Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Detection Card Matrix
2.3. Hydrophilic Modification of the Matrix
2.4. Characterization of the Matrix
2.5. Optimization of the Immobilization and Determination Conditions
2.6. Performance of the Detection Card and Its Real-Life Application
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of the Nano/Micro-Structured Immobilization Matrix
3.2. Hydrophilic Modification of the Matrix and Its Characterization
3.3. Fabrication and Measurement Conditions of the Detection Card
3.4. Detection Performance of the Detection Card and Its Real-Life Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.S.; Shi, T.; Luo, X.; Xiong, H.L.; Min, F.F.; Chen, Y.; Nie, S.; Xie, M.Y. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Rimayi, C.; Odusanya, D.; Mtunzi, F.; Tsoka, S. Alternative calibration techniques for counteracting the matrix effects in GC–MS-SPE pesticide residue analysis—A statistical approach. Chemosphere 2015, 118, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mu, Z.D.; Shangguan, F.Q.; Liu, R.; Pu, Y.P.; Yin, L.H. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica–hydrogel hybrid microbeads. J. Hazard. Mater. 2014, 273, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. [Google Scholar] [CrossRef]
- Nowicka, A.B.; Czaplicka, M.; Kowalska, A.A.; Szymborski, T.; Kami´nska, A. Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides. Biosensors 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.G.; Shan, B.X.; Feng, B.W.; Xu, P.F.; Zeng, Q.; Su, D. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection. RSC Adv. 2018, 8, 27008–27015. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.B.; Guo, J.C.; Fu, Y.S.; Chen, X.Y.; Guo, J.H. A review on microfluidics in the detection of food pesticide residues. Electrophoresis 2020, 41, 821–832. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in electrochemical biosensors for pesticide detection: Advances and challenges in food analysis. Microchim. Acta 2016, 183, 2063–2083. [Google Scholar] [CrossRef]
- Ayi, A.A.; Ashishie, P.B.; Khansi, E.E.; Ogar, J.O.; Anyama, C.A.; Inah, B.E. Nano/micro-structured materials: Synthesis, morphology and applications. In Nanostructures; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 1, 7290–7305. [Google Scholar] [CrossRef]
- Ahmed, J. Electrospinning for the manufacture of biosensor components: A mini-review. Med. Devices Sens. 2020, 4, e10136. [Google Scholar]
- Zhu, S.L.; Nie, L.H. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J. Ind. Eng. Chem. 2020, 93, 28–56. [Google Scholar] [CrossRef]
- Zhai, M.Y.; Feng, K.; Hu, T.G.; Zong, M.H.; Wu, H. Development of a novel nano-based detection card by electrospinning for rapid and sensitive analysis of pesticide residues. J. Sci. Food Agric. 2020, 100, 4400–4408. [Google Scholar] [CrossRef]
- Li, D.W.; Wang, Q.Q.; Huang, F.L.; Wei, Q.F. Electrospun nanofibers for enzyme immobilization. In Electrospinning: Nanofabrication and Applications, 1st ed.; Ding, B., Wang, X.F., Yu, J.Y., Eds.; William Andrew: New York, NY, USA, 2019; pp. 756–781. [Google Scholar]
- Lu, P.; Murray, S.; Zhu, M. Electrospun nanofibers for catalysts. In Electrospinning: Nanofabrication and Applications, 1st ed.; Ding, B., Wang, X.F., Yu, J.Y., Eds.; William Andrew: New York, NY, USA, 2019; pp. 695–717. [Google Scholar]
- Sunandar, M.; Yulianti, E.; Deswita, D.; Sudaryanto, S. Study of solid polymer electrolyte based on biodegradable polymer polycaprolactone. Malays. J. Fundam. Appl. Sci. 2019, 15, 467–471. [Google Scholar] [CrossRef]
- Chen, J.Y.; Su, C.Y.; Hsu, C.H.; Zhang, Y.H.; Zhang, Q.C.; Chang, C.L.; Hua, C.C.; Chen, W.C. Solvent effects on morphology and electrical properties of poly (3-Hexylthiophene) electrospun nanofibers. Polymers 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- Semiromi, F.B.; Nejaei, A.; Shojaee, M. Effect of methanol concentration on the morphology and wettability of electrospun nanofibrous membranes based on polycaprolactone for oil-water separation. Fiber. Polym. 2019, 20, 2453–2460. [Google Scholar] [CrossRef]
- Tungprapa, S.; Puangparn, T.; Weerasombut, M.; Jangchud, I.; Fakum, P.; Semongkhol, S.; Meechaisue, C.; Supaphol, P. Electrospun cellulose acetate fibers: Effect of solvent system on morphology and fiber diameter. Cellulose 2007, 14, 563–575. [Google Scholar] [CrossRef]
- Jun, Z.; Hou, H.Q.; Schaper, A.; Wendorff, J.H.; Greiner, A. Poly-L-lactide nanofibers by electrospinning–Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 2003, 3, 009. [Google Scholar]
- Fallahi, D.; Rafizadeh, M.; Mohammadi, N.; Vahidi, B. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions. Polym. Int. 2008, 57, 1363–1368. [Google Scholar] [CrossRef]
- Zhang, C.W.; Liu, D.D.; Xu, C.; Liu, D.Z.; Wang, B. Tensile properties of ag-EVOH electrospinning nanofiber mats for large muscle scaffolds. Mech. Adv. Mater. Struc. 2020, 27, 1312–1321. [Google Scholar] [CrossRef]
- Ballengee, J.B.; Pintauro, P.N. Morphological control of electrospun Nafion nanofiber mats. J. Electrochem. Soc. 2011, 158, B568–B572. [Google Scholar] [CrossRef]
- Eslamian, M.; Khorrami, M.; Yi, N.; Majd, S.; Abidian, M.R. Electrospinning of highly aligned fibers for drug delivery applications. J. Mater. Chem. B 2019, 7, 224–232. [Google Scholar] [CrossRef]
- Chowdhury, M.; Stylios, G.K. Analysis of the effect of experimental parameters on the morphology of electrospun polyethylene oxide nanofibres and on their thermal properties. J. Text. Inst. 2012, 103, 124–138. [Google Scholar] [CrossRef]
- Liu, X.J.; Chen, W.W.; Lian, M.L.; Chen, X.; Lu, Y.L.; Yang, W.S. Enzyme immobilization on ZIF-67/MWCNT composite engenders high sensitivity electrochemical sensing. J. Electroanal. Chem. 2019, 833, 505–511. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Peng, L.; Du, Y.Z.; Xu, J.; Cai, Y.B.; Feng, Q.; Huang, F.L.; Wei, Q.F. Fabrication of hydrophilic nanoporous PMMA/O-MMT composite microfibrous membrane and its use in enzyme immobilization. J. Porous Mater. 2013, 20, 457–464. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Ma, S.Y.; Pan, Y.W.; Zhang, Q.Y.; Wang, K.; Song, D.M.; Wang, X.X.; Feng, G.W.; Liu, R.M.; Xu, H.J.; et al. Functional modification of fibrous PCL scaffolds with fusion protein VEGF-HGFI enhanced cellularization and vascularization. Adv. Healthc. Mater. 2016, 5, 2376–2385. [Google Scholar] [CrossRef]
- Ghaee, A.; Bagheri-Khoulenjani, S.; Afshar, H.A.; Bogheiri, H. Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Compos. Part B Eng. 2019, 177, 107339. [Google Scholar] [CrossRef]
- Razmshoar, P.; Bahrami, S.H.; Akbari, S. Functional hydrophilic highly biodegradable PCL nanofibers through direct aminolysis of PAMAM dendrimer. Int. Polym. Mater. Polym. Biomater. 2020, 69, 1069–1080. [Google Scholar] [CrossRef]
- Bosworth, L.A.; Hu, W.X.; Shi, Y.N.; Cartmell, S.H. Enhancing biocompatibility without compromising material properties: An optimised NaOH treatment for electrospun polycaprolactone fibres. J. Nanomater. 2019, 2019, 4605092. [Google Scholar] [CrossRef]
- Wang, W.G.; Caetano, G.; Ambler, W.S.; Blaker, J.J.; Frade, M.A.; Mandal, P.; Diver, C.; Bártolo, P. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/Graphene scaffolds for bone tissue engineering. Materials 2016, 9, 992. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Nokhasteh, S.; Molavi, A.M.; Khorsand-Ghayeni, M.; Naderi-Meshkin, H.; Mahdizadeh, A. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Mater. Sci. Eng. C Mater. 2016, 66, 130–137. [Google Scholar] [CrossRef]
- Liu, Q.F.; Wang, Q.; Yan, S.H. Modification of PVDF membranes by alkaline treatment. Appl. Mech. Mater. 2013, 316–317, 1033–1036. [Google Scholar] [CrossRef]
- Abedi, M.; Sadeghi, M.; Chenar, M.P. Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J. Taiwan Inst. Chem. E 2015, 55, 42–48. [Google Scholar] [CrossRef]
- Boo, C.; Lee, J.; Elimelech, M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 2016, 50, 12275–12282. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Kalarikkal, N.; Thomas, S. Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 28–37. [Google Scholar] [CrossRef]
- Prakash, C.J.; Raj, C.C.; Prasanth, R. Fabrication of zero contact angle ultra-super hydrophilic surfaces. J. Colloid Interface Sci. 2017, 496, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Yeo, A.; Wong, W.J.; Teoh, S.H. Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. J. Biomed. Mater. Res. A 2010, 93, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Shi, W.Y.; Zeng, X.H.; Huang, S.F.; Zhang, H.X.; Qin, X.H. Improved desalination properties of hydrophobic GO-incorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation. Sep. Purif. Technol. 2020, 230, 115889. [Google Scholar] [CrossRef]
- SAC. Rapid determination for organophosphate and carbamate pesticide residues in vegetables. In GB/T 5009.199–2003; Standardization Administration of China: Beijing, China, 2003. [Google Scholar]
Pesticide | LOD (mg/L) | MDC (mg/L) | Color Development | ||||
---|---|---|---|---|---|---|---|
Organophosphorus | Trichlorfon | 0.3 | 0.2 | ||||
0 | 0.1 | 0.2 | 0.3 | ||||
Malathion | 2.0 | 1.0 | |||||
0 | 0.5 | 1.0 | 2.0 | ||||
Carbamate | Carbaryl | 2.5 | 2.5 | ||||
0 | 1.0 | 2.0 | 2.5 | ||||
Carbofura | 0.5 | 0.1 | |||||
0 | 0.05 | 0.1 | 0.5 |
Sample | Detection Card | Spraying Concentration of Malathion (μg/mL) | |||
---|---|---|---|---|---|
0 | 5 | 10 | 20 | ||
Cabbage | Commercial | ||||
NMF | |||||
Carrot | Commercial | ||||
NMF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Zhai, M.-Y.; Wei, Y.-S.; Zong, M.-H.; Wu, H.; Han, S.-Y. Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues. Foods 2021, 10, 889. https://doi.org/10.3390/foods10040889
Feng K, Zhai M-Y, Wei Y-S, Zong M-H, Wu H, Han S-Y. Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues. Foods. 2021; 10(4):889. https://doi.org/10.3390/foods10040889
Chicago/Turabian StyleFeng, Kun, Meng-Yu Zhai, Yun-Shan Wei, Min-Hua Zong, Hong Wu, and Shuang-Yan Han. 2021. "Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues" Foods 10, no. 4: 889. https://doi.org/10.3390/foods10040889
APA StyleFeng, K., Zhai, M.-Y., Wei, Y.-S., Zong, M.-H., Wu, H., & Han, S.-Y. (2021). Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues. Foods, 10(4), 889. https://doi.org/10.3390/foods10040889