Authentication of Geographical Origin in Hainan Partridge Tea (Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. C/N/O/H Stable Isotope Amount Ratio Analysis
2.3. Polyphenols and Alkaloids Analysis
2.3.1. Reagents and Instruments
2.3.2. Metabolite Extraction
2.3.3. LC-MS/MS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. C/N/O/H Stable Isotope Analysis
3.2. Targeted Metabolomics Fingerprinting Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Yu, C.; Li, M. Effects of geographical origin, variety, season and their interactions on minerals in tea for traceability. J. Food Compos. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Liao, R.; Zhao, J.; Yang, H.; Wang, F. Authentication of the geographical origin of Guizhou green tea using stable isotope and mineral element signatures combined with chemometric analysis. Food Control 2021, 125, 107954. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Yuan, Z.; Guo, G. Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations. Food Chem. 2021, 352, 129359. [Google Scholar] [CrossRef]
- Yan, W.P.; Li, J.L.; Zheng, D.; Friedman, C.; Wang, H.F. Analysis of genetic population structure and diversity in Mallotus oblongifolius using ISSR and SRAP markers. PeerJ 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Juanling, L. Research Progress of Aroma Components of Mallotus oblongifolius. Chin. J. Trop. Agric. 2018, 38, 71–76, 81. [Google Scholar]
- Pilgrim, T.S.; Watling, R.J.; Grice, K. Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples. Food Chem. 2010, 118, 921–926. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, Y.; Yan, J.; Huang, R.; Zhao, X.; Zheng, X.; Mo, M.; Tan, S.; Tong, H. C N H O and mineral element stable isotope ratio analysis for authentication in tea. J. Food Compos. Anal. 2020, 91, 103513. [Google Scholar] [CrossRef]
- Ni, K.; Wang, J.; Zhang, Q.; Yi, X.; Ma, L.; Shi, Y.; Ruan, J. Multi-element composition and isotopic signatures for the geographical origin discrimination of green tea in China: A case study of Xihu Longjing. J. Food Compos. Anal. 2018, 67, 104–109. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, Y.W.; Zhang, Y.Z.; Shi, Y.Z.; Hu, G.X.; Zhu, J.H.; Rogers, K.M. Geographical traceability of Chinese green tea using stable isotope and multi-element chemometrics. Rapid Commun. Mass Spectrom. 2019, 33, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Erasmus, S.W.; Dekker, P.; Guo, B.; Stoorvogel, J.J.; van Ruth, S.M. Linking growing conditions to stable isotope ratios and elemental compositions of Costa Rican bananas (Musa spp.). Food Res. Int. 2020, 129, 108882. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Bertoldi, D.; Tonon, A.; Ziller, L.; Camin, F.; Moreno-Rojas, J.M. Tracing the geographical origin of Spanish mango (Mangifera indica L.) using stable isotopes ratios and multi-element profiles. Food Control 2021, 125, 107961. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, J.-K.; Lee, J.-H.; An, M.-J.; Lee, K.-J.; Park, S.-K.; Kim, J.-U.; Kim, M.-J.; Kim, S.-H. C/N/O/S stable isotopic and chemometric analyses for determining the geographical origin of Panax ginseng cultivated in Korea. J. Ginseng Res. 2018, 42, 485–495. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, Q.; Zhang, X.; Bao, X.; Wang, Y.; Rasheed, M.; Guo, B. Authentication of the geographical origin of Maca (Lepidium meyenii Walp.) at different regional scales using the stable isotope ratio and mineral elemental fingerprints. Food Chem. 2020, 311, 126058. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Circi, S.; Capitani, D.; Ingallina, C.; Mannina, L. Molecular fingerprinting of food authenticity. Curr. Opin. Food Sci. 2017, 16, 59–66. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Wang, D.; Yu, F.; Zhang, N.; Song, C.; Granato, D. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids. J. Food Sci. 2020, 85, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, R.; Mine, Y. The impact of oolong and black tea polyphenols on human health. Food Biosci. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Jia, M.; Pan, Y.; Zhou, J.; Zhang, M. Identification of Chinese teas by a colorimetric sensor array based on tea polyphenol induced indicator displacement assay. Food Chem. 2021, 335, 127566. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Zhao, C.-N.; Xu, X.-Y.; Gan, R.-Y.; Cao, S.-Y.; Liu, Q.; Shang, A.; Mao, Q.-Q.; Li, H.-B. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Cao, Q.; Su, H.; Zhu, X.; Wang, K.; Wan, X.; Zhang, Z. Discrimination of six tea categories coming from different origins depending on polyphenols, caffeine, and theanine combined with different discriminant analysis. Int. J. Food Prop. 2017, 20, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Q.; Wang, Q.; Li, Y.; Ling, J.; Liu, L.; Chen, X.; Bi, K. Simultaneous Determination of Seven Bioactive Components in Oolong Tea Camellia sinensis: Quality Control by Chemical Composition and HPLC Fingerprints. J. Agric. Food Chem. 2012, 60, 256–260. [Google Scholar] [CrossRef]
- Wu, Q.-J.; Dong, Q.-H.; Sun, W.-J.; Huang, Y.; Wang, Q.-Q.; Zhou, W.-L. Discrimination of Chinese Teas with Different Fermentation Degrees by Stepwise Linear Discriminant Analysis (S-LDA) of the Chemical Compounds. J. Agric. Food Chem. 2014, 62, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Ma, S.; Ren, D.; Liu, W.; Han, B.; Zhang, Y.; Xiao, J.; Yi, L.; Deng, B. UPLC–Orbitrap–MS/MS combined with chemometrics establishes variations in chemical components in green tea from Yunnan and Hunan origins. Food Chem. 2018, 266, 534–544. [Google Scholar] [CrossRef]
- Tian, H.; Zhou, Z.Y.; Shui, G.H.; Lam, S.M. Extensive Profiling of Polyphenols from Two Trollius Species Using a Combination of Untargeted and Targeted Approaches. Metabolites 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Ch, R.; Chevallier, O.; McCarron, P.; McGrath, T.F.; Wu, D.; Nguyen Doan Duy, L.; Kapil, A.P.; McBride, M.; Elliott, C.T. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem. 2021, 334, 127553. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Xu, C.; Yang, T.; Wang, Y. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT 2021, 137, 110382. [Google Scholar] [CrossRef]
- Worku, M.; Upadhayay, H.R.; Latruwe, K.; Taylor, A.; Blake, W.; Vanhaecke, F.; Duchateau, L.; Boeckx, P. Differentiating the geographical origin of Ethiopian coffee using XRF- and ICP-based multi-element and stable isotope profiling. Food Chem. 2019, 290, 295–307. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen Isotope Composition of Organically and Conventionally Grown Crops. J. Agric. Food Chem. 2007, 55, 2664–2670. [Google Scholar] [CrossRef]
- Camin, F.; Dordevic, N.; Wehrens, R.; Neteler, M.; Delucchi, L.; Postma, G.; Buydens, L. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine. Anal. Chim. Acta 2015, 853, 384–390. [Google Scholar] [CrossRef]
- Li, A.; Zhao, J.; Xi, J.; Yang, X.; Jin, X.; Chen, Q.; Pan, L. Geographical authentication of peach in China based on stable isotope combined with multielement analysis of peach juice. Food Control 2021, 127, 108126. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marciano, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Bradley, W.; Robert, P. Multivariate Analysis in Metabolomics. Curr. Metab. 2013, 1, 92–107. [Google Scholar]
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian Prickly Pear (Opuntia Ficus-Indica L., CV. Muscaredda) According to the Provenance by Testing Unsupervised and Supervised Chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Li, S.R.; Song, Y.J.; Deng, R.; Li, X.W.; Cheng, Y.; Zhang, Z.Q.; Sun, F.Y.; Liu, Q.S. Mallotus oblongifolius extracts ameliorate ischemic nerve damage by increasing endogenous neural stem cell proliferation through the Wnt/beta-catenin signaling pathway. Food Funct. 2020, 11, 1027–1036. [Google Scholar] [CrossRef]
- Ge, Y.; Bian, X.; Sun, B.; Zhao, M.; Ma, Y.; Tang, Y.; Li, N.; Wu, J.-L. Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography—Mass Spectrometry Approach. J. Agric. Food Chem. 2019, 67, 4568–4577. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Hu, O.; Fu, H.; Ouyang, L.; Gong, X.; Meng, P.; Wang, Z.; Dai, M.; Guo, X.; Wang, Y. UPLC–Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chem. 2019, 283, 73–82. [Google Scholar] [CrossRef]
- Kasimsetty, S.G.; Bialonska, D.; Reddy, M.K.; Ma, G.Y.; Khan, S.I.; Ferreira, D. Colon Cancer Chemopreventive Activities of Pomegranate Ellagitannins and Urolithins. J. Agric. Food Chem. 2010, 58, 2180–2187. [Google Scholar] [CrossRef]
- Zhang, G.L.; Li, Y.; Wei, W.L.; Li, J.Y.; Li, H.J.; Huang, Y.; Guo, D.A. Metabolomics Combined with Multivariate Statistical Analysis for Screening of Chemical Markers between Gentiana scabra and Gentiana rigescens. Molecules 2020, 25, 1228. [Google Scholar] [CrossRef] [Green Version]
Geographical Origin | δ¹⁵N (‰) | δ¹³C (‰) | δ¹⁸O (‰) | δ D (‰) | ||||
---|---|---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
SY | 4.21–4.36 | 4.29 ± 0.063 a | −31.40–(−31.26) | −31.33 ± 0.044 c | 21.24–21.85 | 21.62 ± 0.24 b | 2.19–3.96 | 3.16 ± 0.66 a |
WN | 3.48–3.90 | 3.65 ± 0.16 b | −30.23–(−30.13) | −30.18 ± 0.033 b | 22.04–22.42 | 22.22 ± 0.14 a | −12.18–(−10.83) | −11.73 ± 0.48 b |
WC | 0.34–1.68 | 1.02 ± 0.43 d | −29.80–(−29.72) | −29.75 ± 0.034 a | 20.41–21.30 | 20.88 ± 0.32 d | −18.41–(−16.82) | −17.54 ± 0.56 c |
BT | 1.03–3.27 | 2.05 ± 0.74 c | −33.09–(−32.94) | −33.04 ± 0.056 d | 20.98–21.31 | 21.16 ± 0.11 c | −17.81–(−16.12) | −17.11 ± 0.56 c |
NO. | Compound | Classification | VIP | p |
---|---|---|---|---|
1 | Proline betaine | alkaloid | 1.29654 | <0.01 |
2 | Choline | alkaloid | 1.24792 | <0.01 |
3 | 6,7-dihydroxycoumarin | Polyphenol | 1.24765 | <0.01 |
4 | apigenin | Polyphenol | 1.18786 | <0.01 |
5 | Betaine | alkaloid | 1.17243 | <0.01 |
6 | Trigonelline | alkaloid | 1.16975 | <0.01 |
7 | salicylic acid | Polyphenol | 1.15381 | <0.01 |
8 | luteolin | Polyphenol | 1.12937 | <0.01 |
9 | Glycerophosphocholine | alkaloid | 1.12302 | <0.01 |
10 | kaempferol-3-o-rutinosid | Polyphenol | 1.09786 | <0.01 |
11 | eriodictyol | Polyphenol | 1.08076 | <0.01 |
12 | naringenin | Polyphenol | 1.07391 | <0.01 |
13 | protocatechuic acid | Polyphenol | 1.06823 | <0.01 |
14 | quercetin | Polyphenol | 1.06197 | <0.01 |
15 | hyperoside | Polyphenol | 1.06062 | <0.01 |
16 | gallocatechin | Polyphenol | 1.05693 | <0.01 |
17 | 4-hydroxybenzoic acid | Polyphenol | 1.05198 | <0.01 |
18 | apigenin-7-glucoside | Polyphenol | 1.05169 | <0.01 |
19 | 2,5-dihydroxybenzoic acid | Polyphenol | 1.03708 | <0.01 |
20 | myricetin | Polyphenol | 1.03414 | <0.01 |
21 | trans-4-hydroxycinnamic acid | Polyphenol | 1.0322 | <0.01 |
22 | astragalin | Polyphenol | 1.02076 | <0.01 |
23 | Quercetin 3-glucoside-7-acetate | Polyphenol | 1.00454 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Yu, H.-D.; Wu, L.; Zhang, C.; Yun, Y.-H.; Zhang, W. Authentication of Geographical Origin in Hainan Partridge Tea (Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics. Foods 2021, 10, 2130. https://doi.org/10.3390/foods10092130
Fu J, Yu H-D, Wu L, Zhang C, Yun Y-H, Zhang W. Authentication of Geographical Origin in Hainan Partridge Tea (Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics. Foods. 2021; 10(9):2130. https://doi.org/10.3390/foods10092130
Chicago/Turabian StyleFu, Jiashun, Hai-Dong Yu, Long Wu, Chenghui Zhang, Yong-Huan Yun, and Weimin Zhang. 2021. "Authentication of Geographical Origin in Hainan Partridge Tea (Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics" Foods 10, no. 9: 2130. https://doi.org/10.3390/foods10092130
APA StyleFu, J., Yu, H. -D., Wu, L., Zhang, C., Yun, Y. -H., & Zhang, W. (2021). Authentication of Geographical Origin in Hainan Partridge Tea (Mallotus obongifolius) by Stable Isotope and Targeted Metabolomics Combined with Chemometrics. Foods, 10(9), 2130. https://doi.org/10.3390/foods10092130