Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Glucosinolates by HPLC/LC–MS
2.3. Measurement of Antioxidant Contents and Antioxidant Capacity
2.4. Human Study Design and Subjects
2.5. Measurement of Inflammatory Markers by Bio-Plex Multiplex Immunoassay
2.6. Data Analysis and Statistical Methods
3. Results
3.1. Plant Material
3.1.1. Levels of Glucosinolates
3.1.2. Levels of Antioxidants and Antioxidant Capacity
3.2. Levels of Inflammatory Blood Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
GLS | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
4-Methoxyglucobrassicin | 46.8 ± 2.1 a | 70.6 ± 5.0 a,b | 101.3 ± 8.3 b | 101.5 ± 6.3 b |
Glucobrassicin | 79.3 ± 2.2 a | 87.8 ± 3.2 a | 90.5 ± 1.6 a | 56.6 ± 1.3 a |
Neoglucobrassicin | 76.6 ± 1.4 a | 76.4 ± 3.7 a | 85.5 ± 1.7 a | 71.3 ± 3.3 a |
Glucoarabishirsutain | 213.5 ± 2.6 a | 296.4 ± 12.4 a,b | 379.6 ± 10.1 b | 311.8 ± 11.8 a,b |
Gluconasturtiin | 4525 ± 45 a | 4393 ± 180 a | 5966 ± 266 a | 5655 ± 196 a |
Total | 4942 ± 46 a | 4924 ± 201 a | 6623 ± 285 a | 6196 ± 215 a |
Parameters | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
Total flavonoids (ng CE/g FW) | 415 ± 20 a | 470 ± 43 a,b | 509 ± 49 a,b | 529 ± 46 b |
Total phenols (ng GAE/g FW) | 832 ± 41 a | 980 ± 90 a,b | 1145 ± 42 b | 1178 ± 128 b |
Ascorbic acid (µg/g FW) | 578 ± 31 a | 638 ± 55 a | 750 ± 85 a | 687 ± 31 a |
Carotenoids (µg/g FW) | 84.9 ± 8.8 a | 108.9 ± 7.7 a | 90.3 ± 22.4 a | 118.9 ± 16.3 a |
α-Tocopherol (µg/g FW) | 3.63 ± 0.02 a | 5.11 ± 0.11 b | 5.58 ± 0.17 b | 5.27 ± 0.03 b |
γ-Tocopherol (ng/g FW) | 70.8 ± 5.5 a | 86.9 ± 0.4 a | 72.4 ± 3.6 a | 60.6 ± 5.1 a |
ORAC (µmol TE/g FW) | 19.6 ± 2.7 a | 20.3 ± 1.1 a | 21.4 ± 1.5 a | 20.7 ± 2.4 a |
Parameter | Control | Watercress | ||||
---|---|---|---|---|---|---|
t0 | t1 | t2 | t0 | t1 | t2 | |
IL-1β (ng/mL) | 2.40 ± 0.98 * | 2.66 ± 1.26 * | 1.98 ± 0.90 # | 2.77 ± 0.82 * | 3.47 ± 1.45 *,# | 2.06 ± 0.75 # |
IL-6 (ng/mL) | 4.09 ± 1.54 * | 5.73 ± 1.73 *,# | 4.29 ± 1.55 # | 5.43 ± 1.73 * | 7.56 ± 2.25 *,# | 3.91 ± 1.59 # |
IL-10 (pg/mL) | 98.0 ± 42.6 | 144.5 ± 70.3 *,# | 113.7 ± 73.2 * | 107.6 ± 48.1 | 217.8 ± 103.3 *,# | 166.6 ± 89.2 *,# |
TNF-α (pg/mL) | 328.3 ± 228.1 * | 328.0 ± 140.5 * | 296.6 ± 141.1 * | 428.0 ± 179.3 * | 403.4 ± 163.2 * | 205.3 ± 126.1 *# |
MCP-1 (ng/mL) | 3.20 ± 1.73 | 4.89 ± 2.39 # | 3.94 ± 1.57 *,# | 3.02 ± 1.52 | 4.67 ± 2.91 | 3.60 ± 1.96 *,# |
MMP-9 (ng mL) | 86.6 ± 21.5 * | 132.2 ± 46.5 # | 210.2 ± 50.3 # | 105.5 ± 28.3 * | 133.9 ± 29.2 # | 202.0 ± 45.2 # |
References
- Di Noia, J. Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach. Prev. Chronic Dis. 2014, 11, 130390. [Google Scholar] [CrossRef] [Green Version]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Chemical Composition, Traditional and Professional Use in Medicine, Application in Environmental Protection, Position in Food and Cosmetics Industries, and Biotechnological Studies of Nasturtium Officinale (Watercress)—A Review. Fitoterapia 2018, 129, 283–292. [Google Scholar] [CrossRef] [PubMed]
- de Souza, H.C.; dos Santos, A.M.P.; Fortunato, D.M.N.; Lima, D.C.; Fragoso, W.D.; Ferreira, S.L.C. Determination of the Mineral Composition of Watercress and Data Evaluation Using Multivariate Analysis. Anal. Lett. 2011, 44, 1758–1768. [Google Scholar] [CrossRef]
- Fogarty, M.C.; Hughes, C.M.; Burke, G.; Brown, J.C.; Davison, G.W. Acute and Chronic Watercress Supplementation Attenuates Exercise-Induced Peripheral Mononuclear Cell DNA Damage and Lipid Peroxidation. Br. J. Nutr. 2013, 109, 293–301. [Google Scholar] [CrossRef]
- Gill, C.I.; Haldar, S.; Boyd, L.A.; Bennett, R.; Whiteford, J.; Butler, M.; Pearson, J.R.; Bradbury, I.; Rowland, I.R. Watercress Supplementation in Diet Reduces Lymphocyte DNA Damage and Alters Blood Antioxidant Status in Healthy Adults. Am. J. Clin. Nutr. 2007, 85, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Kuhnert, A.; Schubert, A.; Gill, C.; Rowland, I.R.; Pool-Zobel, B.L.; Glei, M. Modulation of Detoxification Enzymes by Watercress: In Vitro and in Vivo Investigations in Human Peripheral Blood Cells. Eur. J. Nutr. 2009, 48, 483–491. [Google Scholar] [CrossRef]
- Cheung, K.L.; Kong, A.-N. Molecular Targets of Dietary Phenethyl Isothiocyanate and Sulforaphane for Cancer Chemoprevention. AAPS J. 2010, 12, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Schoonbroodt, S.; Ferreira, V.; Best-Belpomme, M.; Boelaert, J.R.; Legrand-Poels, S.; Korner, M.; Piette, J. Crucial Role of the Amino-Terminal Tyrosine Residue 42 and the Carboxyl-Terminal PEST Domain of I KBα in NF-KB Activation by an Oxidative Stress. J. Immunol. 2000, 164, 4292–4300. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, E.; Niess, A.M. Role of Heat Shock Proteins in the Exercise Response. Exerc. Immunol. Rev. 1999, 5, 57–77. [Google Scholar] [PubMed]
- Asea, A.; Rehli, M.; Kabingu, E.; Boch, J.A.; Bare, O.; Auron, P.E.; Stevenson, M.A.; Calderwood, S.K. Novel Signal Transduction Pathway Utilized by Extracellular HSP70: Role of Toll-like Receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002, 277, 15028–15034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassilakopoulos, T.; Karatza, M.-H.; Katsaounou, P.; Kollintza, A.; Zakynthinos, S.; Roussos, C. Antioxidants Attenuate the Plasma Cytokine Response to Exercise in Humans. J. Appl. Physiol. 2003, 94, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Azarmehr, N.; Afshar, P.; Moradi, M.; Sadeghi, H.; Sadeghi, H.; Alipoor, B.; Khalvati, B.; Barmoudeh, Z.; Abbaszadeh-Goudarzi, K.; Doustimotlagh, A.H. Hepatoprotective and Antioxidant Activity of Watercress Extract on Acetaminophen-Induced Hepatotoxicity in Rats. Heliyon 2019, 5, e02072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchardt, J.P.; Hahn, A.; Greupner, T.; Wasserfurth, P.; Rosales-López, M.; Hornbacher, J.; Papenbrock, J. Watercress—Cultivation Methods and Health Effects. J. Appl. Bot. Food Qual. 2019, 92, 232–239. [Google Scholar] [CrossRef]
- Hornbacher, J.; Rumlow, A.; Pallmann, P.; Turcios, A.E.; Riemenschneider, A.; Papenbrock, J. The Levels of Sulfur-Containing Metabolites in Brassica Napus Are Not Influenced by the Circadian Clock but Diurnally. J. Plant Biol. 2019, 62, 359–373. [Google Scholar] [CrossRef]
- Boestfleisch, C.; Wagenseil, N.B.; Buhmann, A.K.; Seal, C.E.; Wade, E.M.; Muscolo, A.; Papenbrock, J. Manipulating the Antioxidant Capacity of Halophytes to Increase Their Cultural and Economic Value through Saline Cultivation. AoB Plants 2014, 6, plu046. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; Casal, S. Validation of a Fast and Accurate Chromatographic Method for Detailed Quantification of Vitamin E in Green Leafy Vegetables. Food Chem. 2013, 141, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Schreck, R.; Rieber, P.; Baeuerle, P.A. Reactive Oxygen Intermediates as Apparently Widely Used Messengers in the Activation of the NF-Kappa B Transcription Factor and HIV-1. EMBO J. 1991, 10, 2247–2258. [Google Scholar] [CrossRef]
- Norling, L.V.; Ly, L.; Dalli, J. Resolving Inflammation by Using Nutrition Therapy: Roles for Specialized Pro-Resolving Mediators. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cabrera, M.C.; Viña, J.; Ji, L.L. Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training. Antioxidants 2016, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Cassatella, M.A.; Meda, L.; Bonora, S.; Ceska, M.; Constantin, G. Interleukin 10 (IL-10) Inhibits the Release of Proinflammatory Cytokines from Human Polymorphonuclear Leukocytes. Evidence for an Autocrine Role of Tumor Necrosis Factor and IL-1 Beta in Mediating the Production of IL-8 Triggered by Lipopolysaccharide. J. Exp. Med. 1993, 178, 2207–2211. [Google Scholar] [CrossRef]
- Gérard, C.; Bruyns, C.; Marchant, A.; Abramowicz, D.; Vandenabeele, P.; Delvaux, A.; Fiers, W.; Goldman, M.; Velu, T. Interleukin 10 Reduces the Release of Tumor Necrosis Factor and Prevents Lethality in Experimental Endotoxemia. J. Exp. Med. 1993, 177, 547–550. [Google Scholar] [CrossRef]
- O’Farrell, A.-M.; Liu, Y.; Moore, K.W.; Mui, A.L.-F. IL-10 Inhibits Macrophage Activation and Proliferation by Distinct Signaling Mechanisms: Evidence for Stat3-Dependent and -Independent Pathways. EMBO J. 1998, 17, 1006–1018. [Google Scholar] [CrossRef]
- Naidu, S.D.; Suzuki, T.; Yamamoto, M.; Fahey, J.W.; Dinkova-Kostova, A.T. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol. Nutr. Food Res. 2018, 62, 1700908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coscueta, E.R.; Reis, C.A.; Pintado, M. Phenylethyl Isothiocyanate Extracted from Watercress By-Products with Aqueous Micellar Systems: Development and Optimisation. Antioxidants 2020, 9, 698. [Google Scholar] [CrossRef]
- Giallourou, N.; Oruna-Concha, M.J.; Harbourne, N. Effects of Domestic Processing Methods on the Phytochemical Content of Watercress (Nasturtium Officinale). Food Chem. 2016, 212, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Shahani, S.; Behzadfar, F.; Jahani, D.; Ghasemi, M.; Shaki, F. Antioxidant and Anti-Inflammatory Effects of Nasturtium Officinale Involved in Attenuation of Gentamicin-Induced Nephrotoxicity. Toxicol. Mech. Methods 2017, 27, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-T.; Liu, H.-C.; Chen, Y.-H. Suppression of Inflammatory Mediators by Cruciferous Vegetable-Derived Indole-3-Carbinol and Phenylethyl Isothiocyanate in Lipopolysaccharide-Activated Macrophages. Mediat. Inflamm. 2010, 2010, 1–5. [Google Scholar] [CrossRef]
- Sadeghi, H.; Mostafazadeh, M.; Sadeghi, H.; Naderian, M.; Barmak, M.J.; Talebianpoor, M.S.; Mehraban, F. In Vivo Anti-Inflammatory Properties of Aerial Parts of Nasturtium Officinale. Pharm. Biol. 2014, 52, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.; Won, Y.K.; Ong, C.N.; Whiteman, M. β-Phenylethyl and 8-Methylsulphinyloctyl Isothiocyanates, Constituents of Watercress, Suppress LPS Induced Production of Nitric Oxide and Prostaglandin E2 in RAW 264.7 Macrophages. Nitric Oxide 2005, 12, 237–243. [Google Scholar] [CrossRef]
- Park, H.-J.; Kim, S.-J.; Park, S.-J.; Eom, S.-H.; Gu, G.-J.; Kim, S.H.; Youn, H.-S. Phenethyl Isothiocyanate Regulates Inflammation through Suppression of the TRIF-Dependent Signaling Pathway of Toll-like Receptors. Life Sci. 2013, 92, 793–798. [Google Scholar] [CrossRef]
- Xu, C.; Shen, G.; Chen, C.; Gélinas, C.; Kong, A.-N.T. Suppression of NF-ΚB and NF-ΚB-Regulated Gene Expression by Sulforaphane and PEITC through IκBα, IKK Pathway in Human Prostate Cancer PC-3 Cells. Oncogene 2005, 24, 4486–4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prawan, A.; Saw, C.L.L.; Khor, T.O.; Keum, Y.-S.; Yu, S.; Hu, L.; Kong, A.-N. Anti-NF-ΚB and Anti-Inflammatory Activities of Synthetic Isothiocyanates: Effect of Chemical Structures and Cellular Signaling. Chem. Biol. Interact. 2009, 179, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyanapalli, S.S.S.; Paredes-Gonzalez, X.; Fuentes, F.; Zhang, C.; Guo, Y.; Pung, D.; Saw, C.L.L.; Kong, A.-N.T. Nrf2 Knockout Attenuates the Anti-Inflammatory Effects of Phenethyl Isothiocyanate and Curcumin. Chem. Res. Toxicol. 2014, 27, 2036–2043. [Google Scholar] [CrossRef] [Green Version]
- Kassie, F.; Knasmüller, S. Genotoxic Effects of Allyl Isothiocyanate (AITC) and Phenethyl Isothiocyanate (PEITC). Chem. Biol. Interact. 2000, 127, 163–180. [Google Scholar] [CrossRef]
Parameters | |
---|---|
Sex (n, females/males) | 5/14 |
Age (years) | 26.5 ± 4.3 |
Weight (kg) | 72.9 ± 12.5 |
Height (m) | 1.77 ± 0.09 |
BMI (kg/m2) | 23.3 ± 3.5 |
WHR (females/males) | 0.74 ± 0.04/0.84 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze, H.; Hornbacher, J.; Wasserfurth, P.; Reichel, T.; Günther, T.; Krings, U.; Krüger, K.; Hahn, A.; Papenbrock, J.; Schuchardt, J.P. Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans. Foods 2021, 10, 1774. https://doi.org/10.3390/foods10081774
Schulze H, Hornbacher J, Wasserfurth P, Reichel T, Günther T, Krings U, Krüger K, Hahn A, Papenbrock J, Schuchardt JP. Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans. Foods. 2021; 10(8):1774. https://doi.org/10.3390/foods10081774
Chicago/Turabian StyleSchulze, Hendrik, Johann Hornbacher, Paulina Wasserfurth, Thomas Reichel, Thorben Günther, Ulrich Krings, Karsten Krüger, Andreas Hahn, Jutta Papenbrock, and Jan P. Schuchardt. 2021. "Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans" Foods 10, no. 8: 1774. https://doi.org/10.3390/foods10081774
APA StyleSchulze, H., Hornbacher, J., Wasserfurth, P., Reichel, T., Günther, T., Krings, U., Krüger, K., Hahn, A., Papenbrock, J., & Schuchardt, J. P. (2021). Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans. Foods, 10(8), 1774. https://doi.org/10.3390/foods10081774