Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Meteorological Data
2.4. Hop Quality Traits
2.4.1. Molecular Fingerprinting Analysis and Evaluation of Terroir Effect
2.4.2. Chemical Analysis and Total Bitter Acid Content
2.4.3. Determination of Individual Bitter Acids by HPLC
2.4.4. Total Oil Content
2.4.5. Gas Chromatography-Olfactometry (GC-O) Analysis of HEO
2.5. Brewing Trials
2.6. Beer Quality Traits
2.6.1. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.6.2. GC-O Analysis
2.6.3. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Preliminary Evaluation of the Impact of Growing Area on Hop Samples by Means of Vibrational Spectroscopy
3.2. Brewing Trials: Evaluation of Growing Area on Hop Quality Traits
3.3. Brewing Trials: Evaluation of Hop Growing Area on Beer Quality Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sjölander-Lindqvist, A.; Skoglund, W.; Laven, D. Craft beer-building social terroir through connecting people, place and business. J. Place Manag. Dev. 2019, 13, 149–162. [Google Scholar] [CrossRef]
- Pyzhikova, N.; Smirnova, T.; Chepeleva, K.; Shmeleva, Z. The Brand as a Tool for Agricultural Products Promotion in the Region. In Ecological-Socio-Economic Systems: Models of Competition and Cooperation (ESES 2019); Atlantis Press: Paris, France, 2020; pp. 178–184. [Google Scholar]
- Licciardo, F.; Carbone, K.; Ievoli, C.; Manzo, A.; Tarangioli, S. Outlook Economico-Statistico del Comparto Luppolo; CREA: Rome, Italy, 2021; ISBN 9788833851228.
- Assirelli, A.; Carbone, K.; Ciccoritti, R. Mechanical Hop-Picking Solutions in Italian Cultivated Areas. Sustainability 2020, 12, 5006. [Google Scholar] [CrossRef]
- Forster, A.; Gahr, A. A comparison of the analytical and brewing characteristics of Cascade and Comet hop varieties as grown in Yakima (USA) and Hallertau (Germany). Brew. Sci. 2014, 67, 137–148. [Google Scholar]
- Rodolfi, M.; Chiancone, B.; Liberatore, C.M.; Fabbri, A.; Cirlini, M.; Ganino, T. Changes in chemical profile of Cascade hop cones according to the growing area. J. Sci. Food Agric. 2019, 99, 6011–6019. [Google Scholar] [CrossRef]
- Verhoeven, E.; Coleman, L.; Weaver, G.; Townsend, S.; Gallagher, A.; Shellhammer, T.H. First steps toward understanding the regional identity of hops grown in the Willamette Valley, Oregon. Tech. Quart. Master. Brew. Assoc. Am. 2019, 56, 141–148. [Google Scholar] [CrossRef]
- Van Holle, A.; Van Landschoot, A.; Roldán-Ruiz, I.; Naudts, D.; De Keukeleire, D. The brewing value of Amarillo hops (Humulus lupulus L.) grown in northwestern USA: A preliminary study of terroir significance. J. Inst. Brew. 2017, 123, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Forteschi, M.; Porcu, M.C.G.; Fanari, M.; Zinellu, M.; Secchi, N.; Buiatti, S.; Passaghe, P.; Bertoli, S.; Pretti, L. Quality assessment of Cascade Hop (Humulus lupulus L.) grown in Sardinia. Eur. Food Res. Technol. 2019, 245, 863–871. [Google Scholar] [CrossRef]
- Macchioni, V.; Carbone, K.; Cataldo, A.; Fraschini, R.; Bellucci, S. Lactic acid-based deep natural eutectic solvents for the extraction of bioactive metabolites of Humulus lupulus L.: Supramolecular organization, phytochemical profiling and biological activity. Sep. Purif. Technol. 2020, 264, 118039. [Google Scholar] [CrossRef]
- European Brewery Convention. Analytica EBC. EBC Section 7, Method 7.2 Moisture Content of Hops and Hop Products; EBC: Brussels, Belgium, 2012. [Google Scholar]
- American Society of Brewing Chemists (ASBC). Methods of Analysis, Online. Hops–6A Alpha and Beta Acids by Spec-Trophotometry, -12 Hop Storage Index, -13 α-Acids and β-Acids in Hops and Hop Extracts by HPLC (International Methods), 9th ed.; The Society: St. Paul, MN, USA, 2012. [Google Scholar]
- Carbone, K.; Macchioni, V.; Petrella, G.; Cicero, D.O. Exploring the potential of microwaves and ultrasounds in the green extraction of bioactive compounds from Humulus lupulus for the food and pharmaceutical industry. Ind. Crop. Prod. 2020, 156, 112888. [Google Scholar] [CrossRef]
- Paolo, D.; Bianchi, G.; Morelli, C.F.; Speranza, G.; Campanelli, G.; Kidmose, U.; Scalzo, R.L. Impact of drying techniques, seasonal variation and organic growing on flavor compounds profiles in two Italian tomato varieties. Food Chem. 2019, 298, 125062. [Google Scholar] [CrossRef] [Green Version]
- Ennis, J.; Rousseau, B. Reducing Costs with Tetrad Testing; IFPress: Richmond, VA, USA, 2012; Volume 15, pp. 3–4. [Google Scholar]
- Cravero, M.C.; Bonello, E.; Tsolakis, C.; Piano, E.; Borsa, D. Comparison between Nero d’Avola wines produced with grapes grown in Sicily and Tuscany. Ital. J. Food Sci. 2012, 24, 385–387. [Google Scholar]
- Guaita, M.; Motta, S.; Bonello, F.; Marulli, C.; Petrozziello, M.; Cravero, M.C.; Bosso, A. Effect of the Closure Type on the Evolution of the Physical-Chemical and Sensory Characteristics of a Montepulciano d’AbruzzoRoséWine. J. Food Sci. 2013, 78, C160–C169. [Google Scholar] [CrossRef]
- Schmelzle, A. The beer aroma wheel. Updating beer flavor terminology according to sensory standards. Brew. Sci. 2009, 62, 26–32. [Google Scholar]
- Campo, E.; Do, B.; Ferreira, V.; Valentin, D. Aroma properties of young Spanish monovarietal white wines: A study using sorting task, list of terms and frequency of citation. Aust. J. Grape Wine Res. 2008, 14, 104–115. [Google Scholar] [CrossRef]
- Wirth, J.; Caillé, S.; Souquet, J.; Samson, A.; Dieval, J.; Vidal, S.; Fulcrand, H.; Cheynier, V. Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rosé wines. Food Chem. 2012, 132, 1861–1871. [Google Scholar] [CrossRef]
- Vermeulen, P.; Pierna, J.A.F.; Abbas, O.; Dardenne, P.; Baeten, V. Authentication and Traceability of Agricultural and Food Products Using Vibrational Spectroscopy. In Food Traceability and Authenticity; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Paliotta, M.; Ciccoritti, R.; Iadecola, R.; Amoriello, T.; Carbone, K. Classification of international hop genotypes by near infrared spectroscopy. In Proceedings of the VIII Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; pp. 72–74. [Google Scholar]
- Flores-Valdez, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods 2020, 9, 851. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, F.-D.; Huang, A.-M.; Zhou, Q. Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung 2016, 70, 503–510. [Google Scholar] [CrossRef]
- Killeen, D.P.; Andersen, D.H.; Beatson, R.A.; Gordon, K.C.; Perry, N.B. Vibrational Spectroscopy and Chemometrics for Rapid, Quantitative Analysis of Bitter Acids in Hops (Humulus lupulus). J. Agric. Food Chem. 2014, 62, 12521–12528. [Google Scholar] [CrossRef]
- Nickerson, G.B.; Williams, P.A.; Haunold, A. Varietal Differences in the Proportions of Cohumulone, Adhumulone, and Humulone in Hops. J. Am. Soc. Brew. Chem. 1986, 44, 91–94. [Google Scholar] [CrossRef]
- Leffingwell, D.; Leffingwell, J.C. Odor Detection Thresholds of GRAS Flavor Chemicals. 2004. Available online: http://www.leffingwell.com/odorthre.htm (accessed on 20 August 2021).
- Mozny, M.; Tolasz, R.; Nekovar, J.; Sparks, T.; Trnka, M.; Zalud, Z. The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric. For. Meteorol. 2009, 149, 913–919. [Google Scholar] [CrossRef]
- Potopová, V.; Lhotka, O.; Možný, M.; Musiolková, M. Vulnerability of hop-yields due to compound drought and heat events over European key-hop regions. Int. J. Clim. 2020, 41, E2136–E2158. [Google Scholar] [CrossRef]
- Parisse, B.; Pontrandolfi, A.; Epifani, C.; Alilla, R.; De Natale, F. An agrometeorological analysis of weather extremes supporting decisions for the agricultural policies in Italy. Ital. J. Agrometeorol. 2020, 1, 15–30. [Google Scholar] [CrossRef]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Arn, H.; Acree, T. Flavornet: A database of aroma compounds based on odor potency in natural products. Dev. Food Sci. 1998, 40, 27–28. [Google Scholar]
Farm Code | Geographical Coordinates | Region | Hop Variety | Sample Code | α-Acids (% w/w) | β-Acids (% w/w) | Cohumulone Ratio (% rel) 1 | HIS 2 | Total Oil Content (mL 100 g−1) | TPC (mg GAE g−1) 3 |
---|---|---|---|---|---|---|---|---|---|---|
F1 | 41°63′46″ N-12°87′18″ E | Latium | Cascade | CAS_L | 5.23 ± 0.01 a | 6.34 ± 0.02 a | 18.28 ± 0.01 a | 0.30 a | 1.50 ± 0.05 b | 60.6 ± 0.1 a |
F2 | 43°35′18″ N-10.31′19″ E | Tuscany | Cascade | CAS_T | 7.19 ± 0.01 b | 7.33 ± 0.01 b | 19.45 ± 0.01 a | 0.28 a | 0.90 ± 0.04 a | 66.6 ± 0.6 b |
Hop Origin | Tuscany | Latium | ||||
---|---|---|---|---|---|---|
OE 1 | KI 2 | Descriptor | Area | Imax | Area | Imax |
1 | 778 | Alcohol, pungent | 616 | 1 | 698 | 1 |
2 | 780 | Herbaceous, floral | 1653 a | 1 | 0 b | - |
3 | 840 | Green, plastic | 2706 a | 2 | 0 b | - |
4 | 883 | Floral | 2872 | 1 | 547 | 1 |
5 | 905 | Beer | 13,657 | 2 | 9825 | 2 |
6 | 921 | Earth, vegetable | 3281 | 2 | 0 | - |
7 | 928 | Sulfur, herbaceous | 7250 | 2 | 2969 | 1 |
8 | 963 | Acid, rancid | 5893 | 2 | 4802 | 2 |
9 | 980 | Floral, resinous | 12,628 a | 3 | 0 b | - |
10 | 992 | Resinous, beer | 27,462 | 3 | 14,549 | 2 |
11 | 1122 | Pungent, terpene | 5241 | 2 | 6259 | 1 |
12 | 1126 | Floral, rose | 10,422 | 2 | 9500 | 2 |
13 | 1211 | Floral, terpene | 1338 | 1 | 1089 | 1 |
14 | 1228 | Floral | 1633 | 1 | 1813 | 1 |
15 | 1248 | Floral, geranium | 4024 | 2 | 1596 | 1 |
16 | 1278 | Sweet, fat, floral | 5988 | 2 | 6540 | 1 |
17 | 1377 | Floral | 0 | - | 1892 | 1 |
18 | 1402 | Vegetable, resinous | 0 | - | 3559 | 1 |
19 | 1490 | Spicy, resinous | 0 | - | 2957 | 1 |
KI 1 | MW 2 | Compound | Main Fragments 3 | Au 4 CAS_L | Au 4 CAS_T | ||
---|---|---|---|---|---|---|---|
AV | ST DEV | AV | STD DEV | ||||
780 | 100 | Hexanal | 56(100), 44(100), 41(90), 57(90),42(50), 72(35) | 2.0 | 0.1 | 3.5 | 0.1 |
853 | 98 | (E)-2-Hexenal | 41(100), 55(90), 69(90), 83(80), 98(30) | 1.5 | 0.1 | 3.8 | 0.9 |
939 | 136 | α-Pinene | 93(100), 77(30), 12(20), 105(20), 136(20) | 0 | 0 | 2.4 | 3.3 |
980 | 136 | β-Pinene | 93(100), 69(25), 41(25), 79(25), 121(20), 136(15) | 38.6 | 9.4 | 112.9 | 6.3 |
990 | 136 | β-Myrcene | 93(100), 69(50), 41(50), 79(15), 53(15), 136(10) | 1287.8 | 67.2 | 2127.9 | 71.1 |
1032 | 158 | Amyl isobutyrate | 43 (100), 70 (80) 71 (70) 55 (30) 89 (20) | 4.2 | 0.5 | 10.9 | 0.6 |
1036 | 136 | Limonene | 93(100), 68(50), 77(40), 136(30), 121(20) | 24.7 | 3.0 | 54.6 | 1.6 |
1040 | 136 | β-Ocymene | 93(100), 91(50), 79(40), 78(35), 77(30), 136(10) | 6.1 | 1.0 | 6.1 | 0.2 |
1085 | 154 | Linalool | 71(100), 93(85), 41(50), 55(45), 80(40), 121(35) | 53.3 | 7.3 | 91.8 | 1.1 |
1217 | 152 | Methyl salicylate | 120(100), 92(60), 152(50), 121(30), 65(15) | 10.9 | 1.7 | 13.7 | 0.2 |
1224 | 172 | Methyl nonanoate | 74(100), 87(50), 129(20), 141(20), 172 tr | 6.3 | 0.1 | 6.5 | 0.0 |
1250 | 154 | Geraniol | 69(100), 41(55), 93(10), 123(10), 154 tr | 7.7 | 0.6 | 22.4 | 0.2 |
1277 | 152 | (Z)-Citral (Neral) | 69(100), 41(70), 84(30), 94(25), 137(25), 152(10) | 10.4 | 2.2 | 11.9 | 0.2 |
1281 | 170 | 2-Undecanone | 58(100), 43(100), 71(90), 59(80), 85(10), 170 tr | 9.2 | 1.1 | 16.2 | 0.1 |
1291 | 184 | Methyl-(Z)-4-decenoate | 74(100), 110(75), 55(50), 67(55), 152(50) | 28.8 | 1.2 | 37.4 | 0.1 |
1300 | 182 | (E)-Methyl geraniate | 69(100), 41(40), 114(40), 123(30), 83(20), 182 tr | 12.8 | 1.1 | 43.3 | 0.5 |
1360 | 196 | Neryl acetate (Z-) | 69(100), 93(50), 41(50), 42(45), 80(20) | 6.7 | 0.3 | 8.5 | 0.1 |
1380 | 196 | Geranyl acetate (E-) | 69(100), 43(45), 93(40), 121(25), 136(20), 196 tr | 69.9 | 0.9 | 70.5 | 0.9 |
1411 | 204 | trans-Caryophyllene | 93(100), 133(100), 79(70), 69(65), 204(10) | 652.8 | 28.2 | 677.8 | 5.3 |
1437 | 204 | Germacrene D | 161(100), 105(45), 91(40), 119(30), 133(10), 204(10) | 27.0 | 1.8 | 31.2 | 0.3 |
1438 | 204 | α-Bergamotene | 119(100), 93(95), 41(30), 107(35), 79(30), 204 tr | 30.1 | 1.7 | 37.3 | 0.1 |
1445 | 204 | α-Humulene | 93(100), 80(30), 121(30), 147(25), 107(20), 204(10) | 1341.4 | 35.4 | 1510.4 | 11.6 |
1450 | 204 | α-Amorphene | 161(100), 119(50), 105(55), 91(45), 79(40), 204(30 | 73.2 | 4.0 | 83.9 | 1.1 |
1490 | 204 | β-Selinene | 105(100), 93(95), 79(80), 121(60), 161(60), 204 (65) | 96.3 | 4.8 | 114.9 | 0.7 |
1500 | 204 | α-Farnesene | 93(100),41(50), 69(50), 107(50), 79(45), 107(45), 204 (10) | 21.4 | 0.8 | 25.1 | 0.4 |
(a) | |||||||||||||||
Farm Code | Variable | 2016 | 2017 | Whole Period | |||||||||||
October | November | December | January | February | March | April | May | June | July | August | September | ||||
F1 | Temperature (°C) | T2N | 11.9 | 8.4 | 3.1 | 0.5 | 4.6 | 5.6 | 7.5 | 11.9 | 17.3 | 18.7 | 20.2 | 14.6 | 10.4 |
T2X | 19.4 | 14.8 | 12 | 8.2 | 12.8 | 15.4 | 16.9 | 22.2 | 27.8 | 29.7 | 31.7 | 21.9 | 19.4 | ||
T2ave | 15.6 | 11.6 | 7.5 | 4.3 | 8.7 | 10.5 | 12.2 | 17 | 22.5 | 24.2 | 25.9 | 18.2 | 14.9 | ||
Precipitation (mm) | TP | 156.4 | 126.3 | 21.1 | 64.1 | 73.5 | 49.9 | 53.9 | 17.5 | 8.2 | 14.2 | 2.2 | 166.2 | 754 | |
F2 | Temperature (°C) | T2N | 11.7 | 8.4 | 3.1 | 1.3 | 4.9 | 6.9 | 9 | 12.6 | 18.8 | 19.4 | 20.9 | 14.9 | 11.0 |
T2X | 19.4 | 14.9 | 12 | 8.3 | 12.9 | 16.6 | 18.1 | 22.2 | 27.5 | 28.9 | 31 | 22.5 | 19.5 | ||
T2ave | 15.6 | 11.6 | 7.5 | 4.8 | 8.9 | 11.7 | 13.6 | 17.4 | 23.1 | 24.2 | 26 | 18.7 | 15.3 | ||
Precipitation (mm) | TP | 140.1 | 162.1 | 16.1 | 46.7 | 100.6 | 50.1 | 39.1 | 34.2 | 35.4 | 9.9 | 6.8 | 123 | 764 | |
(b) | |||||||||||||||
Region | Variable | 2016 | 2017 | ||||||||||||
October | November | December | January | February | March | April | May | June | July | August | September | ||||
Latium | Temperature (°C) | T2N | 0.2 | 1.1 | −0.4 | −2.0 | 2.9 | 1.8 | 0.4 | 0.6 | 2.5 | 1.1 | 2.1 | −0.6 | |
T2X | −0.1 | 0.8 | 1.6 | −1.5 | 2.6 | 2.7 | 1.3 | 1.4 | 3.1 | 1.5 | 3.4 | −1.4 | |||
Precipitation (mm) | TP | 46.5 | −14.5 | −103.7 | −9.6 | −12.7 | −33.8 | −39.6 | −38.2 | −31.5 | −6.0 | −33.6 | 85.3 | ||
Tuscany | Temperature (°C) | T2N | 0.1 | 1.3 | 0.0 | −1.5 | 3.1 | 2.2 | 0.8 | 0.7 | 2.3 | 0.8 | 1.8 | −0.3 | |
T2X | −0.2 | 0.8 | 1.6 | −1.1 | 2.2 | 3.1 | 1.9 | 1.1 | 2.9 | 1.1 | 3.1 | −1.2 | |||
Precipitation (mm) | TP | 29.6 | 41.5 | −90.4 | −28.1 | 31.0 | −32.2 | −40.3 | −27.0 | −17.8 | −15.9 | −39.5 | 43.1 |
Hop Origin | Toscana | Lazio | ||||
---|---|---|---|---|---|---|
OE 1 | KI 2 | Descriptor | Area | Imax | Area | Imax |
1 | 596 | Chemical, fruity | 647 | 1 | 487 | 1 |
2 | 875 | Floral, vegetable | 364 a | 2 | 0 b | - |
3 | 903 | Chemical, fuel | 1053 a | 3 | 0 b | - |
4 | 980 | Sweet, fruit | 706 | 2 | 501 | 1 |
5 | 1012 | Acid, fermented | 652 a | 2 | 0 b | - |
6 | 1066 | Fermented, vegetable | 494 | 2 | 1186 | 1 |
7 | 1184 | Chemical, floral | 0 b | - | 590 a | 1 |
8 | 1190 | Floral | 1010 | 1 | 1040 | 2 |
9 | 1278 | Floral, spicy | 636 | 1 | 804 | 1 |
10 | 1342 | Floral, sweet | 0 b | - | 228 | 1 |
11 | 1402 | Herbaceous, hay | 528 | 1 | 554 | 1 |
12 | 1470 | Floral | 0 b | - | 187 a | 2 |
KI 1 | MW 2 | Compound | Main Fragments 3 | CAS_L (mg L−1) | CAS_T (mg L−1) | ||
---|---|---|---|---|---|---|---|
600 | 88 | Ethyl acetate | 45(100), 61(100), 70(80), 88(50) | 1.05 | 0.35 | 0.89 | 0.15 |
720 | 88 | 1-butanol 3-methyl | 55(100), 70(80), 57(25), 56(10), 88 tr | 5.16 | 1.33 | 3.79 | 0.70 |
896 | 130 | Ethyl pentanoate | 88(100), 85(95), 57(70), 60(40), 101(30) | 0.13 | 0.01 | 0.07 | 0.03 |
980 | 136 | Ethyl hexanoate | 88(100), 99(50), 60(40), 101(30), 73(25) | 2.89 | 0.71 | 4.49 | 0.84 |
992 | 144 | Beta-myrcene | 93(100), 69(80), 79(20), 107(5), 121(5), 136 tr | 1.76 | 0.78 | 2.92 | 0.30 |
1085 | 154 | Linalool | 71(100), 93(90), 55(60), 80(30), 121(20) | 0.08 | 0.04 | 0.12 | 0.04 |
1090 | 122 | Phenethyl ethanol | 91(100), 92(70), 122(30), 65(10), 77 tr | 3.19 | 0.76 | 2.60 | 0.87 |
1180 | 172 | Ethyl octanoate | 88(100), 101(40), 127(35), 57(20), 70(20) | 24.03 | 10.39 | 36.82 | 7.29 |
1212 | 146 | β-citronellol | 69(100), 55(50), 82(40), 95(35), 123(25) | 0.28 | 0.05 | 0.12 | 0.03 |
1239 | 164 | β-phenethyl acetate | 104(100), 91(20), 78(5), 65(5), 51 (5) | 0.16 | 0.11 | 0.37 | 0.06 |
1360 | 198 | Ethyl-9-decenoate | 55(100), 88(90), 69(70), 110(50), 101(45) | 0.92 | 0.39 | 2.19 | 0.42 |
1380 | 200 | Ethyl decanoate | 88(100), 101(50), 73(30), 55(25), 156(20) | 7.13 | 2.49 | 8.29 | 1.33 |
1425 | 204 | trans-Caryophyllene | 93(100), 133(100), 79(70), 69(65), 204(10) | 0.08 | 0.02 | 0.2 | 0.01 |
1455 | 204 | α-Humulene | 93(100), 80(30), 121(30), 147(25), 107(20), 204(10) | 0.30 | 0.07 | 0.74 | 0.06 |
1590 | 228 | Ethyl dodecanoate | 88(100), 101(50), 55(20), 73(20), 157(10) | 11.24 | 3.22 | 1.53 | 0.27 |
Compound (µg L−1) | Class of Compound | RT 1 | LRI (Literature) | CAS_L Beer (Average) | Mean Absolute Deviation | CAS_T Beer (Average) | Mean Absolute Deviation | Pr > F(Model) |
---|---|---|---|---|---|---|---|---|
Myrcene | I | 12.76 | 1174 | 21.3 | 2.4 | 37 | 11.1 | n.s. |
Isoamyl alcohol | A | 13.66 | 1206 | 4876.0 | 331.2 | 4007.5 | 788.8 | n.s. |
Ethylhexanoate | EE | 14.99 | 1232 | 63.4 | 54 | 116.2 | 21.5 | n.s. |
Ethylactate | EE | 18.78 | 1334 | 11.1 | 1.2 | 18.1 | 6.3 | n.s. |
Hexanol | A | 19.07 | 1360 | 99.1 a | 4.7 | 184.1 b | 15.4 | 0.034 |
3-ethoxypropanol | A | 20.00 | 1375 | 15.1 | 1.5 | 25.9 | 5.7 | n.s. |
cis-3-hexenol | A | 20.32 | 1390 | 30.9 | 1.1 | 65.8 | 13.9 | n.s. |
Ethyloctanoate | EE | 22.4 | 1436 | 523.3 | 93.8 | 543.9 | 73 | n.s. |
1-octen-3-ol | A | 22.86 | 1458 | 17.5 | 2.2 | 11 | 4.4 | n.s. |
2-acetylfuran | K | 25.41 | 1500 | 1.1 | 0.2 | 0.9 | 0 | n.s. |
Benzaldehyde | AL | 26.24 | 1529 | 1.9 | 0.2 | 1.7 | 0.3 | n.s. |
1.3-butanediol | A | 26.45 | 1558 | 49.3 | 6 | 65.1 | 16.7 | n.s. |
Linalool | I | 26.74 | 1555 | 127.5 a | 2.2 | 143.9 b | 1.2 | 0.024 |
Octanol | A | 28.97 | 1564 | 26.6 | 14.9 | 9.1 | 1.2 | n.s. |
β-caryophyllene | I | 29.03 | 1607 | 13.2 | 11.6 | 25.1 | 0.5 | n.s. |
Isobutyric acid | AC | 30.05 | 1568 | 16.5 | 1.8 | 21.6 | 4 | n.s. |
Gamma-butyrolactone | L | 30.45 | 1643 | 398.2 b | 77.7 | 24.5 a | 24.5 | 0.044 |
Ethyldecanoate | EE | 30.75 | 1645 | 390.7 | 79.8 | 236 | 19.7 | n.s. |
Acetophenone | K | 31.10 | 1660 | 13.4 | 5 | 2.5 | 2.5 | n.s. |
Phenylacetaldehyde | AL | 31.14 | 1663 | nd | Nd | 2.4 | 2.1 | n.s. |
Furfurilalcohol | A | 31.23 | 1678 | 10.3 | 1.8 | 14.7 | 2.6 | n.s. |
Isovaleric acid | AC | 31.59 | 1672 | 175.5 | 11.6 | 184.6 | 5.2 | n.s. |
Alpha umulene | I | 31.82 | 1665 | 87.5 | 16.2 | 61.5 | 10.5 | n.s. |
Methionol | A | 33.39 | 1727 | 5.1 | 0 | 17.2 | 6 | n.s. |
Citronellol | I | 35.00 | 1804 | 140.5 | 0.2 | 52.9 | 37.5 | n.s. |
2-phenylethyl acetate | E | 36.00 | 1815 | 145.2 | 11.9 | 105.3 | 21.5 | n.s. |
Ethyldodecanoate | EE | 36.65 | 1835 | 0 | 0 | 25.4 | 15.4 | n.s. |
β-damascenone | I | 37.70 | 1832 | 203.8 a | 0 | 495 b | 33 | 0.013 |
Hexanoic acid | A | 38.03 | 1855 | 2 b | 0.2 | 1.1 a | 0 | 0.037 |
3-ethylthiopropanol | A | 38.26 | 1802 | 13.9 b | 2.9 | 0 a | 0 | 0.040 |
Geraniol | I | 38.47 | 1861 | 0 a | 0 | 19.6 b | 4.3 | 0.045 |
Benzyl alcohol | A | 39.22 | 1874 | 17.4 | 1.4 | 15.2 | 1 | n.s. |
2-phenylethanol | A | 40.96 | 1922 | 15.1 b | 0 | 5.8 a | 0.2 | 0.000 |
2-methyl-2-pentenoic acid | AC | 41.75 | 1909 | 493.7 | 173.8 | 290.5 | 14.3 | n.s. |
Octanoic acid | AC | 45.58 | 2092 | 6411.5 | 768.9 | 2877.2 | 348.8 | n.s. |
Ethylcinnamate | EE | 47.65 | 2145 | 31.6 | 0.5 | 18.4 | 6.6 | n.s. |
Nonanoic acid | AC | 48.51 | 2168 | 109.7 | 6.9 | 50.4 | 17.4 | n.s. |
Eugenol | PH | 48.67 | 2169 | 2 | 2 | 7.7 | 0.2 | n.s. |
4-vinyl-2-methoxyphenol | PH | 49.63 | 2180 | 914.8 b | 15.2 | 393.2 a | 48.7 | 0.009 |
Decanoic acid | AC | 51.88 | 2269 | 2350.5 b | 64.6 | 808.3 a | 35.8 | 0.002 |
8-acetoxylinalol | I | 52.76 | 2362 | 299.4 b | 10.8 | 110.2 a | 15.2 | 0.010 |
9-decenoic acid | AC | 53.52 | 2369 | 493.9 | 75 | 204.2 | 33.6 | n.s. |
4-vinylphenol | PH | 55.29 | 2379 | 132.3 b | 13.2 | 63.6 a | 1.7 | 0.035 |
Lauric acid | AC | 57.68 | 2503 | 441.6 b | 6.2 | 186.1 a | 7.6 | 0.001 |
3-hydroxybeta damascone | I | 59.12 | 2559 | 12,827.5 b | 260.2 | 5879.5 a | 486.5 | 0.006 |
Phenylacetic acid | AC | 60.07 | 2582 | 57.4 b | 2.4 | 20 a | 1.5 | 0.006 |
Methylvanillate | E | 61.14 | 2600 | 14.3 | 4.6 | 4.5 | 1 | n.s. |
Acetovanillone | L | 62.24 | 2664 | 41.1 b | 5.4 | 15.2 a | 0.9 | 0.042 |
Myristic acid | AC | 63.77 | 2692 | 77.6 | 16.9 | 30.5 | 2.3 | n.s. |
Propiovanillone | L | 64.30 | 2719 | 50.1 b | 4.8 | 12.8 a | 0.7 | 0.016 |
Vanillin | B | 68.63 | 2601 | 4.6 | 1.6 | 2.0 | 0.7 | n.s. |
Cinnamic acid | AC | 70.80 | 2835 | 147.4 | 16.9 | 70.4 | 17.9 | n.s. |
Ethylvanillate | EE | 70.86 | 2658 | 65.3 | 4.9 | 34.1 | 13.1 | n.s. |
Palmitic acid | AC | 72.85 | 2886 | 513 | 112.6 | 120.8 | 20.6 | n.s. |
Oleic acid | AC | 74.76 | 3172 | 99.3 | 89.6 | 88.4 | 12.7 | n.s. |
Homovanillic acid | AC | 77.16 | 3099 | 62.6 | 12 | 18.1 | 2.2 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, K.; Bianchi, G.; Petrozziello, M.; Bonello, F.; Macchioni, V.; Parisse, B.; De Natale, F.; Alilla, R.; Cravero, M.C. Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers. Foods 2021, 10, 2085. https://doi.org/10.3390/foods10092085
Carbone K, Bianchi G, Petrozziello M, Bonello F, Macchioni V, Parisse B, De Natale F, Alilla R, Cravero MC. Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers. Foods. 2021; 10(9):2085. https://doi.org/10.3390/foods10092085
Chicago/Turabian StyleCarbone, Katya, Giulia Bianchi, Maurizio Petrozziello, Federica Bonello, Valentina Macchioni, Barbara Parisse, Flora De Natale, Roberta Alilla, and Maria Carla Cravero. 2021. "Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers" Foods 10, no. 9: 2085. https://doi.org/10.3390/foods10092085
APA StyleCarbone, K., Bianchi, G., Petrozziello, M., Bonello, F., Macchioni, V., Parisse, B., De Natale, F., Alilla, R., & Cravero, M. C. (2021). Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers. Foods, 10(9), 2085. https://doi.org/10.3390/foods10092085