Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Inoculation
2.2. Individual Treatments
2.3. Combined Treatments
2.4. Bacterial Enumeration
2.5. Statistical Analysis
3. Results
3.1. Efficiency of Organic Acids against Listeria monocytogenes in Fresh Produce
3.2. Efficiency of UV-C against Listeria monocytogenes in Fresh Produce
3.3. Efficiency of Ethanol against Listeria monocytogenes in Fresh Produce
3.4. Combination Efficiency of Organic Acids, UV, and Ethanol against Listeria monocytogenes on Cut and Intact Vegetables
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morey, A.; McKee, S.R.; Dickson, J.S.; Singh, M. Efficacy of ultraviolet light exposure against survival of Listeria monocytogenes on conveyor belts. Foodborne Pathog. Dis. 2010, 7, 737–740. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Listeria (Listeriosis). Available online: https://www.cdc.gov/listeria/index.html (accessed on 14 May 2021).
- Dev Kumar, G.; Williams, R.C.; Sumner, S.S.; Eifert, J.D. Effect of ozone and ultraviolet light on Listeria monocytogenes populations in fresh and spent chill brines. Food Control 2016, 59, 172–177. [Google Scholar] [CrossRef] [Green Version]
- The United States Food and Drug Administration. Outbreak Investigation of Listeria monocytogenes: Enoki Mushrooms (March 2020). Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-enoki-mushrooms-march-2020 (accessed on 9 June 2020).
- Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Linked to Commercially Produced, Prepackaged Caramel Apples Made from Bidart Bros. Apples. Available online: https://www.cdc.gov/listeria/outbreaks/caramel-apples-12-14/index.html (accessed on 12 February 2015).
- Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Linked to Frozen Vegetables. Available online: https://www.cdc.gov/listeria/outbreaks/frozen-vegetables-05-16/index.html (accessed on 15 July 2016).
- Centers for Disease Control and Prevention. Multistate Outbreak of Salmonella Typhimurium and Salmonella Newport Infections Linked to Cantaloupe. Available online: https://www.cdc.gov/salmonella/typhimurium-cantaloupe-08-12/index.html (accessed on 5 October 2012).
- Walsh, K.A.; Bennett, S.D.; Mahovic, M.; Gould, L.H. Outbreaks associated with cantaloupe, watermelon, and honeydew in the United States, 1973–2011. Foodborne Pathog. Dis. 2014, 11, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Iwahori, J.; Kasuga, F.; Wang, J.; Forghani, F.; Park, M.-S.; Oh, D.-H. Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea. Food Control 2013, 30, 190–199. [Google Scholar] [CrossRef]
- Johannessen, G.S.; Loncarevic, S.; Kruse, H.J. Bacteriological analysis of fresh produce in Norway. Int. J. Food Microbiol. 2002, 77, 199–204. [Google Scholar] [CrossRef]
- Ponniah, J.; Robin, T.; Paie, M.S.; Radu, S.; Ghazali, F.M.; Kqueen, C.Y.; Nishibuchi, M.; Nakaguchi, Y.; Malakar, P.K. Listeria monocytogenes in raw salad vegetables sold at retail level in Malaysia. Food Control. 2010, 21, 774–778. [Google Scholar] [CrossRef]
- Sy, K.V.; Murray, M.B.; Harrison, M.D.; Beuchat, L.R. Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157: H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce. J. Food Prot. 2005, 68, 1176–1187. [Google Scholar] [CrossRef]
- Ruiz-Cruz, S.; Acedo-Félix, E.; Díaz-Cinco, M.; Islas-Osuna, M.A.; González-Aguilar, G.A. Efficacy of sanitizers in reducing Escherichia coli O157: H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control. 2007, 18, 1383–1390. [Google Scholar] [CrossRef]
- Petran, R.; Zottou, E.; Gravani, R.J. Incidence of Listeria monocytogenes in market samples of fresh and frozen vegetables. J. Food Sci. 1988, 53, 1238–1240. [Google Scholar] [CrossRef]
- Heisick, J.; Wagner, D.; Nierman, M.; Peeler, J.T. Listeria spp. found on fresh market produce. Appl. Environ. Microbiol. 1989, 55, 1925–1927. [Google Scholar] [CrossRef] [Green Version]
- Aureli, P.; Fiorucci, G.C.; Caroli, D.; Marchiaro, G.; Novara, O.; Leone, L.; Salmaso, S.J. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 2000, 342, 1236–1241. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Porto, E.; Eiroa, M.N. Occurrence of Listeria monocytogenes in vegetables. Dairy Food Environ. Sanit. 2001, 21, 282–286. [Google Scholar]
- Gorski, L.; Palumbo, J.D.; Mandrell, R.E. Attachment of Listeria monocytogenes to radish tissue is dependent upon temperature and flagellar motility. Appl. Environ. Microbiol. 2003, 69, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, H.; Barth, M.M.; Hankinson, T.R. Microbial safety, quality, and sensory aspects of fresh-cut fruits and vegetables. In Microbial Safety of Minimally Processed Foods; 2003; Volume 12, pp. 255–278. [Google Scholar] [CrossRef]
- Jeyaletchumi, P.; Tunung, R.; Selina, P.M.; Chai, L.; Radu, S.; Farinazleen, M.; Cheah, Y.; Mitsuaki, N.; Yoshitsugu, N.; Kumar, M.P. Assessment of Listeria monocytogenes in salad vegetables through kitchen simulation study. J. Trop. Agric. Food Sci. 2012, 40, 55–62. [Google Scholar]
- Jamali, H.; Paydar, M.; Looi, C.Y.; Wong, W.F. Prevalence of Listeria species and Listeria monocytogenes serotypes in ready mayonnaise salads and salad vegetables in Iran. Afr. J. Microbiol. Res. 2013, 7, 1903–1906. [Google Scholar]
- Qadri, O.S.; Yousuf, B.; Srivastava, A.K. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food Agric. 2015, 1, 1121606. [Google Scholar] [CrossRef]
- Banach, J.L.; van Bokhorst-van de Veen, H.; van Overbeek, L.S.; van der Zouwen, P.S.; van der Fels-Klerx, H.J.; Groot, M.N.N. The efficacy of chemical sanitizers on the reduction of Salmonella typhimurium and Escherichia coli affected by bacterial cell history and water quality. Food Control 2017, 81, 137–146. [Google Scholar] [CrossRef]
- Amrutha, B.; Sundar, K.; Shetty, P.H. Study on E. coli and Salmonella biofilms from fresh fruits and vegetables. J. Food Sci. Technol. 2017, 54, 1091–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leneveu-Jenvrin, C.; Quentin, B.; Assemat, S.; Hoarau, M.; Meile, J.-C.; Remize, F. Changes of Quality of Minimally-Processed Pineapple (Ananas comosus, var. ‘Queen Victoria’) during Cold Storage: Fungi in the Leading Role. Microorganisms 2020, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Gombas, D.; Luo, Y.; Brennan, J.; Shergill, G.; Petran, R.; Walsh, R.; Hau, H.; Khurana, K.; Zomorodi, B.; Rosen, J.; et al. Guidelines To Validate Control of Cross-Contamination during Washing of Fresh-Cut Leafy Vegetables. J. Food Prot. 2017, 80, 312–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Choi, M.R.; Park, J.W.; Park, K.H.; Chung, M.S.; Ryu, S.; Kang, D.H. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J. Food Sci. 2011, 76, M293–M298. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Bae, Y.-M.; Jung, S.-Y.; Cha, M.-H.; Ryu, K.; Park, K.-H.; Lee, S.-Y. Predictive modeling for the growth of Listeria monocytogenes and Salmonella typhimurium on fresh-cut cabbage at various temperatures. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 631–638. [Google Scholar] [CrossRef]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157: H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [CrossRef]
- Singh, P.; Hung, Y.C.; Qi, H. Efficacy of peracetic acid in inactivating foodborne pathogens on fresh produce surface. J. Food Sci. 2018, 83, 432–439. [Google Scholar] [CrossRef]
- Liang, Y.; Ji, L.; Chen, C.; Dong, C.; Wang, C. Effects of ozone treatment on the storage quality of post-harvest tomato. Int. J. Food Eng. 2018, 14, 7–8. [Google Scholar] [CrossRef]
- Murray, K.; Moyer, P.; Wu, F.; Goyette, J.; Warriner, K. Inactivation of Listeria monocytogenes on and within apples destined for caramel apple production by using sequential forced air ozone gas followed by a continuous advanced oxidative process treatment. J. Food Prot. 2018, 81, 357–364. [Google Scholar] [CrossRef]
- Sun, S.H.; Kim, S.J.; Kwak, S.J.; Yoon, K.S. Efficacy of sodium hypochlorite and acidified sodium chlorite in preventing browning and microbial growth on fresh-cut produce. Prev. Nutr. Food Sci. 2012, 17, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haute, S.v.; Sampers, I.; Jacxsens, L.; Uyttendaele, M. Selection criteria for water disinfection techniques in agricultural practices. Crit. Rev. Food Sci. Nutr. 2015, 55, 1529–1551. [Google Scholar] [CrossRef] [PubMed]
- Stratakos, A.C.; Linton, M.; Tessema, G.T.; Skjerdal, T.; Patterson, M.F.; Koidis, A. Effect of high pressure processing in combination with Weissella viridescens as a protective culture against Listeria monocytogenes in ready-to-eat salads of different pH. Food Control. 2016, 61, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Donsì, F.; Marchese, E.; Maresca, P.; Pataro, G.; Vu, K.D.; Salmieri, S.; Lacroix, M.; Ferrari, G. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol. Technol. 2015, 106, 21–32. [Google Scholar] [CrossRef]
- Huang, K.; Wrenn, S.; Tikekar, R.; Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J. Food Eng. 2018, 224, 95–104. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Abhari, K.; Mousavi Khaneghah, A. The combined effects of ultrasound and lactic acid in inactivating microorganisms on fresh radish (Raphanus raphanistrum subsp. sativus): Microbiological and quality changes. Food Sci. Nutr. 2020, 8, 162–169. [Google Scholar]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef]
- Jiang, Y.; Sokorai, K.; Pyrgiotakis, G.; Demokritou, P.; Li, X.; Mukhopadhyay, S.; Jin, T.; Fan, X. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. Int. J. Food Microbiol. 2017, 249, 53–60. [Google Scholar] [CrossRef]
- Berardinelli, A.; Pasquali, F.; Cevoli, C.; Trevisani, M.; Ragni, L.; Mancusi, R.; Manfreda, G. Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biol. Technol. 2016, 111, 297–304. [Google Scholar] [CrossRef]
- Butscher, D.; Van Loon, H.; Waskow, A.; von Rohr, P.R.; Schuppler, M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int. J. Food Microbiol. 2016, 238, 222–232. [Google Scholar] [CrossRef]
- Kamat, A.; Ghadge, N.; Ramamurthy, M.; Alur, M. Effect of low-dose irradiation on shelf life and microbiological safety of sliced carrot. J. Sci. Food Agric. 2005, 85, 2213–2219. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Umesh Hebbar, H. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.; Baruzzi, F.; Ippolito, A. Recent advances to control spoilage microorganisms in washing water of fruits and vegetables: The use of electrolyzed water. In Proceedings of the III International Symposium on Postharvest Pathology: Using Science to Increase Food Availability ISHS Acta Hortic. 1144, Bari, Italy, 7–11 June 2015; pp. 379–384. [Google Scholar]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Warnecke, T.; Gill, R.T. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Factories 2005, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Yasothai, R.; Giriprasad, R. Weak organic acids in food technology. Int. J. Environ. Sci. Technol. 2015, 4, 164–166. [Google Scholar]
- Guerrero-Beltr·n, J.A.; Barbosa-C·novas, G.V. Advantages and limitations on processing foods by UV light. Food Sci. Technol. Int. 2004, 10, 137–147. [Google Scholar] [CrossRef]
- Begum, M.; Hocking, A.D.; Miskelly, D. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation. Int. J. Food Microbiol. 2009, 129, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Eischeid, A.C.; Linden, K.G. Efficiency of pyrimidine dimer formation in Escherichia coli across UV wavelengths. J. Appl. Microbiol. 2007, 103, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.; Dantigny, P. Control of food spoilage fungi by ethanol. Food Control 2011, 22, 360–368. [Google Scholar] [CrossRef]
- Barker, C.; Park, S.F. Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl. Environ. Microbiol. 2001, 67, 1594–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigua, G. Comparative efficacies of various sanitizers used in foodservice establishments. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2009; pp. 5–16. [Google Scholar]
- Chun, H.-H.; Kim, J.-Y.; Song, K.B. Inactivation of foodborne pathogens in ready-to-eat salad using UV-C irradiation. Food Sci. Biotechnol. 2010, 19, 547–551. [Google Scholar] [CrossRef]
- Karyotis, D.; Skandamis, P. Control of Listeria monocytogenes by applying ethanol-based antimicrobial edible films on ham slices and microwave-reheated frankfurters. Food Microbiol. 2015, 54. [Google Scholar] [CrossRef]
- Goodwin, J.F. Quantification of serum inorganic phosphorus, phosphatase, and urinary phosphate without preliminary treatment. Clin. Chem. 1970, 16, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Reddy, C.S.; Lee, S.K.; Park, S.; Ko, H.R.; Kim, D.G.; Hahn, B.S. Chitin biosynthesis inhibition of Meloidogyne incognita by RNAi-mediated gene silencing increases resistance to transgenic tobacco plants. Int. J. Mol. Sci. 2020, 21, 6626. [Google Scholar] [CrossRef] [PubMed]
- Marik, C.M.; Zuchel, J.; Schaffner, D.W.; Strawn, L.K. Growth and survival of Listeria monocytogenes on intact fruit and vegetable surfaces during postharvest handling: A systematic literature review. J. Food Prot. 2019, 83, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Akbas, M.; Ölmez, H. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 2007, 44, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Se-Ri, K.; Kim, W.-I.; Jae-Hyun, Y.; Do-Yong, J.; Song-Yi, C.; Injun, H.; Nagendran, R. Growth survival of Listeria monocytogenes in Enoki Mushroom (Flammulina velutipes) at different temperatures and antilisterial effect of organic acids. J. Food Hyg. Saf. 2020, 35, 630–636. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Eifert, J.D.; Williams, R.C.; Marcy, J.E.; Welbaum, G.E. Listeria monocytogenes survival in the presence of malic acid, lactic acid or blueberry extract. J. Berry Res. 2017, 7, 33–41. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Eswaranandam, S.; Hettiarachchy, N.S.; Johnson, M.G. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Gaminara. J. Food Sci. 2004, 69, FMS79–FMS84. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Jeong, D.-Y.; Lee, S.-B.; Choi, S.; Jeong, M.-I.; Lee, S.-Y.; Kim, S.-R. Decontamination of Listeria monocytogenes in king oyster mushrooms (Pleurotus eryngii) by combined treatments with organic acids, nisin, and ultrasound. LWT—Food Sci. Technol. 2021, 144, 111207. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, S.M.; Dykes, G. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies. Crit. Rev. Microbiol. 2015, 41, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kang, D.-H. Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control 2017, 81, 88–95. [Google Scholar] [CrossRef]
- Liao, C.-H.; Sapers, G.M. Attachment and growth of Salmonella Chester on apple fruits and in vivo response of attached bacteria to sanitizer treatments. J. Food Prot. 2000, 63, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.; Avery, S.V.; Singleton, I. Microbes associated with fresh produce: Sources, types and methods to reduce spoilage and contamination. Adv. Appl. Microbiol. 2019, 107, 29–82. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.A.d.; Gonçalves, R.C. Reactive oxygen species and the respiratory tract diseases of large animals. Ciência Rural 2010, 40, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Syamaladevi, R.M.; Killinger, K.; Sablani, S.S. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces. Int. J. Food Microbiol. 2015, 210, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Luo, Y.; Zhou, B.; Ingram, D.T. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT—Food Sci. Technol. 2017, 80, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Luo, Y.; Turner, E.; Zhu, Y. Mild concentration of ethanol in combination with ascorbic acid inhibits browning and maintains quality of fresh-cut lotus root. Postharvest Biol. Technol. 2017, 128, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Hoelzer, K.; Pouillot, R.; Van Doren, J.M.; Dennis, S. Reduction of Listeria monocytogenes contamination on produce–a quantitative analysis of common liquid fresh produce wash compounds. Food Control 2014, 46, 430–440. [Google Scholar] [CrossRef]
- Fan, X.; Huang, R.; Chen, H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci. Technol. 2017, 70, 9–19. [Google Scholar] [CrossRef]
- Yun, J.; Yan, R.; Fan, X.; Gurtler, J.; Phillips, J. Fate of E. coli O157: H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. Int. J. Food Microbiol. 2013, 166, 356–363. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajalingam, N.; Chae, H.-B.; Chu, H.-J.; Kim, S.-R.; Hwang, I.; Hyun, J.-E.; Choi, S.-Y. Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods 2021, 10, 2135. https://doi.org/10.3390/foods10092135
Rajalingam N, Chae H-B, Chu H-J, Kim S-R, Hwang I, Hyun J-E, Choi S-Y. Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods. 2021; 10(9):2135. https://doi.org/10.3390/foods10092135
Chicago/Turabian StyleRajalingam, Nagendran, Hyo-Bin Chae, Hyeon-Jin Chu, Se-Ri Kim, Injun Hwang, Jeong-Eun Hyun, and Song-Yi Choi. 2021. "Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots" Foods 10, no. 9: 2135. https://doi.org/10.3390/foods10092135
APA StyleRajalingam, N., Chae, H. -B., Chu, H. -J., Kim, S. -R., Hwang, I., Hyun, J. -E., & Choi, S. -Y. (2021). Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods, 10(9), 2135. https://doi.org/10.3390/foods10092135