Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Low-Fat Beef Burgers
2.3. Product Quality Analysis
2.3.1. Cooking Loss
2.3.2. Water-Holding Capacity (WHC)
2.3.3. Shrinkage
2.3.4. Color Analysis
2.3.5. Texture Profile Analysis (TPA)
2.3.6. Oxidative Stability
2.3.7. pH Values
2.3.8. Statistical Analysis
3. Results
3.1. Technological Properties
3.2. Textural Properties
3.3. Lipid Oxidation and pH during Refrigerator Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in the development of dietary fiber-rich meat products- a critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela-Melendres, M.; Camou, J.; Olivera, N.T.; Almora, E.Á.; Mendoza, D.G.; Reyes, L.A.; Ríos, H.G. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste. Meat Sci. 2014, 97, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Gómez, M.; Lorenzo, J.M. Effect of fat level on physicochemical, volatile compounds and sensory characteristics of dry-ripened “chorizo” from Celta pig breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef]
- Hautrive, T.P.; Piccolo, J.; Rodrigues, Â.S.; Campagnol, P.C.B.; Kubota, E.H. Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT Food Sci. Technol. 2019, 102, 403–410. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Hesami, G.; Darvishi, S.; Zarei, M.; Hadidi, M. Fabrication of chitosan nanoparticles incorporated with Pistacia atlantica subsp. kurdica hulls’ essential oil as a potential antifungal preservative against strawberry grey mould. Int. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Hadidi, M.; Motamedzadegan, A.; Jelyani, A.Z.; Khashadeh, S. Nanoencapsulation of hyssop essential oil in chitosan-pea protein isolate nano-complex. LWT Food Sci Technol. 2021, 144, 111254. [Google Scholar] [CrossRef]
- Wang, J.; Shi, D.; Bai, Y.; Ouyang, B.; Liu, Y. Effects of chitosan treatment on the texture parameters of okra fruit (Abelmoschus esculentus L. Moench). Qual. Assur. Saf. Crop. Foods 2020, 12, 66–75. [Google Scholar] [CrossRef]
- do Amaral, D.S.; Cardelle-Cobas, A.; do Nascimento, B.M.S.; Monteiro, M.J.; Madruga, M.S.; Pintado, M.M.E. Development of a low fat fresh pork sausage based on chitosan with health claims: Impact on the quality, functionality and shelf-life. Food Funct. 2015, 6, 2768–2778. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.S.; de Lopes, A.S.; do da Nascimento, M.S.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Sci. 2020, 167, 108165. [Google Scholar] [CrossRef]
- Kim, K.W.; Thomas, R.L. Antioxidative activity of chitosans with varying molecular weights. Food Chem. 2007, 101, 308–313. [Google Scholar] [CrossRef]
- Akwetey, W.Y.; Knipe, C.L. Sensory attributes and texture profile of beef burgers with gari. Meat Sci. 2012, 92, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, N.; Zeynali, F.; Alizadeh, M. Optimization of low-fat meat hamburger formulation containing quince seed gum using response surface methodology. J. Food Sci. Technol. 2018, 55, 598–604. [Google Scholar] [CrossRef]
- Piñero, M.P.; Parra, K.; Huerta-Leidenz, N.; Arenas de Moreno, L.; Ferrer, M.; Araujo, S.; Barboza, Y. Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Sci. 2008, 80, 675–680. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods of Analysis of AOAC International. AOAC 2005. Available online: https://www.aoac.org/official-methods-of-analysis-18th-edition-2005/ (accessed on 16 July 2021).
- Jo, C.; Lee, J.W.; Lee, K.H.; Byun, M.W. Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci. 2001, 59, 369–375. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Sayas-Barberá, E.; Quesada, J.; Sánchez-Zapata, E.; Viuda-Martos, M.; Fernández-López, F.; Pérez-Alvarez, J.A.; Sendra, E. Effect of the molecular weight and concentration of chitosan in pork model burgers. Meat Sci. 2011, 88, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Majzoobi, M.; Talebanfar, S.; Eskandari, M.H.; Farahnaky, A. Improving the quality of meat-free sausages using κ-carrageenan, konjac mannan and xanthan gum. Int. J. Food Sci. Technol. 2017, 52, 1269–1275. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, J.; Cava, R.; Puolanne, E. Characterisation of a traditional Finnish liver sausage and different types of Spanish liver pâtés: A comparative study. Meat Sci. 2005, 71, 657–669. [Google Scholar] [CrossRef]
- Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 26, 1921–1971. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Ibarz, A. Modified mung bean protein: Optimization of microwave-assisted phosphorylation and its functional and structural characterizations. LWT Food Sci. Technol. 2021, 151, 112119. [Google Scholar] [CrossRef]
- de Oliveira Ferreira, N.S.; Rosset, M.; Lima, G.; Stuelp Campelo, P.M.; de Macedo, R.E.F. Effect of adding Brosimum gaudichaudii and Pyrostegia venusta hydroalcoholic extracts on the oxidative stability of beef burgers. LWT Food Sci. Technol. 2019, 108, 145–152. [Google Scholar] [CrossRef]
- Minelli, G.; Fiego, D.P.L.; Macchioni, P.; Fava, P. Effect of different illumination sources on colour and oxidative stability of seasoned coppa di parma pgi. Ital. J. Food Sci. 2020, 32, 181–194. [Google Scholar] [CrossRef]
- Turhan, S.; Sagir, I.; Sule Ustun, N. Utilization of hazelnut pellicle in low-fat beef burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alfaia, C.M.M.; Alves, S.P.; Dentinho, M.T.P.; Prates, J.A.M.; Vasta, V.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary grape seed extract and Cistus ladanifer L. in combination with vegetable oil supplementation on lamb meat quality. Meat Sci. 2012, 92, 841–847. [Google Scholar] [CrossRef]
- Hadidi, M.; Pourya, I.A.; Zarei Jelyani, A.; Hasiri, Z.; Rouhafza, A.; Ibarz, A.; Baradaran Khaksar, F.; Tajbakhsh Tabrizi, S. Polysaccharides from pineapple core as a canning by-product: Extraction optimization, chemical structure, antioxidant and functional properties. Int. J. Biol. Macromol. 2020, 163, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, J.M.; Pateiro, M. Influence of fat content on Physico-chemical and oxidative stability of foal liver pâté. Meat Sci. 2013, 95, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Temperán, S.; Bermúdez, R.; Purriños, L.; Franco, D. Effect of fat level on physicochemical and sensory properties of dry-cured duck sausages. Poult. Sci. 2011, 90, 1334–1339. [Google Scholar] [CrossRef]
- Fonseca, S.; Gómez, M.; Domínguez, R.; Lorenzo, J.M. Physicochemical and sensory properties of Celta dry-ripened “salchichón” as affected by fat content. Grasas Aceites 2015, 66, e059. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Franco, D. Fat effect on physicochemical, microbial and textural changes through the manufactured of dry-cured foal sausage Lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.; Rodrigues, S.; Pereira, E.; Paulos, K.; Oliveira, A.F.; Lorenzo, J.M.; Teixeira, A. Physicochemical properties, fatty acid profile and sensory characteristics of sheep and goat meat sausages manufactured with different pork fat levels. Meat Sci. 2015, 105, 114–120. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Rostami, H.; Yousefi, S. Formulation Design and Physicochemical Stability Characterization of Nanoemulsions of Nettle (Urtica dioica) Essential Oil Using a Model-Based Methodology. J. Food Process. Preserv. 2015, 39, 2947–2958. [Google Scholar] [CrossRef]
- Jeyakumari, A.; George, N.i.n.a.n.; Joshy, C.G.; Parvathy, U.; Zynudheen, A.A.; Lalitha, K.V. Effect of chitosan on shelf life of restructured fish products from pangasius (pangasianodon hypophthalmus) surimi during chilled storage. J. Food Sci. Technol. 2016, 53, 2099–2107. [Google Scholar] [CrossRef] [Green Version]
Sample | LMWCH (%) | Fat (%) |
---|---|---|
Control | 0 | 10 |
0 | 0 | 4 |
0.5 | 0.5 | 4 |
1 | 1 | 4 |
2 | 2 | 4 |
Sample | Cooking Loss (%) | WHC (%) | Shrinkage (%) | Color | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
Control | 24.9 ± 2.9 b | 33.6 ± 3.4 cd | 14.4 ± 0.8 a | 35.4 ± 3.5 c | 4.8 ± 0.5 c | 11.1 ± 0.8 d |
0 | 27.6 ± 1.5 a | 32.9 ± 1.3 d | 13.5 ± 1.2 b | 33.1 ± 4.2 d | 4.9 ± 0.3 c | 12.6 ± 0.5 c |
0.5 | 21.2 ± 1.8 c | 34.2 ± 2.7 c | 13.1 ± 0.9 b | 35.5 ± 1.6 c | 5.6 ± 0.7 bc | 13.9 ± 0.7 b |
1 | 18.3 ± 2.3 d | 37.5 ± 4.1 b | 10.7 ± 1.5 c | 36.6 ± 3.8 b | 6.1 ± 0.3 b | 14.5 ± 1.1 ab |
2 | 17.1 ± 2.5 e | 40.1 ± 3.5 a | 9.8 ± 0.6 c | 37.9 ± 1.5 a | 7.6 ± 0.4 a | 15.2 ± 0.4 a |
Sample | Hardness (N) | Cohesiveness | Springiness | Gumminess | Chewiness (cm/N) |
---|---|---|---|---|---|
Control | 124.0 ± 6.8 e | 0.59 ± 0.05 a | 5.95 ± 0.2 d | 59.3 ± 3.4 d | 450.5 ± 24.9 b |
0 | 136.3 ± 5.4 d | 0.51 ± 0.03 b | 6.26 ± 0.4 cd | 63.7 ± 1.9 c | 463.2 ± 10.6 a |
0.5 | 139.5 ± 6.0 c | 0.45 ± 0.01 c | 6.49 ± 0.6 c | 66.8 ± 4.5 b | 463.8 ± 28.2 a |
1 | 143.4 ± 4.5 b | 0.44 ± 0.03 c | 6.95 ± 0.4 b | 67.1 ± 2.2 ab | 461.3 ± 17.5 a |
2 | 147.9 ± 3.7 a | 0.40 ± 0.01 d | 7.74 ± 0.9 a | 68.2 ± 1.7 a | 462.1 ± 21.8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoli, P.I.; Hadidi, M.; Hasiri, Z.; Rouhafza, A.; Jelyani, A.Z.; Hadian, Z.; Khaneghah, A.M.; Lorenzo, J.M. Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods 2021, 10, 1959. https://doi.org/10.3390/foods10081959
Amoli PI, Hadidi M, Hasiri Z, Rouhafza A, Jelyani AZ, Hadian Z, Khaneghah AM, Lorenzo JM. Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods. 2021; 10(8):1959. https://doi.org/10.3390/foods10081959
Chicago/Turabian StyleAmoli, Pourya Izadi, Milad Hadidi, Zahra Hasiri, Arman Rouhafza, Aniseh Zarei Jelyani, Zahra Hadian, Amin Mousavi Khaneghah, and José M. Lorenzo. 2021. "Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability" Foods 10, no. 8: 1959. https://doi.org/10.3390/foods10081959
APA StyleAmoli, P. I., Hadidi, M., Hasiri, Z., Rouhafza, A., Jelyani, A. Z., Hadian, Z., Khaneghah, A. M., & Lorenzo, J. M. (2021). Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods, 10(8), 1959. https://doi.org/10.3390/foods10081959