Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olives Sampling
2.2. Olive Stone Processing
2.3. Olive Stone Characteristics
2.4. Application of Chemometrics
3. Results
3.1. Weight of Olive Stones
3.2. Artificial Visions of Olive Stones
3.3. Chemometric Interpretation of the Data by Using OPLS-DA Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, G.; Beritognolo, I.; Bufacchi, M.; Stanzione, V.; Pisanelli, A.; Ciolfi, M.; Lauteri, M.; Brush, S.B. Advances in biocultural geography of olive tree (Olea europaea L.) landscapes by merging biological and historical assays. Sci. Rep. 2020, 10, 7673. [Google Scholar] [CrossRef]
- Valvez, S.; Maceiras, A.; Santos, P.; Reis, P.N.B. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 2021, 14, 845. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.; Terral, J.-F.; Pinatel, C.; Médail, F.; Bonhomme, F.; Bervillé, A. The origins of the domestication of the olive tree. C. R. Biol. 2009, 332, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Campos, N.; García-Nicolás, M.; Pastor-Belda, M.; Bußmann, T.; Arroyo-Manzanares, N.; Jiménez, B.; Viñas, P.; Arce, L. Exploration of the potential of different analytical techniques to authenticate organic vs. conventional olives and olive oils from two varieties using untargeted fingerprinting approaches. Food Control. 2021, 124, 107828. [Google Scholar] [CrossRef]
- Bianchi, G. Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 2003, 105, 229–242. [Google Scholar] [CrossRef]
- International Olive Oil Council (IOC). Trade Standard Applying to Table Olives; International Olive Oil Council: Madrid, Spain, 2004. [Google Scholar]
- International Olive Oil Council. World Table Olive Figures. 2021. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion unit/#figures (accessed on 14 April 2021).
- Roussos, S.; Rahmani, M. Les olives de table fermentées, un aliment fonctionnel comme le yogourt. In Le Compagnon de l’Olivier-XXVIIeme Annee-N° 42; Acopa: Aix-en-Provence, French, 2018; pp. 12–14. [Google Scholar]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012, 13, 1291–1340. [Google Scholar] [CrossRef]
- Zoidou, E.; Melliou, E.; Gikas, E.; Tsarbopoulos, A.; Magiatis, P.; Skaltsounis, A.L. Identification of Throuba Thassos, a Traditional Greek Table Olive Variety, as a Nutritional Rich Source of Oleuropein. J. Agric. Food Chem. 2010, 58, 46–50. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table Olives More than a Fermented Food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- International Olive Council. World Catalogue of Olive Varieties; International Olive Council: Madrid, Spain, 2000. [Google Scholar]
- Council Regulation (EC). No. 2081/92 of 14 July 1992 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 1992, L208, 1–8. [Google Scholar]
- Council Regulation (EC). No. 2082/92 of 14 July 1992 on certificates of specific character for agricultural products and foodstuffs. Off. J. Eur. Union 1992, L208, 9–14. [Google Scholar]
- Council Regulation (EC). No. 510/2006 of 20 March 2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 2006, L93, 12–25. [Google Scholar]
- Council Regulation (EC). No. 1898/2006 of 14 December 2006 laying down detailed rules of implementation of Council Regulation (EC) no. 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 2006, L369, 1–23. [Google Scholar]
- Council Regulation (EC). No 1151/2012 of 21 November 20122012 on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union 2012, L343, 1–29. [Google Scholar]
- Skiada, V.; Tsarouhas, P.; Varzakas, T. Preliminary Study and Observation of “Kalamata PDO” Extra Virgin Olive Oil, in the Messinia Region, Southwest of Peloponnese (Greece). Foods 2019, 8, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves da Silva, J.C.G. Chemometric classification of cultivars of olives: Perspectives on Portuguese olives. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 33–42. [Google Scholar]
- Beyaz, A.; Öztürk, R. Identification of olive cultivars using image processing techniques. Turk. J. Agric. 2016, 40, 671–683. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. NMR Studies on Italian PDO Olive Oils and their Potential in Olive-Tree-Derived Products Characterization. Eur. J. Lipid Sci. Tech. 2019, 121, 1800174. [Google Scholar] [CrossRef]
- Ben Othman, N.; Roblain, D.; Thonart, P.; Hamdi, M. Tunisian table olive phenolic compounds and their antioxidant capacity. J. Food Sci. 2008, 73, C235–C240. [Google Scholar] [CrossRef]
- Dağdelen, A.; Tümen, G.; Özcan, M.M.; Dündar, E. Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chem. 2013, 136, 41–45. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Costa, H.S.; Oliveira, M.B.P.P. An overview of ortuguese olive oils and table olives with protected designation of origin. Eur. J. Lipid Sci. Tech. 2019, 121, 1800129. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Aalizadeh, R.; Dasenaki, M.E.; Thomaidis, N.S. Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass. Molecules 2020, 25, 2919. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Aroma profile and volatile composition of black ripe olives (Manzanilla and Hojiblanca cultivars). Food Res. Int. 2020, 127, 108733. [Google Scholar] [CrossRef]
- Concepción, R.; García, P.; Medina, E.; Brenes, M. The PDO and PGI Table Olives of Spain. Eur. J. Lipid Sci. Tech. 2019, 121, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Selli, S.; Kelebek, H.; Kesen, S.; Sonmezdag, A.S. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives. J. Sci. Food. Agric. 2018, 98, 4104–4111. [Google Scholar] [CrossRef] [PubMed]
- Tarapoulouzi, M.; Kokkinofta, R.; Theocharis, C.R. Chemometric analysis combined with FTIR spectroscopy of milk and Halloumi cheese samples according to species’ origin. Food Sci. Nutr. 2020, 8, 3262–3273. [Google Scholar] [CrossRef] [PubMed]
- Vanloot, P.; Bertrand, D.; Pinatel, C.; Artaud, J.; Dupuy, N. Artificial vision and chemometrics analyses of olive stones for varietal identification of five French cultivars. Comput. Electron. Agric. 2014, 102, 98–105. [Google Scholar] [CrossRef]
- Beyaz, A.; Özkaya, M.T.; Duygu, İ. Identification of some spanish olive cultivars using image processing techniques. Sci. Hortic. 2017, 225, 286–292. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Skiada, V.; Agriopoulou, S.; Psomiadis, D.; Rébufa, C.; Roussos, S.; Theocharis, C.R.; Katsaris, P.; Varzakas, T. Chemometric Discrimination of the Geographical Origin of Three Greek Cultivars of Olive Oils by Stable Isotope Ratio Analysis. Foods 2021, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.S.; Gila, D.M.; Beyaz, A.; Ortega, J.G.; García, J.G. A computer vision approach based on endocarp features for the identification of olive cultivars. Comput. Electron. Agric. 2018, 154, 341–346. [Google Scholar] [CrossRef]
- Blazakis, K.N.; Kosma, M.; Kostelenos, G.; Baldoni, L.; Bufacchi, M.; Kalaitzis, P. Description of olive morphological parameters by using open access software. Plant Methods 2017, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Piras, F.; Grillo, O.; Venora, G.; Lovicu, G.; Campus, M.; Bacchetta, G. Effectiveness of a computer vision technique in the characterization of wild and farmed olives. Comput. Electron. Agric. 2016, 122, 86–93. [Google Scholar] [CrossRef]
- Oliveri, P.; López, M.I.; Casolino, M.C.; Ruisánchez, I.; Callao, M.P.; Medini, L.; Lanteri, S. Analytica Chimica Acta Partial least squares density modeling (PLS-DM)—A new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy. Anal. Chim. Acta 2014, 851, 30–36. [Google Scholar] [CrossRef]
- Brereton, R.G. Pattern recognition in chemometrics. Chemom. Intell. Lab. Syst. 2015, 149, 90–96. [Google Scholar] [CrossRef]
- de Santana, F.B.; Borges Neto, W.; Poppi, R.J. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food Chem. 2019, 293, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for significance testing of PLS and OPLS 1 models. J. Chem. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 2008, 99, 5261–5269. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- Mantzouridou, F.T.; Mastralexi, A.; Filippidou, M.; Tsimidou, M.Z. Challenges in the Processing Line of Spanish Style cv. Chalkidiki Green Table Olives Spontaneously Fermented in Reduced NaCl Content Brines. Eur. J. Lipid Sci. Technol. 2020, 122, 1900453. [Google Scholar] [CrossRef]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front. Microbiol. 2019, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Gallego, J.; Arroyo-Lopez, F.N.; Gil, V.R.; Gómez, F.R.; Garcia, P.G.; Fernández, A.G. Chloride salt mixtures affect Gordal cv. green Spanish-style table olive fermentation. Food Microbiol. 2011, 28, 1316–1325. [Google Scholar] [CrossRef]
- Moreno-Baquero, J.; Bautista-Gallego, J.; Garrido-Fernández, A.; López-López, A. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures. Food Chem. 2013, 138, 1–8. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Arroyo-Lopez, F.N.; Romero-Gil, V.; Rodríguez-Gómez, F.; García-García, P.; Garrido-Fernandez, A. Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine. Food Microbiol. 2015, 49, 56–64. [Google Scholar] [CrossRef]
- Mateus, T.; Santo, D.; Saúde, C.; Pires-Cabral, P.; Quintas, C. The effect of NaCl reduction in the microbiological quality of cracked green table olives of the Maçanilha Algarvia cultivar. Int. J. Food Microbiol. 2016, 218, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Saúde, C.; Barros, T.; Mateus, T.; Quintas, C.; Pires-Cabral, P. Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar. Food Biosci. 2017, 19, 73–79. [Google Scholar] [CrossRef]
- Boskou, D.; Camposeo, S.; Clodoveo, M.L. Table Olives as Sources of Bioactive Compounds. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 217–259. [Google Scholar]
- Puerto, D.A.; Gila, D.M.M.; García, J.G.; Ortega, J.G. Sorting olive batches for the milling process using image processing. Sensors 2015, 15, 15738–15754. [Google Scholar] [CrossRef] [Green Version]
- Ponce, J.M.; Aquino, A.; Andújar, J.M. Olive-fruit variety classification by means of image processing and convolutional neural networks. IEEE Access 2019, 7, 147629–147641. [Google Scholar] [CrossRef]
- Ponce, J.M.; Aquino, A.; Millán, B.; Andújar, J.M. Automatic counting and individual size and mass estimation of olive-fruits through computer vision techniques. IEEE Access 2019, 7, 59451–59465. [Google Scholar] [CrossRef]
- Ponce, J.M.; Aquino, A.; Millán, B.; Andújar, J.M. Olive-fruit mass and size estimation using image analysis and feature modeling. Sensors 2018, 18, 2930. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.; Gil, L.; Serrano, C.; Blasco, M.; Moltó, E.; Blasco, J. Comparison of three algorithms in the classification of table olives by means of computer vision. J. Food Eng. 2004, 61, 101–107. [Google Scholar] [CrossRef]
- Hassan, N.M.H.; Nashat, A.A. New effective techniques for automatic detection and classification of external olive fruits defects based on image processing techniques. Multidim. Syst. Sign. Process. 2019, 30, 571–589. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process. Eng. 2021, 44, 13694. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Pan, L.; Abbas, A.; Jiang, Y.; Wang, X. Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging. Postharvest Biol. Technol. 2021, 171, 111320. [Google Scholar] [CrossRef]
- Beteinakis, S.; Papachristodoulou, A.; Gogou, G.; Katsikis, S.; Mikros, E.; Halabalaki, M. NMR-based metabolic profiling of edible olives—Determination of quality parameters. Molecules 2020, 25, 3339. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lai, G.; Lin, J.; Xia, F.; Ding, Z.; Feng, J.; Xu, J.; Shen, G. Rapid detection of adulteration in extra virgin olive oil by Low-Field Nuclear Magnetic Resonance combined with pattern recognition. Food Anal. Methods 2021, 14, 1322–1335. [Google Scholar] [CrossRef]
- Tang, F.; Green, H.S.; Wang, S.C.; Hatzakis, E. Analysis and authentication of avocado oil using High Resolution NMR Spectroscopy. Molecules 2021, 26, 310. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Martínez, E.; Florentino-Ramos, E.; Pérez-Hernández, N.; Zepeda-Vallejo, L.G.; Villa-Ruano, N.; Velázquez-Ponce, M.; García-Mendoza, F.; Bañuelos-Hernández, A.E. 1H NMR-based metabolomic fingerprinting to determine metabolite levels in serrano peppers (Capsicum annum L.) grown in two different regions. Food Res. Internat. 2017, 102, 163–170. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.K.; Lee, K.J.; Park, S.K.; Lee, J.H.; Son, N.Y.; Jin, Y.I.; Kim, S.H. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis. Food Chem. 2018, 240, 840–849. [Google Scholar] [CrossRef]
Table Olive Variety | Average Weight of Stones (mg) Mean ± SD | Average Weight of Olive Fruits (mg) Mean ± SD | Quantity of Olive Flesh per Olive Fruit (mg) Mean ± SD | Percentage of Flesh (%) Mean ± SD | Percentage of Olive Stone Occupancy (%) Mean ± SD |
---|---|---|---|---|---|
Kalamata Olive (KO) | 489 ± 6 | 4960 ± 11 | 4471 ± 7.5 | 90.2 ± 13 | 9.8 ± 2 |
Prasines Chalkidikis (PΧ) | 1050 ± 12.6 | 9710 ± 20.7 | 8660 ± 45 | 89.2 ± 24 | 10.8 ± 4 |
Konservolia Stylidas (KS) | 621 ± 5 | 5940 ± 9.5 | 5319 ± 12 | 89.6 ± 5.5 | 10.4 ± 3.5 |
Konservolia Amfissis (KA) | 691 ± 5 | 5950 ± 4.9 | 5259 ± 9.6 | 88.4 ± 9 | 11.6 ± 1.9 |
Throuba Thassos (TT) | 629 ± 5.4 | 4520 ± 7.8 | 3891 ± 9 | 86.1 ± 7 | 13.9 ± 3 |
Throuba Chios (TC) | 614 ± 9 | 3030 ± 8.3 | 2416 ± 10 | 79.7 ± 10 | 20.3 ± 6 |
Table Olive Variety | Shape | Profile Symmetry | Front Symmetry | Basis | Apex | Mucro | MTW a | Surface | NFF b | DFF c |
---|---|---|---|---|---|---|---|---|---|---|
Kalamata Olive (KO) | Elongated | Asymmetrical | Slightly asymmetrical | Pointed | Pointed | Without presence | Middle | Rugged | Weak to middle | Uniform or grouped |
Prasines Chalkidikis (PX) | Elongated | Slightly asymmetrical | Symmetrical | Pointed | Rounded | Presence | Middle | Rugged | Middle | Uniform |
Konservolia Stylidas (KS) | Ovoid | Slightly asymmetrical | Symmetrical | Pointed | Pointed | Presence | Middle | Rough | Middle | Uniform or grouped |
Konservolia Amfissis (KA) | Elliptic | Slightly asymmetrical | Symmetrical | Rounded | Pointed | Presence | Middle | Rough | Middle | Uniform or grouped |
Throuba Thassos (TT) | Elongated | Very asymmetrical | Symmetrical to slightly asymmetrical | Pointed | Pointed | Presence | Middle | Smooth to rough | Middle | Uniform |
Throuba Chios (TC) | Elliptic | Very asymmetrical | Symmetrical | Pointed or rounded | Rounded | Presence | Middle | Rough | Middle | Uniform |
Members | Correct | KO | PX | KS | KA | TT | TC | |
---|---|---|---|---|---|---|---|---|
KO | 10 | 100% | 10 | 0 | 0 | 0 | 0 | 0 |
PX | 10 | 90% | 0 | 9 | 1 | 0 | 0 | 0 |
KS | 10 | 100% | 0 | 0 | 10 | 0 | 0 | 0 |
KA | 10 | 100% | 0 | 0 | 0 | 10 | 0 | 0 |
TT | 10 | 100% | 0 | 0 | 0 | 0 | 10 | 0 |
TC | 10 | 100% | 0 | 0 | 0 | 0 | 0 | 10 |
No class | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Total | 60 | 98.33% | ||||||
Fisher’s prob. | 1.1 × 10−39 |
OPLS-DA | SS 1 | DF 2 | MS 3 | F 4 | p 5 | SD 6 |
---|---|---|---|---|---|---|
Total corr. | 295 | 295 | 1 | 1 | ||
Regression | 252.2 | 70 | 3.6 | 18.9 | 0 | 1.9 |
Residual | 42.7 | 225 | 0.19 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agriopoulou, S.; Tarapoulouzi, M.; Bedine Boat, M.A.; Rébufa, C.; Dupuy, N.; Theocharis, C.R.; Varzakas, T.; Roussos, S.; Artaud, J. Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones. Foods 2021, 10, 1829. https://doi.org/10.3390/foods10081829
Agriopoulou S, Tarapoulouzi M, Bedine Boat MA, Rébufa C, Dupuy N, Theocharis CR, Varzakas T, Roussos S, Artaud J. Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones. Foods. 2021; 10(8):1829. https://doi.org/10.3390/foods10081829
Chicago/Turabian StyleAgriopoulou, Sofia, Maria Tarapoulouzi, Marie Ampères Bedine Boat, Catherine Rébufa, Nathalie Dupuy, Charis R. Theocharis, Theodoros Varzakas, Sevastianos Roussos, and Jacques Artaud. 2021. "Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones" Foods 10, no. 8: 1829. https://doi.org/10.3390/foods10081829
APA StyleAgriopoulou, S., Tarapoulouzi, M., Bedine Boat, M. A., Rébufa, C., Dupuy, N., Theocharis, C. R., Varzakas, T., Roussos, S., & Artaud, J. (2021). Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones. Foods, 10(8), 1829. https://doi.org/10.3390/foods10081829