92.3 ± 1.6 | 3.2 | 5.0 |
Ca | 0.9998 | 4.605 | 12.815 | 97.2 ± 2.9 | 5.4 | 10 |
Na | 0.9998 | 6.135 | 19.405 | 90.3 ± 1.4 | 1.7 | 2.5 |
Mg | 0.9996 | 1.840 | 5.520 | 95.1 ± 3.6 | 1.5 | 2.6 |
Fe | 0.9997 | 0.700 | 2.100 | 99.9 ± 0.8 | 2.1 | 3.6 |
Zn | 0.9996 | 2.825 | 8.475 | 97.9 ± 1.5 | 4.0 | 5.2 |
Ti | 0.9997 | 0.065 | 0.195 | 90.4 ± 1.2 | 2.6 | 4.6 |
Mn | 0.9998 | 0.035 | 0.105 | 98.2 ± 1.0 | 1.4 | 2.3 |
Cu | 0.9996 | 0.745 | 2.235 | 97.7 ± 0.7 | 8.0 | 11 |
Co | 0.9998 | 0.010 | 0.030 | 91.3 ± 2.7 | 2.2 | 4.9 |
Se | 0.9996 | 3.105 | 9.315 | 84.3 ± 3.9 | 3.9 | 8 |
Pb | 0.9998 | 0.010 | 0.030 | 90.8 ± 2.6 | 2.4 | 4.6 |
Ni | 0.9998 | 0.880 | 2.640 | 93.5 ± 1.2 | 1.1 | 2.8 |
Cr | 0.9997 | 0.025 | 0.075 | 78.0 ± 2.3 | 4.9 | 9.7 |
V | 0.9998 | 0.065 | 0.195 | 97.0 ± 2.8 | 2.6 | 4.5 |
Sb | 0.9998 | 0.020 | 0.060 | 97.8 ± 1.3 | 3.4 | 4.4 |
As | 0.9997 | 0.005 | 0.015 | 97.6 ± 3.6 | 1.0 | 2.6 |
Cd | 0.9997 | 0.010 | 0.030 | 99.5 ± 1.2 | 6.1 | 7.5 |
Hg | 0.9998 | 0.010 | 0.030 | 98.3 ± 1.0 | 1.5 | 2.3 |
K (g·kg−1) | Ca (g·kg−1) | Na (g·kg−1) | Mg (g·kg−1) | Fe (mg·kg−1) | Zn (mg·kg−1) | Ti (mg·kg−1) | Mn (mg·kg−1) | Cu (mg·kg−1) | Se (mg·kg−1) | Pb (mg·kg−1) | Ni (mg·kg−1) | Cr (mg·kg−1) | V (mg·kg−1) | Sb (mg·kg−1) | As (µg·kg−1) | Cd (µg·kg−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Botanical Origin | |||||||||||||||||
Wildflower | 2.20 ± 0.62 | 0.07 ± 0.01 C D | 0.61 ± 0.39 | 0.71 ± 0.51 | 3.25 ± 1.53 | 2.40 ± 1.13 | 0.93 ± 0.26 A C | 0.31 ± 0.11 A | 0.66 ± 0.31 | 0.15 ± 0.13 | 0.24 ± 0.12 | 0.38 ± 0.21 | 0.14 ± 0.14 A | 0.03 ± 0.01 A | 0.09 ± 0.01 A | 3.16 ± 1.40 A | 19.01 ± 4.66 B C |
Eucalyptus | 1.58 ± 0.72 | 0.17 ± 0.02 D | 0.56 ± 0.44 | 0.42 ± 0.07 | 7.10 ± 3.28 | 2.06 ± 0.48 | 0.61 ± 0.06 A | 1.25 ± 0.09 B | 0.80 ± 0.45 | 0.13 ± 0.11 | 0.25 ± 0.20 | 0.22 ± 0.15 | 0.13 ± 0.03 B | 0.05 ± 0.01 A B | 0.10 ± 0.02 A B | 19.08 ± 7.82 B | n.d. |
Euc. red flowers | 1.52 ± 0.47 | 0.11 ± 0.07 D | 0.80 ± 0.47 | 0.37 ± 0.21 | 7.15 ± 4.67 | 2.61 ± 0.82 | 0.80 ± 0.05 A C | 0.58 ± 0.31 A B C | 1.26 ± 1.01 | 0.21 ± 0.18 | 0.17 ± 0.16 | 0.42 ± 0.35 | 0.18 ± 0.01 A B | 0.05 ± 0.01 A B | 0.08 ± 0.01 A | 9.22 ± 5.29 B C | 27.71 ± 12.08 B |
Prickly pears | 2.53 ± 1.74 | 0.14 ± 0.04D | 1.03 ± 0.97 | 0.93 ± 0.81 | 5.88 ± 2.39 | 2.01 ± 0.71 | 1.35 ± 0.11 B | 0.91 ± 0.44 B | 0.73 ± 0.38 | 0.21 ± 0.17 | 0.18 ± 0.18 | 0.23 ± 0.11 | 0.15 ± 0.02 A B | 0.06 ± 0.01 B C | 0.11 ± 0.01 B | 3.55 ± 0.52 A B | n.d. |
Lemon-blossom | 2.62 ± 1.21 | 0.05 ± 0.01 A C | 1.22 ± 0.95 | 0.84 ± 0.64 | 3.85 ± 1.31 | 1.69 ± 0.56 | 1.17 ± 0.05 B C | 0.44 ± 0.08 C | 0.86 ± 0.33 | 0.14 ± 0.23 | 0.13 ± 0.15 | 0.32 ± 0.19 | 0.21 ± 0.06 A B | 0.05 ± 0.01 A C | 0.08 ± 0.01 A | 12.16 ± 8.88 B C | 17.72 ± 1.26 A B |
Thyme | 3.19 ± 1.29 | 0.03 ± 0.01 A | 1.40 ± 0.70 | 1.20 ± 0.55 | 5.17 ± 3.19 | 1.74 ± 0.79 | 1.31 ± 0.15 B | 0.44 ± 0.17 C | 0.84 ± 0.44 | 0.26 ± 0.18 | 0.19 ± 0.16 | 0.22 ± 0.09 | 0.17 ± 0.06 A B | 0.04 ± 0.00 A | 0.11 ± 0.01 B | 2.65 ± 0.60 A | 21.99 ± 8.87 B C |
Almond | 1.53 ± 1.26 | 0.04 ± 0.01 A C | 0.80 ± 0.42 | 0.78 ± 0.45 | 2.70 ± 1.87 | 2.13 ± 1.29 | 1.06 ± 0.05 C | 1.49 ± 0.98 B | 0.53 ± 0.21 | 0.19 ± 0.16 | 0.19 ± 0.14 | 0.51 ± 0.35 | 0.19 ± 0.11 A B | 0.06 ± 0.01 B C | 0.13 ± 0.04 B | 2.66 ± 1.23 A | 19.20 ± 2.93 B C |
Rosemary | 3.11 ± 1.61 | 0.04 ± 0.01 A C | 0.84 ± 0.52 | 1.01 ± 0.17 | 7.97 ± 3.96 | 2.81 ± 0.61 | 1.08 ± 0.05 B C | 1.02 ± 0.53 B | 0.81 ± 0.32 | 0.19 ± 0.15 | 0.27 ± 0.17 | 0.20 ± 0.07 | 0.35 ± 0.04 B | 0.07 ± 0.01 B | 0.12 ± 0.02 B | 3.39 ± 1.68 A C | 16.40 ± 2.48 A C |
Jujube | 1.32 ± 1.09 | 0.29 ± 0.06 B | 0.57 ± 0.35 | 0.49 ± 0.20 | 5.70 ± 1.80 | 2.34 ± 0.19 | 0.59 ± 0.05 A | 1.06 ± 0.36 B | 0.76 ± 0.38 | 0.24 ± 0.18 | 0.34 ± 0.22 | 0.45 ± 0.17 | 0.50 ± 0.28 B | 0.07 ± 0.01 B | 0.09 ± 0.01 A | 2.55 ± 1.10 A | 13.79 ± 5.04 A B |
F statistic | 11.609 | 29.666 | 6.742 | 9.987 | 10.189 | 6.731 | 27.669 | 23.176 | 4154 | 1.290 | 4.580 | 8.804 | 17.289 | 27.270 | 18.857 | 21.007 | 20.839 |
Significant level | 0.198 | 0.001 | 0.565 | 0.266 | 0.252 | 0.566 | 0.001 | 0.003 | 0.843 | 0.996 | 0.801 | 0.359 | 0.027 | 0.001 | 0.016 | 0.007 | 0.008 |
Geographical origin | |||||||||||||||||
Sidi Bouzid | 2.00 ± 1.03 | 0.13 ± 0.05 B | 0.81 ± 0.56 | 0.59 ± 0.46 | 6.14 ± 2.98 | 2.07 ± 0.64 | 0.86 ± 0.31 B | 0.78 ± 0.41 B | 0.87 ± 0.58 | 0.16 ± 0.13 | 0.19 ± 0.15 | 0.32 ± 0.23 | 0.17 ± 0.09 B | 0.04 ± 0.01 A | 0.09 ± 0.02 | 8.48 ± 8.06 | 11.90 ± 12.50 |
Nabeul | 2.62 ± 1.07 | 0.05 ± 0.01 A | 1.02 ± 0.77 | 0.94 ± 0.65 | 3.79 ± 2.17 | 2.14 ± 1.02 | 1.20 ± 0.13 A | 0.37 ± 0.15 A | 0.78 ± 0.34 | 0.19 ± 0.18 | 0.21 ± 0.14 | 0.30 ± 0.15 | 0.15 ± 0.07 B | 0.04 ± 0.01 A | 0.10 ± 0.01 | 6.26 ± 6.43 | 20.36 ± 5.39 |
Sfax | 1.99 ± 1.47 | 0.12 ± 0.13 A | 0.74 ± 0.42 | 0.76 ± 0.35 | 5.46 ± 3.35 | 2.43 ± 0.81 | 0.91 ± 0.24 B | 1.19 ± 0.65 B | 0.70 ± 0.31 | 0.21 ± 0.15 | 0.27 ± 0.17 | 0.38 ± 0.25 | 0.35 ± 0.21 A | 0.07 ± 0.01 B | 0.11 ± 0.03 | 2.87 ± 1.29 | 16.46 ± 4.03 |
F statistic | 3.066 | 9.394 | 0.464 | 2.477 | 3.968 | 1.227 | 11.722 | 16.221 | 0.284 | 0.224 | 1.236 | 0.407 | 8.565 | 19.352 | 3.246 | 5.265 | 6.224 |
Sign. level | 0.216 | 0.009 | 0.793 | 0.290 | 0.138 | 0.542 | 0.003 | 0.001 | 0.868 | 0.894 | 0.539 | 0.816 | 0.014 | 0.001 | 0.197 | 0.072 | 0.051 |
DI (mg/d or µg/d) | RDA [25] (mg/d or µg/d) | AI [26] (mg/d or µg/d) | AR [26] (mg/d or µg/d) | PRI [26] (mg/d or µg/d) | UL [26] (mg/d or µg/d) | % of RDA or AI | % of UL | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sidi Bouzid | Nabeul | Sfax | |||||||||
K | |||||||||||
Europe | 3.61 | 4.72 | 3.58 | 2000 | 3500 | 0.24% | |||||
North Africa | 0.60 | 0.79 | 0.60 | 0.04% | |||||||
Mg | |||||||||||
Europe | 1.06 | 1.69 | 1.37 | 375 | 350 | 250 | 0.45% | 0.68% | |||
North Africa | 0.18 | 0.28 | 0.23 | 0.08% | 0.08% | ||||||
Ca | |||||||||||
Europe | 0.23 | 0.09 | 0.22 | 800 | 860 | 1000 | 2500 | 0.03% | 0.01% | ||
North Africa | 0.04 | 0.01 | 0.04 | 0.00% | 0.00% | ||||||
Na | |||||||||||
Europe | 1.46 | 1.84 | 1.33 | 2000 | 0.09% | ||||||
North Africa | 0.24 | 0.31 | 0.22 | 0.02% | |||||||
Fe | |||||||||||
Europe | 1 × 10−2 | 7 × 10−3 | 1 × 10−2 | 14 | 6 | 11 | 0.08% | ||||
North Africa | 2 × 10−3 | 1 × 10−3 | 2 × 10−3 | 0.01% | |||||||
Mn | |||||||||||
Europe | 1 × 10−3 | 7 × 10−4 | 2 × 10−3 | 2 | 3 | 0.11% | |||||
North Africa | 2 × 10−4 | 1 × 10−4 | 4 × 10−4 | 0.02% | |||||||
Zn | |||||||||||
Europe | 4 × 10−3 | 4 × 10−3 | 4 × 10−3 | 10 | 7.5–9.3–11–12.7 * | 9.4–11.7–14–16.3 * | 25 | 0.04% | 0.02% | ||
North Africa | 6 × 10−4 | 6 × 10−4 | 7 × 10−4 | 0.01% | 0.00% | ||||||
Cu | |||||||||||
Europe | 2 × 10−3 | 1 × 10−3 | 1 × 10−3 | 1 | 1.6 | 5 | 0.16% | 0.03% | |||
North Africa | 3 × 10−4 | 2 × 10−4 | 2 × 10−4 | 0.03% | 0.01% | ||||||
Cr | |||||||||||
Europe | 0.30 | 0.28 | 0.62 | 40 | 0.76% | ||||||
North Africa | 0.05 | 0.05 | 0.10 | 0.13% | |||||||
Se | |||||||||||
Europe | 0.29 | 0.35 | 0.37 | 55 | 70 | 300 | 0.68% | 0.12% | |||
North Africa | 0.05 | 0.06 | 0.06 | 0.11% | 0.02% |
EDI (µg/Kgb.w./d) | TDI (µg/Kgb.w./d) | TWI (µg/Kgb.w./w) | BMDL01 (µg/Kgb.w./d) | PTWI (µg/Kgb.w./w) | UI (µg/Kgb.w./w) | PMTDI (µg/Kgb.w./d) | % of TDI or TWI or BMDL01 or PTWI | % of UI or PMTDI | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sidi Bouzid | Nabeul | Sfax | ||||||||||
Ti | ||||||||||||
Europe | 2 × 10−2 | 3 × 10−2 | 2 × 10−2 | --------------------------------------------- not delivered ------------------------------------------------------------ | ||||||||
North Africa | 4 × 10−3 | 5 × 10−3 | 4 × 10−3 | |||||||||
Co | ||||||||||||
Europe | n.d. | n.d. | n.d. | 1.6 [32] | ||||||||
North Africa | n.d. | n.d. | n.d. | |||||||||
Sb | ||||||||||||
Europe | 2 × 10−3 | 2 × 10−3 | 3 × 10−3 | 6 [27] | 0.34% | |||||||
North Africa | 4 × 10−4 | 4 × 10−4 | 5 × 10−4 | 0.06% | ||||||||
V | ||||||||||||
Europe | 1 × 10−3 | 1 × 10−3 | 2 × 10−3 | --------------------------------------------- not delivered ------------------------------------------------------------ | ||||||||
North Africa | 2 × 10−4 | 2 × 10−4 | 3 × 10−4 | |||||||||
Ni | ||||||||||||
Europe | 8 × 10−3 | 8 × 10−3 | 1 × 10−2 | 22 [38] | 2.8 [33] | 0.04% | 2.47% | |||||
North Africa | 1 × 10−3 | 1 × 10−3 | 2 × 10−3 | 0.01% | 0.41% | |||||||
Pb | ||||||||||||
Europe | 5 × 10−3 | 5 × 10−3 | 7 × 10−3 | 0.5 [29] | 25 [36] | 1.37% | ||||||
North Africa | 8 × 10−4 | 9 × 10−4 | 1 × 10−3 | 0.23% | ||||||||
As | ||||||||||||
Europe | 2 × 10−4 | 2 × 10−4 | 7 × 10−5 | 0.3-8 [28] | 15 [35] | 0.07% | ||||||
North Africa | 4 × 10−5 | 3 × 10−5 | 1 × 10−5 | 0.01% | ||||||||
Cd | ||||||||||||
Europe | 3 × 10−4 | 5 × 10−4 | 4 × 10−4 | 2.5 [30] | 7 [37] | 0.15% | ||||||
North Africa | 5 × 10−5 | 9 × 10−5 | 7 × 10−5 | 0.02% | ||||||||
Hg | ||||||||||||
Europe | n.d. | n.d. | n.d. | 4 [31] | 5 [34] | |||||||
North Africa | n.d. | n.d. | n.d. | |||||||||
Se | ||||||||||||
Europe | 4 × 10−3 | 5 × 10−3 | 5 × 10−3 | 66 [40] | 9.4 [40] | 0.06% | 0.06% | |||||
North Africa | 7 × 10−4 | 8 × 10−4 | 9 × 10−4 | 0.01% | 0.01% | |||||||
Zn | ||||||||||||
Europe | 5 × 10−2 | 6 × 10−2 | 6 × 10−2 | 7000 [40] | 1000 [40] | 0.01% | 0.01% | |||||
North Africa | 9 × 10−3 | 9 × 10−3 | 1 × 10−2 | 0.001% | 0.001% | |||||||
Mn | ||||||||||||
Europe | 2 × 10−2 | 1 × 10−2 | 3 × 10−2 | 2500 [40] | 360 [40] | 0.01% | 0.01% | |||||
North Africa | 3 × 10−3 | 2 × 10−3 | 5 × 10−3 | 0.001% | 0.001% | |||||||
Cu | ||||||||||||
Europe | 2 × 10−2 | 2 × 10−2 | 2 × 10−2 | 3500 [40] | 500 [40] | 0.001% | 0.001% | |||||
North Africa | 4 × 10−3 | 3 × 10−3 | 3 × 10−3 | 0.001% | 0.001% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, G.; Potortì, A.G.; Beltifa, A.; Ben Mansour, H.; Nava, V.; Lo Turco, V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods 2021, 10, 724. https://doi.org/10.3390/foods10040724
Di Bella G, Potortì AG, Beltifa A, Ben Mansour H, Nava V, Lo Turco V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods. 2021; 10(4):724. https://doi.org/10.3390/foods10040724
Chicago/Turabian StyleDi Bella, Giuseppa, Angela Giorgia Potortì, Asma Beltifa, Hedi Ben Mansour, Vincenzo Nava, and Vincenzo Lo Turco. 2021. "Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling" Foods 10, no. 4: 724. https://doi.org/10.3390/foods10040724
APA StyleDi Bella, G., Potortì, A. G., Beltifa, A., Ben Mansour, H., Nava, V., & Lo Turco, V. (2021). Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods, 10(4), 724. https://doi.org/10.3390/foods10040724