Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Factory and Seedling Preparation
2.2. Experimental and Analytical Procedures
2.2.1. Experimental Design
2.2.2. Sample Collection and Data Acquisition
2.2.3. Estimation of Glucosinolate Content
2.2.4. Statistical Analysis
3. Results
3.1. ANOVA of the Environmental Factors
3.2. Correlation of the Glucosinolates Components
3.3. Evaluation of Temperature Effects
3.4. Evaluation of Relative Humidity Effects
3.5. Evaluation of CO2 Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, J.; Wang, M.; Jian, Y.; Zhang, F.; Zhu, J.; Wang, Q.; Sun, B. Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Sci. Rep. 2019, 9, 20344. [Google Scholar] [CrossRef] [Green Version]
- Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Kim, J.K.; Kim, H.; Kim, Y.J.; Park, Y.J.; Kim, S.J.; Kim, C.; Park, S.U. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. Acephala) seedlings. Food Chem. 2018, 241, 7–13. [Google Scholar] [CrossRef]
- Giorgetti, L.; Giorgi, G.; Cherubini, E.; Gervasi, P.G.; Croce, C.M.D.; Longo, V.; Bellani, L. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of tuscan black kale Brassica oleracea (L.) ssp Acephala (DC) Var. Sabellica L. Nat. Prod. Res. 2018, 32, 1617–1626. [Google Scholar] [CrossRef]
- Akram, W.; Saeed, T.; Ahmad, A.; Yasin, N.A.; Akbar, M.; Khan, W.U.; Ahmed, S.; Guo, J.; Luo, W.; Wu, T.; et al. Liquiritin elicitation can increase the content of medicinally important glucosinolates and phenolic compounds in chinese kale plants. J. Sci. Food Agric. 2020, 100, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Velasco, P. Glucosinolates in Brassica Foods: Bioavailability in Food and Significance for Human Health. Phytochem. Rev. 2008, 7, 213–229. [Google Scholar] [CrossRef]
- Agerbirk, N.; Olsen, C.E. Glucosinolate Structures in Evolution. Phytochemistry 2012, 77, 16–45. [Google Scholar] [CrossRef]
- Holst, B.; Fenwick, G.R. Glucosinolates. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 2922–2930. ISBN 978-0-12-227055-0. [Google Scholar]
- Mithen, R.F.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I.T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 2000, 80, 967–984. [Google Scholar] [CrossRef]
- Johnson, I.T. Glucosinolates: Bioavailability and importance to health. Int. J. Vitam. Nutr. Res. 2002, 72, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, M.; Schemenewitz, A.; Lopukhina, A.; Müller, A.; Janowitz, T.; Weiler, E.W.; Oecking, C. Desulfoglucosinolate sulfotransferases from arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 2004, 279, 50717–50725. [Google Scholar] [CrossRef] [Green Version]
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Singh, S.K.; Reddy, V.R.; Sharma, M.P.; Agnihotri, R. Dynamics of plant nutrients, utilization and uptake, and soil microbial community in crops under ambient and elevated carbon dioxide. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer India: New Delhi, India, 2015; pp. 381–399. ISBN 978-81-322-2169-2. [Google Scholar]
- Lee, G.J.; Heo, J.W.; Jung, C.R.; Kim, H.H.; Jo, J.S.; Lee, J.G.; Lee, G.J.; Nam, S.Y.; Hong, E.Y. Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Prot. Hort. Plant Fac. 2016, 25, 77–82. [Google Scholar] [CrossRef]
- Lee, H.H.; Yang, S.C.; Lee, M.K.; Ryu, D.K.; Park, S.; Chung, S.O.; Park, S.U.; Lim, Y.P.; Kim, S.J. Effect of developmental stages on glucosinolate contents in kale (Brassica oleracea var. acephala). Hortic. Sci. Technol. 2015, 33, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Chung, S.O. Comparison of plant growth and Glucosinolates of Chinese cabbage and Kale crops under three cultivation conditions. J. Biosyst. Eng. 2018, 43, 30–36. [Google Scholar] [CrossRef]
- Kozai, T. Smart Plant Factory: The Next Generation Indoor Vertical Farms; Springer: Singapore, 2018; ISBN 9789811310652. [Google Scholar]
- Chowdhury, M.; Kabir, M.S.N.; Kim, H.T.; Chung, S.O. Method of pump, pipe, and tank selection for aeroponic nutrient management systems based on crop requirements. J. Agric. Eng. 2020, 51, 119–128. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: London, UK, 2019; ISBN 978-0-12-816692-5. [Google Scholar]
- Chowdhury, M.; Jang, B.E.; Kabir, M.S.N.; Lee, D.H.; Kim, H.T.; Park, T.S.; Chung, S.O. Performance Evaluation of Commercial Ion-Selective Electrodes for Hydroponic Cultivation System. Acta Hortic. 2020, 831–838. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, H.J.; Choi, G.L.; Ahn, T.I.; Son, J.E.; Sudduth, K.A. Automated lettuce nutrient solution management using an array of ion-selective electrodes. Trans. ASABE 2015, 58, 1309–1319. [Google Scholar]
- Chowdhury, M.; Jang, B.E.; Kabir, M.S.N.; Kim, Y.J.; Na, K.D.; Park, S.B.; Chung, S.O. Factors affecting the accuracy and precision of ion-selective electrodes for hydroponic nutrient supply systems. Acta Hortic. 2020, 997–1004. [Google Scholar] [CrossRef]
- Cho, W.J.; Kim, H.J.; Jung, D.H.; Kim, D.W.; Ahn, T.I.; Son, J.E. On-site ion monitoring system for precision hydroponic nutrient management. Comput. Electron. Agric. 2018, 146, 51–58. [Google Scholar] [CrossRef]
- Benton Jones, J. Hydroponics: A Practical Guide for the Soilless Grower; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4200-3770-8. [Google Scholar]
- Li, Q.; Li, X.; Tang, B.; Gu, M. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annu. Rev. Food Sci. Technol. 2021, 12, 43–73. [Google Scholar] [CrossRef]
- Alegre, S.; Pascual, J.; Trotta, A.; Gollan, P.J.; Yang, W.; Yang, B.; Aro, E.-M.; Burow, M.; Kangasjärvi, S. Growth under high light and elevated temperature affects metabolic responses and accumulation of health-promoting metabolites in kale varieties. bioRxiv 2019, 816405. [Google Scholar] [CrossRef] [Green Version]
- McClung, C.R.; Lou, P.; Hermand, V.; Kim, J.A. The Importance of ambient temperature to growth and the induction of flowering. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Steindal, A.L.H.; Rødven, R.; Hansen, E.; Mølmann, J. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in Kale. Food Chem. 2015, 174, 44–51. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, M.M. Short-term low temperature increases phenolic antioxidant levels in kale. Hortic. Environ. Biotechnol. 2015, 56, 588–596. [Google Scholar] [CrossRef]
- Maibam, A.; Nisar, S.; Zargar, S.M.; Mahajan, R. High-temperature response and tolerance in agronomic crops. In Agronomic Crops: Volume 3: Stress Responses and Tolerance; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 173–190. ISBN 9789811500251. [Google Scholar]
- Soengas, P.; Rodríguez, V.M.; Velasco, P.; Cartea, M.E. Effect of temperature stress on antioxidant defenses in Brassica oleracea. Acs Omega 2018, 3, 5237–5243. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Huang, L.; Sun, C.; Yu, X.; Zhao, M. Fuzzy comprehensive evaluation of the effects of relative air humidity on the morpho-physiological traits of Pakchoi (Brassica Chinensis L.) under high temperature. Sci. Hortic. 2019, 246, 971–978. [Google Scholar] [CrossRef]
- Avotins, A.; Gruduls, J.; Apse-Apsitis, P.; Bicāns, J. Development and testing results of iot based air temperature and humidity measurement system for industrial greenhouse. Agron. Res. 2018, 16, 943–951. [Google Scholar]
- Amani, M.; Foroushani, S.; Sultan, M.; Bahrami, M. Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Appl. Therm. Eng. 2020, 181, 115979. [Google Scholar] [CrossRef]
- Islam, M.N.; Iqbal, M.Z.; Ali, M.; Jang, B.E.; Chowdhury, M.; Kabir, M.S.N.; Jang, S.H.; Chung, S.O. Performance evaluation of a suspension-type dehumidifier with a heating module for smart greenhouses. J. Biosyst. Eng. 2020, 45, 155–166. [Google Scholar] [CrossRef]
- La, G.; Fang, P.; Teng, Y.; Li, Y.; Lin, X. Effect of CO2 enrichment on the Glucosinolate contents under different nitrogen levels in bolting stem of Chinese Kale (Brassica Alboglabra L.). J. Zhejiang Univ. Sci. B 2009, 10, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A Meta-Analytic Review of the Responses of Photosynthesis, Canopy Properties and Plant Production to Rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Madhu, M.; Hatfield, J.L. Dynamics of plant root growth under increased atmospheric Carbon Dioxide. Agron. J. 2013, 105, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Kimball, B.A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 2016, 31, 36–43. [Google Scholar] [CrossRef]
- Chung, S.O.; Kang, S.W.; Bae, K.S.; Ryu, M.J.; Kim, Y.J. The potential of remote monitoring and control of protected crop production environment using mobile phone under 3G and Wi-Fi communication conditions. Eng. Agric. Environ. Food 2015, 8, 251–256. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, J.; Song, S.; Su, W.; Liu, H. Growth, nutritional quality and health-promoting compounds in Chinese Kale grown under different ratios of red:blue LED lights. Agronomy 2020, 10, 1248. [Google Scholar] [CrossRef]
- Lefsrud, M.G.; Kopsell, D.A.; Sams, C.E. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in Kale. HortScience 2008, 43, 2243–2244. [Google Scholar] [CrossRef] [Green Version]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue light added with red leds enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Doheny-Adams, T.; Redeker, K.; Kittipol, V.; Bancroft, I.; Hartley, S.E. Development of an efficient glucosinolate extraction method. Plant Methods 2017, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- ISO 9167:2019 Rapeseed and Rapeseed Meals—Determination of Glucosinolates Content—Method Using High-Performance Liquid Chromatography. Available online: https://www.iso.org/standard/72207.html (accessed on 15 June 2021).
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Velasco, P.; Cartea, M.E.; González, C.; Vilar, M.; Ordás, A. Factors affecting the glucosinolate content of kale (Brassica oleracea Acephala Group). J. Agric. Food Chem. 2007, 55, 955–962. [Google Scholar] [CrossRef]
- Bohinc, T.; Trdan, S. Environmental factors affecting the glucosinolate content in brassicaceae. J. Food Agric. Environ. 2012, 10, 357–360. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F.; Richardson, A.D.; Hufkens, K. On Quantifying the apparent temperature sensitivity of plant phenology. New Phytol. 2020, 225, 1033–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapenis, A.; Henry, H.; Vuille, M.; Mower, J. Climatic factors controlling plant sensitivity to warming. Clim. Chang. 2014, 122, 723–734. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal Control of Environmental Conditions Affecting Lettuce Plant Growth in a Controlled Environment with Artificial Lighting: A Review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M. Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhu, Z.; Gerendás, J.; Zimmermann, N. Glucosinolates in Chinese Brassica Campestris Vegetables: Chinese Cabbage, Purple Cai-Tai, Choysum, Pakchoi, and Turnip. HortScience 2008, 43, 571–574. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Liu, L.; Song, S.; Tang, X.; Wang, Y. Evaluation of glucosinolate composition and contents in chinese brassica vegetables. Acta Hortic. 2003, 85–92. [Google Scholar] [CrossRef]
- Qian, H.; Liu, T.; Deng, M.; Miao, H.; Cai, C.; Shen, W.; Wang, Q. Effects of Light Quality on Main Health-Promoting Compounds and Antioxidant Capacity of Chinese Kale Sprouts. Food Chem. 2016, 196, 1232–1238. [Google Scholar] [CrossRef]
- Rosa, E.A.S.; Rodrigues, P.M.F. The Effect of Light and Temperature on Glucosinolate Concentration in the Leaves and Roots of Cabbage Seedlings. J. Sci. Food Agric. 1998, 78, 208–212. [Google Scholar] [CrossRef]
- Lin, K.H.; Shih, F.C.; Huang, M.Y.; Weng, J.H. Physiological characteristics of photosynthesis in yellow-green, green and dark-green Chinese kale (Brassica oleracea L. var. Alboglabra Musil.) under varying light intensities. Plants 2020, 9, 960. [Google Scholar] [CrossRef]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; John Wiley & Sons: St. Louis, MO, USA, 2014; ISBN 978-1-4051-8976-7. [Google Scholar]
- Eberhard, S.; Finazzi, G.; Wollman, F.A. The dynamics of photosynthesis. Annu. Rev. Genet. 2008, 42, 463–515. [Google Scholar] [CrossRef] [Green Version]
- Hagen, S.F.; Borge, G.I.A.; Solhaug, K.A.; Bengtsson, G.B. Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. Acephala). Postharvest Biol. Technol. 2009, 51, 36–42. [Google Scholar] [CrossRef]
- Yoon, H.I.; Kim, J.S.; Kim, D.; Kim, C.Y.; Son, J.E. Harvest strategies to maximize the annual production of bioactive compounds, glucosinolates, and total antioxidant activities of kale in plant factories. Hortic. Environ. Biotechnol. 2019, 60, 883–894. [Google Scholar] [CrossRef]
Environmental Variables | Targeted Levels | Monitored Levels | Used Sensor | ||
---|---|---|---|---|---|
Experiment 1 (Temp.) | Experiment 2 (Humi.) | Experiment 3 (CO2) | |||
Temperature (°C) | 14 ± 1 | 20 ± 1 | 20 ± 1 | 14.58 ± 0.74 | ETH-01DV, ECONARAE, Seoul, Korea |
17 ± 1 | 17.34 ± 1.80 | ||||
20 ± 1 | 20.25 ± 0.69 | ||||
23 ± 1 | 23.26 ± 0.52 | ||||
26 ± 1 | 25.97 ± 1.64 | ||||
Relative humidity (%) | 65 ± 5 | 45 ± 5 | 65 ± 5 | 44.78 ± 5.23 | ETH-01DV, ECONARAE, Seoul, Korea |
55 ± 5 | 56.06 ± 4.35 | ||||
65 ± 5 | 67.66 ± 4.67 | ||||
75 ± 5 | 76.85 ± 4.49 | ||||
85 ± 5 | 82.66 ± 5.65 | ||||
CO2 (ppm) | 1000 ± 100 | 1000 ± 100 | 400 ± 100 | 475.62 ± 106.30 | SH-300-DS, SOHA TECH CO. Ltd., Seoul, Korea |
700 ± 100 | 723.29 ± 140.60 | ||||
1000 ± 100 | 980.75 ± 125.36 | ||||
1300 ± 100 | 1318.34 ± 125.11 | ||||
1600 ± 100 | 1672.30 ± 93.21 | ||||
Light source (LED color ratio) | R:B = 11:7 | - | - | ||
Light intensity (μmol m−2 s−1) | 160 | 160 ± 25 | GY-30, ROHM Co. Ltd., Kyoto, Japan | ||
Photoperiod (day/night hrs) | 16/8 | - | MaxiRex 5QT, Legrand Korea Co., Ltd., Seoul, Korea | ||
pH | 6.50 ± 0.5 | 6.55 ± 0.52 | PH-BTA, Vernier, OR, USA | ||
EC (dS m−1) | 1.2 ± 1.00 | 1.28 ± 0.29 | CON-BTA, Vernier, OR, USA |
SV | Plant Height | Plant Width | Plant Weight | Total Glucosinolates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | ST | Err | Tr | ST | Err | Tr | ST | Err | Tr | ST | Err | |
Temperature effect | ||||||||||||
SS | 4.1 × 104 | 2.3 × 105 | 6.6 × 103 | 1.4 × 104 | 4.3 × 104 | 3.2 × 103 | 206.9 | 1.03 × 103 | 298.2 | 8.7 × 103 | 3.7 × 103 | 3.2 × 103 |
df | 4 | 1 | 20 | 4 | 1 | 20 | 4 | 1 | 20 | 4 | 1 | 20 |
MS | 1.0 × 104 | 2.3 × 105 | 334.1 | 3.5 × 103 | 4.3 × 104 | 162.1 | 51.71 | 1.3 × 103 | 14.91 | 2.1 × 103 | 3.7 × 103 | 162.6 |
F-value | 30.89 | 714.63 | 21.71 | 269.3 | 3.46 | 69.01 | 13.45 | 22.99 | ||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.05 | <0.001 | <0.001 | <0.001 | ||||
F crit | 2.87 | 4.35 | 2.87 | 4.35 | 2.87 | 4.35 | 2.87 | 4.35 | ||||
Relative humidity effect | ||||||||||||
SS | 5.1 × 103 | 2.03 × 104 | 4708 | 1.8 × 104 | 1.1 × 105 | 1.3 × 104 | 6.53 | 192.53 | 7.33 | 0.34 | 1.16 | 1.93 |
df | 4 | 1 | 20 | 4 | 1 | 4 | 4 | 1 | 20 | 4 | 1 | 20 |
MS | 1.3 × 103 | 2.03 × 104 | 235.4 | 4607.4 | 1.1 × 105 | 632.4 | 1.63 | 192.53 | 0.37 | 0.08 | 1.16 | 0.09 |
F-value | 5.49 | 86.37 | 7.29 | 189.27 | 4.45 | 525.09 | 0.88 | 12.01 | ||||
p-value | <0.05 | <0.001 | <0.001 | <0.001 | <0.05 | <0.001 | 0.49 | <0.05 | ||||
F crit | 2.867 | 4.35 | 2.87 | 4.35 | 2.87 | 4.35 | 2.87 | 0.41 | ||||
CO2 effect | ||||||||||||
SS | 652.8 | 3020 | 1187.3 | 311.67 | 4.4 × 104 | 1.4 × 104 | 0.252 | 898.7 | 4.08 | 64.46 | 3.18 | 55.65 |
df | 4 | 1 | 20 | 4 | 1 | 20 | 4 | 1 | 20 | 4 | 1 | 20 |
MS | 163.2 | 3020 | 59.37 | 77.91 | 4.4 × 104 | 748.5 | 0.06 | 898.7 | 0.204 | 16.11 | 3.18 | 2.78 |
F-value | 2.75 | 50.8 | 0.10 | 59.31 | 0.31 | 4398.3 | 5.79 | 1.14 | ||||
p-value | 0.05 | <0.001 | 0.97 | <0.001 | 0.86 | <0.001 | <0.05 | 0.29 | ||||
F crit | 2.87 | 4.35 | 2.87 | 4.35 | 2.87 | 4.35 | 2.87 | 4.35 |
Variables | T_Pro | T_Sin | T_Glu | T_4-met | T_Neo | H_Pro | H_Sin | H_Glu | H_4-met | H_Neo | C_Pro | C_Sin | C_Glu | C_4-met | C_Neo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T_Pro | 1.00 | ||||||||||||||
T_Sin | −0.02 | 1.00 | |||||||||||||
T_Glu | −0.12 | 0.96 *** | 1.00 | ||||||||||||
T_4-met | −0.13 | −0.65 *** | −0.59 *** | 1.00 | Strong negative | Not correlated | Strong positive | ||||||||
T_Neo | 0.51*** | 0.74 *** | 0.76 *** | −0.52 *** | 1.00 | ||||||||||
H_Pro | −0.52 *** | 0.24 | 0.50 *** | −0.08 | 0.25 | 1.00 | |||||||||
H_Sin | −0.13 | 0.08 | −0.06 | −0.66 *** | −0.26 | −0.35 * | 1.00 | ||||||||
H_Glu | −0.01 | 0.53 *** | 0.66 *** | 0.14 | 0.65 *** | 0.59 *** | −0.79 *** | 1.00 | |||||||
H_4-met | −0.21 | −0.54 *** | −0.36 * | 0.88 *** | −0.29 | 0.37 * | −0.82 *** | 0.41 ** | 1.00 | ||||||
H_Neo | 0.00 | 0.52 *** | 0.35 * | 0.11 | 0.16 | −0.38 * | −0.13 | 0.30 * | −0.17 | 1.00 | |||||
C_Pro | 0.70 *** | −0.64 *** | −0.69 *** | 0.06 | −0.11 | −0.50 *** | 0.13 | −0.54 *** | −0.03 | −0.53 *** | 1.00 | ||||
C_Sin | 0.37 * | 0.68 *** | 0.71 *** | −0.84 *** | 0.86 *** | 0.31 * | 0.17 | 0.30 * | −0.56 *** | −0.17 | −0.01 | 1.00 | |||
C_Glu | 0.70 *** | −0.63*** | −0.58 *** | 0.27 | 0.04 | −0.22 | −0.28 | −0.16 | 0.31 * | −0.57 *** | 0.90 *** | 0.01 | 1.00 | ||
C_4-met | 0.36 * | −0.91 *** | −0.93 *** | 0.36 * | −0.52 *** | −0.45 ** | 0.11 | −0.66 *** | 0.22 | −0.57 *** | 0.90 *** | −0.40 ** | 0.80 *** | 1.00 | |
C_Neo | 0.77 *** | −0.50 *** | −0.56 *** | −0.08 | 0.03 | −0.47 ** | 0.17 | −0.49 ** | −0.14 | −0.53 *** | 0.99 *** | 0.16 | 0.88 *** | 0.81 *** | 1.00 |
VIF | 1.06 | 4.72 | 6.46 | 2.83 | 1.57 | 1.32 | 1.09 | 1.14 | 1.47 | 1.01 | 1.56 | 2.39 | 1.63 | 2.92 | 1.28 |
Sampling Time | Temp. Level (°C) | Growth Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P_Height (mm) | P_Width (mm) | P_Weight (g) | No_Leaf | Stem dia. (mm) | Chlor_Level (ppm) | L_Length (mm) | L_Width (mm) | L_Weight (g) | ||
2 weeks | 14 | 95.0 ± 4.5 a | 161.7 ± 8.1 b | 11.9 ± 1.2 b | 7.0 ± 0.0 a | 2.4 ± 0.1 a | 46.9 ± 1.0 a | 8.4 ± 0.5 c | 7.4 ± 0.4 c | 2.9 ± 0.2 b |
17 | 99.3 ± 4.7 a | 186.0 ± 24.3 ab | 12.6 ± 0.3 a | 6.7 ± 3.7 a | 2.5 ± 0.2 a | 49.1 ± 0.6 a | 10.6 ± 0.2 b | 9.4 ± 0.4 b | 5.2 ± 0.6 a | |
20 | 84.7 ± 1.2 a | 167.0 ± 22.7 b | 13.3 ± 0.2 a | 7.0 ± 0.1 a | 2.7 ± 0.1 a | 53.4 ± 5.4 a | 13.0 ± 0.4 a | 11.3 ± 0.6 a | 6.3 ± 0.4 a | |
23 | 92.3 ± 11 a | 196.0 ± 14.2 ab | 13.0 ± 0.3 a | 7.0 ± 0.1 a | 2.8 ± 0.9 a | 57.0 ± 2.8 a | 12.8 ± 0.8 a | 11.1 ± 0.6 ab | 6.0 ± 1.1 a | |
26 | 90.3 ± 8.9 a | 215.0 ± 14.1 a | 13.3 ± 0.3 a | 7.0 ± 0.8 a | 2.8 ± 0.2 a | 52.0 ± 0.3 a | 12.6 ± 0.9 a | 11.3 ± 0.4 a | 5.8 ± 0.2 a | |
4 weeks | 14 | 115.3 ± 8.3 b | 274.3 ± 15.0 a | 21.3 ± 4.1 a | 11.1 ± 0.2 a | 13.0 ± 0.0 a | 55.5 ± 4.3 a | 19.9 ± 0.8 c | 12.6 ± 0.46 b | 9.2 ± 0.9 b |
17 | 129.7 ± 5.3 b | 260.3 ± 39.4 a | 23.6 ± 6.2 a | 12.7 ± 0.5 a | 14.3 ± 0.5 a | 61.2 ± 2.4 a | 26.7 ± 0.2 b | 17.1 ± 1.1 ab | 16.0 ± 3.3 ab | |
20 | 143.3 ± 6.5 ab | 286.3 ± 13.5 a | 28.3 ± 4.3 a | 12.0 ± 0.7 a | 15.7 ± 0.4 a | 48.4 ± 15.1 a | 31.2 ± 2.0 ab | 19.0 ± 1.4 a | 19.1 ± 6.1 a | |
23 | 137.3 ± 8.6 ab | 278.3 ± 36.5 a | 25.4 ± 3.2 a | 13.5 ± 1.3 a | 17.7 ± 0.4 a | 58.5 ± 1.7 a | 31.8 ± 2.5 ab | 20.2 ± 1.8 a | 20.0 ± 3.8 a | |
26 | 176.3 ± 27.7 a | 277.0 ± 12.8 a | 22.2 ± 4.8 a | 10.0 ± 0.4 a | 15.6 ± 0.9 a | 53.6 ± 4.3 a | 37.0 ± 2.5 a | 19.8 ± 1.5 a | 20.1 ± 5.7 a |
Variables | P_Height | P_Width | P_Weight | No_Leaf | Stem dia. | Chlor_Level | L_Length | L_Width | L_Weight | Pro | Sin | Glu | 4-Met | Neo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_height | 1 | |||||||||||||
P_width | 0.98 *** | 1 | ||||||||||||
P_weight | 0.81 *** | 0.73 *** | 1 | |||||||||||
No_leaf | 0.08 | −0.08 | 0.54 *** | 1 | Strong negative | Not correlated | Strong positive | |||||||
Stem dia. | 0.76 *** | 0.86 *** | 0.36 ** | −0.57 *** | 1 | |||||||||
Chlor_level | −0.36 ** | −0.22 | −0.63 *** | −0.65 *** | 0.12 | 1 | ||||||||
L_length | 0.85 *** | 0.85 *** | 0.78 *** | −0.04 | 0.76 *** | −0.50 *** | 1 | |||||||
L_width | 0.60 *** | 0.60 *** | 0.63 *** | −0.1 | 0.63 *** | −0.51 *** | 0.93 *** | 1 | ||||||
L_weight | 0.55 *** | 0.52 *** | 0.66 *** | 0.05 | 0.49 *** | −0.64 *** | 0.90 *** | 0.98 *** | 1 | |||||
Pro | −0.60 *** | −0.55 *** | −0.66 *** | −0.13 | −0.45 *** | 0.78 *** | −0.88 *** | −0.93 *** | −0.96 *** | 1 | ||||
Sin | −0.68 *** | −0.70 *** | −0.38 ** | 0.32 * | −0.76 *** | 0.43 *** | −0.83 *** | −0.77 *** | −0.72 *** | 0.81 *** | 1 | |||
Glu | −0.96 *** | −0.96 *** | −0.76 *** | 0.06 | −0.84 *** | 0.41 ** | −0.95 *** | −0.77 *** | −0.72 *** | 0.75 *** | 0.83 *** | 1 | ||
4-Met | 0.52 *** | 0.52 *** | 0.38 ** | −0.20 | 0.57 *** | −0.59 *** | 0.81 *** | 0.86 *** | 0.85 *** | −0.92 *** | −0.94 *** | −0.72 *** | 1 | |
Neo | −0.21 | −0.33 * | 0.33 * | 0.68 *** | −0.54 *** | −0.74 *** | 0.10 | 0.31 * | 0.47 *** | −0.46 *** | 0.10 | 0.14 | 0.20 | 1 |
VIF | 3.47 | 4.08 | 3.65 | 1.06 | 4.21 | 2.16 | 16.67 | 4.64 | 2.99 | 3.09 | 5.81 | 11.99 | 3.46 | 1.01 |
Sampling Time | Humi. Level (%) | Growth Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P_Height (mm) | P_Width (mm) | P_Weight (g) | No_Leaf | Stem Dia. (mm) | Chlor_Level (ppm) | L_Length (mm) | L_Width (mm) | L_Weight (g) | ||
2 weeks | 45 | 68.7 ± 7.6 b | 171.7 ± 8.1 b | 5.5 ± 0.1 c | 8.0 ± 0.0 ab | 2.9 ± 0.2 c | 60.5 ± 4.3 a | 97.7 ± 9.5 c | 58.0 ± 2.0 c | 1.1 ± 0.1 c |
55 | 74.3 ± 10.3 b | 196.0 ± 24.3 ab | 8.2 ± 1.2 ab | 8.7 ± 0.6 a | 3.8 ± 0.3 a | 66.2 ± 2.4 a | 111.7 ± 9.5 bc | 67.7 ± 5.5 bc | 1.8 ± 0.4 b | |
65 | 79.3 ± 5.1 ab | 177.0 ± 22.6 b | 6.3 ± 1.4 bc | 7.7 ± 0.6 b | 3.3 ± 0.2 b | 53.4 ± 15.1 a | 114.0 ± 5.6 b | 67.3 ± 5.1 bc | 1.8 ± 0.2 b | |
75 | 83.0 ± 1.0 ab | 206.0 ± 14.2 ab | 7.7 ± 1.2 abc | 8.0 ± 0.1 ab | 3.2 ± 0.2 bc | 63.5 ± 1.7 a | 133.3 ± 9.1 a | 76.7 ± 4.6 ab | 2.1 ± 0.3 ab | |
85 | 93.3 ± 6.8 a | 225.0 ± 14.1 a | 8.9 ± 1.5 a | 8.0 ± 0.0 ab | 3.5 ± 0.1 ab | 58.6 ± 4.3 a | 132.3 ± 8.6 a | 81.7 ± 8.4 a | 2.5 ± 0.3 a | |
4 weeks | 45 | 114.3 ± 9.3 b | 291.7 ± 62.8 b | 23.4 ± 10.2 a | 13.0 ± 1.0 bc | 5.0 ± 0.7 c | 66.1 ± 1.6 a | 158.7 ± 25.2 b | 105.3 ± 21.7 a | 5.3 ± 1.3 b |
55 | 119.7 ± 15.3 b | 302.0 ± 18.1 b | 29.4 ± 3.5 a | 13.3 ± 0.6 ab | 5.2 ± 0.3 bc | 65.3 ± 1.8 a | 171.0 ± 14.1 ab | 118.0 ± 7.9 a | 8.9 ± 1.5 a | |
65 | 133.3 ± 16.5 ab | 314.0 ± 18.0 b | 33.0 ± 4.9 a | 14.7 ± 0.6 a | 5.0 ± 0.2 c | 47.1 ± 2.8 a | 172.3 ± 17.1 ab | 111.3 ± 9.1 a | 9.1 ± 1.1 a | |
75 | 125.3 ± 9.6 b | 316.3 ± 7.6 b | 25.7 ± 0.9 a | 11.7 ± 0.6 c | 5.7 ± 0.3 ab | 61.3 ± 3.1 a | 186.3 ± 6.4 ab | 114.7 ± 9.7 a | 8.9 ± 2.2 a | |
85 | 166.3 ± 37.9 a | 383.3 ± 10.1 a | 34.7 ± 6.9 a | 13.0 ± 1.0 bc | 6.1 ± 0.1 a | 59.2 ± 3.1 a | 191.0 ± 11.5 a | 126.0 ± 12.5 a | 8.7 ± 2.3 a |
Variables | P_Height | P_Width | P_Weight | No_Leaf | Stem Dia. | Chlor_Level | L_Length | L_Width | L_Weight | Pro | Sin | Glu | 4-Met | Neo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_height | 1 | |||||||||||||
P_width | 0.99 *** | 1 | ||||||||||||
P_weight | 0.81 *** | 0.73 *** | 1 | |||||||||||
No_leaf | 0.08 | −0.08 | 0.54 *** | 1 | Strong negative | Not correlated | Strong positive | |||||||
Stem dia. | 0.76 *** | 0.86 *** | 0.36 ** | −0.57 *** | 1 | |||||||||
Chlor_level | −0.36 ** | −0.22 | −0.63 *** | −0.65 *** | 0.12 | 1 | ||||||||
L_length | 0.76 *** | 0.81 *** | 0.53 *** | −0.39 ** | 0.91 *** | −0.21 | 1 | |||||||
L_width | 0.80 *** | 0.85 *** | 0.71 *** | −0.14 | 0.81 *** | −0.02 | 0.82 *** | 1 | ||||||
L_weight | 0.42 *** | 0.40 ** | 0.67 *** | 0.12 | 0.37 ** | −0.50 *** | 0.69 *** | 0.65 *** | 1 | |||||
Pro | −0.17 | −0.13 | −0.60 *** | −0.50 *** | 0.09 | 0.09 | −0.04 | −0.51 *** | −0.54 *** | 1 | ||||
Sin | 0.61 *** | 0.62 *** | 0.38 ** | −0.29 * | 0.69 *** | −0.50 *** | 0.85 *** | 0.42 *** | 0.55 *** | 0.34 ** | 1 | |||
Glu | −0.49 *** | −0.59 *** | 0.04 | 0.74 *** | −0.85 *** | −0.13 | −0.72 *** | −0.37 ** | −0.05 | −0.60 *** | −0.76 *** | 1 | ||
4-Met | −0.39 ** | −0.35 ** | −0.47 *** | −0.03 | −0.40 ** | 0.73 *** | −0.68 *** | −0.31 * | −0.79 *** | −0.05 | −0.86 *** | 0.35 ** | 1 | |
Neo | 0.28 * | 0.20 | 0.70 *** | 0.46 *** | 0.03 | −0.68 *** | 0.41 ** | 0.42 *** | 0.93 *** | −0.64 *** | 0.34 ** | 0.28* | −0.72 *** | 1 |
VIF | 3.47 | 4.07 | 2.65 | 1.06 | 4.21 | 1.16 | 11.93 | 2.56 | 1.78 | 1.11 | 4.97 | 2.01 | 1.42 | 1.22 |
Sampling Time | CO2 Level (ppm) | Growth Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P_Height (mm) | P_Width (mm) | P_Weight (g) | No_Leaf | Stem Dia. (mm) | Chlor_Level (ppm) | L_Length (mm) | L_Width (mm) | L_Weight (g) | ||
2 weeks | 400 | 85.0 ± 4.5 a | 213.0 ± 9.2 a | 11.0 ± 1.8 a | 4.2 ± 0.3 a | 11.3 ± 0.4 a | 142.0 ± 10.0 a | 53.0 ± 4.2 a | 60.1 ± 1.4 a | 3.5 ± 0.2 a |
700 | 89.3 ± 4.7 a | 228.0 ± 11.7 a | 11.3 ± 1.7 a | 4.2 ± 0.2 a | 11.7 ± 0.4 a | 140.7 ± 5.4 a | 47.7 ± 1.2 a | 63.0 ± 4.3 a | 3.6 ± 1.1 a | |
1000 | 74.7 ± 1.2 a | 196.3 ± 16.8 a | 10.4 ± 1.4 a | 4.3 ± 0.3 a | 11.7 ± 0.4 a | 127.0 ± 6.1 a | 50.0 ± 4.0 a | 64.1 ± 3.2 a | 3.4 ± 0.4 a | |
1300 | 82.3 ± 11.0 a | 211.3 ± 4.5 a | 8.9 ± 0.4 a | 4.0 ± 0.1 a | 11.0 ± 0.8 a | 125.0 ± 1.4 a | 45.3 ± 4.1 a | 69.8 ± 1.1 a | 3.2 ± 0.6 a | |
1600 | 80.3 ± 8.9 a | 194.0 ± 17.2 a | 7.5 ± 0.6 a | 4.0 ± 0.3 a | 11.7 ± 0.9 a | 123.0 ± 7.2 a | 52.3 ± 3.2 a | 66.8 ± 1.3 a | 2.9 ± 0.2 a | |
4 weeks | 400 | 111.7 ± 6.5 a | 284.3 ± 13.0 a | 22.2 ± 4.8 a | 7.0 ± 0.4 a | 14.7 ± 0.9 a | 186.0 ± 14.3 a | 68.0 ± 2.1 a | 62.7 ± 2.8 a | 5.7 ± 1.7 a |
700 | 105.3 ± 4.7 ab | 270.3 ± 49.4 a | 28.4 ± 3.2 a | 7.1 ± 0.3 a | 15.7 ± 0.4 a | 179.0 ± 9.9 a | 67.3 ± 4.7 a | 66.9 ± 1.3 a | 5.3 ± 0.8 a | |
1000 | 102.7 ± 4.9 ab | 296.3 ± 6.5 a | 25.0 ± 4.3 a | 7.4 ± 0.4 a | 15.7 ± 0.4 a | 175.7 ± 5.2 a | 70.3 ± 2.4 a | 65.6 ± 0.8 a | 4.5 ± 0.1 a | |
1300 | 99.3 ± 5.5 ab | 288.3 ± 36.5 a | 23.6 ± 6.2 a | 6.7 ± 0.5 a | 14.3 ± 0.5 a | 169.3 ± 12.0 a | 63.0 ± 2.0 a | 67.7 ± 1.2 a | 4.7 ± 1.3 a | |
1600 | 93.0 ± 5.0 b | 288.0 ± 12.8 a | 25.3 ± 4.1 a | 7.1 ± 0.2 a | 15.0 ± 0.0 a | 179.0 ± 11.3 a | 68.3 ± 4.1 a | 66.4 ± 2.4 a | 4.9 ± 0.9 a |
Variables | P_Height | P_Width | P_Weight | No_Leaf | Stem Dia. | Chlor_Level | L_Length | L_Width | L_Weight | Pro | Sin | Glu | 4-Met | Neo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P_height | 1 | |||||||||||||
P_width | −0.32 * | 1 | ||||||||||||
P_weight | −0.16 | −0.87 *** | 1 | |||||||||||
No_leaf | 0.06 | 0.20 | −0.37 ** | 1 | Strong negative | Not correlated | Strong positive | |||||||
Stem dia. | 0.09 | −0.19 | 0.01 | 0.88 *** | 1 | |||||||||
Chlor_level | 0.56 *** | −0.31 * | 0.08 | 0.29 * | 0.16 | 1 | ||||||||
L_length | 0.15 | 0.21 | −0.38 ** | 0.94 *** | 0.72 *** | 0.57 *** | 1 | |||||||
L_width | −0.69 *** | −0.12 | 0.41 ** | −0.22 | 0.08 | −0.84 *** | −0.50 *** | 1 | ||||||
L_weight | −0.16 | −0.87 *** | 1.00 *** | −0.37 ** | 0.01 | 0.08 | −0.38 ** | 0.41 ** | 1 | |||||
Pro | −0.58 *** | 0.25 | 0.10 | −0.75 *** | −0.70 *** | −0.78 *** | −0.84 *** | 0.63 *** | 0.10 | 1 | ||||
Sin | 0.92 *** | −0.04 | −0.43 *** | 0.01 | −0.03 | 0.25 | 0.03 | −0.56 *** | −0.43 *** | −0.36 ** | 1 | |||
Glu | −0.50 *** | 0.19 | 0.19 | −0.80 *** | −0.88 *** | −0.27 * | −0.66 *** | 0.2 | 0.19 | 0.80 *** | −0.45 *** | 1 | ||
4-Met | −0.65 *** | −0.05 | 0.48 *** | −0.52 *** | −0.55 *** | −0.03 | −0.37 ** | 0.23 | 0.48 *** | 0.53 *** | −0.76 *** | 0.85 *** | 1 | |
Neo | −0.54 *** | −0.24 | 0.64 *** | −0.66 *** | −0.59 *** | −0.05 | −0.53 *** | 0.29 * | 0.64 *** | 0.56 *** | −0.68 *** | 0.85 *** | 0.97 *** | 1 |
VIF | 4.23 | 1.22 | 1.51 | 1.75 | 1.03 | 1.62 | 1.79 | 1.5 | 1.51 | 1.82 | 3.81 | 6.85 | 3.15 | 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, M.; Kiraga, S.; Islam, M.N.; Ali, M.; Reza, M.N.; Lee, W.-H.; Chung, S.-O. Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory. Foods 2021, 10, 1524. https://doi.org/10.3390/foods10071524
Chowdhury M, Kiraga S, Islam MN, Ali M, Reza MN, Lee W-H, Chung S-O. Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory. Foods. 2021; 10(7):1524. https://doi.org/10.3390/foods10071524
Chicago/Turabian StyleChowdhury, Milon, Shafik Kiraga, Md Nafiul Islam, Mohammod Ali, Md Nasim Reza, Wang-Hee Lee, and Sun-Ok Chung. 2021. "Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory" Foods 10, no. 7: 1524. https://doi.org/10.3390/foods10071524
APA StyleChowdhury, M., Kiraga, S., Islam, M. N., Ali, M., Reza, M. N., Lee, W. -H., & Chung, S. -O. (2021). Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory. Foods, 10(7), 1524. https://doi.org/10.3390/foods10071524