Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Matrix-Assisted Laser Desorption Ionisation Time-of-Flight (MALDI-TOF) Identification of Isolates
2.3. Antimicrobial Susceptibility Testing
2.4. PCR Detection and Characterisation of ESBL-Associated Genes
2.5. Data Analysis
3. Results
3.1. Enterobacteriaceae and E. coli Counts
3.2. Isolation of ESBL Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported Foodborne Outbreaks Due to Fresh Produce in the United States and European Union: Trends and Causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- FAO/WHO. Microbiological Hazards in Fresh Leafy Vegetables and Herbs: Meeting Report; Microbiological Risk Assessment Series 14; FAO: Rome, Italy, 2008; ISBN 978-92-4-156378-9. [Google Scholar]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar] [CrossRef] [Green Version]
- EFSA BIOHAZ Panel. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, 6651. [Google Scholar]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantón, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T.M. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.P.; Lodge, M.P.; Elviss, N.C.; Lemma, F.L.; Hopkins, K.L.; Teale, C.J.; Woodford, N. Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Escherichia coli. Int. J. Food Microbiol. 2017, 241, 283–290. [Google Scholar] [CrossRef]
- Blaak, H.; van Hoek, A.H.A.M.; Veenman, C.; Docters van Leeuwen, A.E.; Lynch, G.; van Overbeek, W.M.; de Roda Husman, A.M. Extended spectrum ß-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int. J. Food Microbiol. 2014, 168–169, 8–16. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Veenman, C.; van Overbeek, W.M.; Lynch, G.; de Roda Husman, A.M.; Blaak, H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int. J. Food Microbiol. 2015, 204, 1–8. [Google Scholar] [CrossRef]
- Raphael, E.; Wong, L.K.; Riley, L.W. Extended-spectrum beta-lactamase gene sequences in Gram-negative saprophytes on retail organic and nonorganic spinach. Appl. Environ. Microbiol. 2011, 77, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Reuland, E.A.; Al Naiemi, N.; Raadsen, S.A.; Savelkoul, P.H.M.; Kluytmans, J.A.J.W.; Vandenbroucke-Grauls, C.M.J.E. Prevalence of ESBL-producing Enterobacteriaceae in raw vegetables. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1843–1846. [Google Scholar] [CrossRef] [Green Version]
- Ruimy, R.; Brisabois, A.; Bernede, C.; Skurnik, D.; Barnat, S.; Arlet, G.; Momcilovic, S.; Elbaz, S.; Moury, F.; Vibet, M.A.; et al. Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Environ. Microbiol. 2010, 12, 608–615. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar]
- Brenner, D.J.; Farmer III, J.J. Enterobacteriaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–24. ISBN 9781118960608. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monstein, H.J.; Östholm-Balkhed, Å.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. 2011, 9, 2322. [Google Scholar] [CrossRef] [Green Version]
- Falomir, M.P.; Gozalbo, D.; Rico, H. Coliform bacteria in fresh vegetables: From cultivated lands to consumers. In Current Research Topics in Applied Microbiology and Microbial Biotechnology, Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007); Seville, Spain, 28 November–1 December 2007, Méndez-Vilas, A., Ed.; World Scientific: Hackensack, NJ, USA, 2010; pp. 1175–1181. [Google Scholar]
- Falomir, P.; González, P.; Rico, H.; Gozalbo, D. Resistances to Chemotherapeutic Agents in Enterobacteriaceae Isolates from Organic Fresh Vegetables Marketed in Valencia (Spain). Int. J. Food Nutr. Saf. 2014, 5, 39–49. [Google Scholar]
- Mukherjee, A.; Speh, D.; Dyck, E.; Diez-Gonzalez, F. Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J. Food Prot. 2004, 67, 894–900. [Google Scholar] [CrossRef]
- Little, C.L.; Gillespie, I.A. Prepared salads and public health. J. Appl. Microbiol. 2008, 105, 1729–1743. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, R.J.; Little, C.L.; Sagoo, S.; Mithani, V.; McLauchlin, J.; de Pinna, E. Assessment of the microbiological safety of salad vegetables and sauces from kebab take-away restaurants in the United Kingdom. Food Microbiol. 2009, 26, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Ruimy, R.; Meziane-Cherif, D.; Momcilovic, S.; Arlet, G.; Andremont, A.; Courvalin, P. RAHN-2, a chromosomal extended-spectrum class A β-lactamase from Rahnella aquatilis. J. Antimicrob. Chemother. 2010, 65, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Nüesch-Inderbinen, M.; Zurfluh, K.; Peterhans, S.; Hächler, H.; Stephan, R. Assessment of the prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in ready-to-eat salads, fresh-cut fruit, and sprouts from the Swiss market. J. Food Prot. 2015, 78, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae from fresh vegetables retailed in Gauteng Province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Richter, L.; du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, Phenotypic and Molecular Characterization of Extended-Spectrum- and AmpC- β-Lactamase Producing Enterobacteriaceae Isolated From Selected Commercial Spinach Supply Chains in South Africa. Front. Microbiol. 2020, 11, 638. [Google Scholar] [CrossRef]
- Bollet, C.; Gainnier, M.; Sainty, J.M.; Orhesser, P.; De Micco, P. Serratia fonticola isolated from a leg abscess. J. Clin. Microbiol. 1991, 29, 834. [Google Scholar] [CrossRef] [Green Version]
- Gaitán, J.I.; Bronze, M.S. Infection caused by Rahnella aquatilis. Am. J. Med. Sci. 2010, 339, 577–579. [Google Scholar] [CrossRef]
- Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Inoue, M. Characterization of SFO-1, a plasmid-mediated inducible class A β-lactamase from Enterobacter cloacae. Antimicrob. Agents Chemother. 1999, 43, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Pereira, M.J.; Suárez, J.M.; Poza, M.; Treviño, M.; Villalón, P.; Sáez-Nieto, J.A.; Regueiro, B.J.; Villanueva, R.; Bou, G. Emergence in Spain of a multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum β-lactamase. J. Clin. Microbiol. 2011, 49, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Aljorayid, A.; Viau, R.; Castellino, L.; Jump, R.L.P. Serratia fonticola, pathogen or bystander? A case series and review of the literature. IDCases 2016, 5, 6–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, P.D.; Hoa, L.T.V.; Tot, N.H.; Phuong, L.L.; Quang, V.V.; Thuyet, B.T.; Son, P.N. First report of biliary tract infection caused by multidrug-resistant Serratia fonticola. New Microbes New Infect. 2020, 36, 100692. [Google Scholar] [CrossRef] [PubMed]
- Tacão, M.; Correia, A.; Henriques, I. Resistance to broad-spectrum antibiotics in aquatic systems: Anthropogenic activities modulate the dissemination of blaCTX-M-like genes. Appl. Environ. Microbiol. 2012, 78, 4134–4140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n | Enterobacteriaceae Counts 1 | E. coli Counts 1 | ||
---|---|---|---|---|
Lettuce | 23 | 4.1 ± 1.1 (19) | 2.7 ± 1.6 (3) | |
Escarole | 13 | 5.4 ± 0.3 (13) | 3.0 ± 0.0 (1) | |
Parsley | 9 | 5.3 ± 0.5 (9) | 2.4 + 1.0 (5) | |
Coriander | 6 | 5.1 ± 0.8 (6) | 1.7 ± 0.0 (4) | |
Leaf vegetables | 51 | 5.0 ± 1.0 (47) | 2.5 ± 0.9 (13) | |
Tomato | 19 | 3.6 ± 0.8 (12) | 2.3 ± 0.9 (4) | |
Cucumber | 19 | 3.9 ± 0.8 (11) | 1.7 ± 0.0 (3) | |
Pepper | 10 | 3.5 ± 0.5 (10) | 2.7 ± 0.9 (4) | |
Carrot | 18 | 4.7 ± 0.9 (17) | 1.8 ± 0.2 (4) | |
Other vegetables | 66 | 3.9 ± 0.9 (50) | 2.1 ± 0.8 (15) | |
Total vegetables | 117 | 4.5 ± 1.0 (97) | 2.3 ± 0.8 (28) | |
Soil | 18 | 3.3 ± 0.8 (13) | - 2 | |
Water | 14 | 3.0 ± 0.4 (6) | - | |
Air | 13 | 0.6 ± 0.4 (4) | - | |
Worker hands | 12 | 3.7 ± 0.6 (2) | 2.8 ± 0.0 (1) | |
Environmental | 57 | 2.9 ± 1.2 (21) | 2.8 ± 0.0 (1) | |
Total | 174 | 4.1 ± 1.2 (118) | 2.3 ± 0.8 (29) |
Isolate | ID | Source | Antibiotic Resistance Profiles 1 | MDR | ESBL Gene |
---|---|---|---|---|---|
ZA07E1 | Rahnella aquatilis | Carrot | AMP, CXM, CTX | No | blaRAHN2 |
CI03E | Serratia fonticola | Coriander | AMP, CXM | No | blaFONA5 |
CI10E | Serratia fonticola | Coriander | AMP, CXM, CTX, CN | Yes | blaFONA5 |
CI04E1 | Serratia fonticola | Coriander | AMP, CXM, CTX | No | |
PE11E | Serratia fonticola | Cucumber | AMP, CXM, CN | Yes | |
ES09E | Serratia fonticola | Escarole | AMP, CXM | No | |
ES48E | Rahnella aquatilis | Escarole | AMP, CXM, CTX | No | blaRAHN2 |
ES16E | Rahnella aquatilis | Escarole | AMP, CXM, CTX | No | |
LE18E | Serratia fonticola | Lettuce | AMP, CXM, CTX | No | blaFONA5 |
PJ02E | Serratia fonticola | Parsley | AMP, CXM, CTX, FEP, ATM | Yes | |
PJ07E | Serratia fonticola | Parsley | AMP, CXM, CTX, ATM | Yes | |
PJ21E | Serratia fonticola | Parsley | AMP, CXM, CTX | No | |
PJ27E | Serratia fonticola | Parsley | AMP, CXM, CTX, CN | Yes | blaFONA5 |
TO30E | Rahnella aquatilis | Tomato | AMP, CXM, CTX | No | |
AG24E | Serratia fonticola | Water | AMP, CXM | No |
Isolate | ID | Source | FOX (0.5–64) | FOT (0.25–64) | FC (0.06/4–64/4) | TAZ (0.25–128) | TC (0.12/4–128/4) | FEP (0.06–32) | ETP (0.015–2) | IMI (0.12–16) | MERO (0.03–16) | TRM (0.5–128) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZA07E1 | Rahnella aquatillis | Carrot | 2 | 4 * | <0.06/4 | <0.25 | <0.12/4 | 0.25 | <0.015 | <0.012 | <0.03 | 8 ** |
CI03E | Serratia fonticola | Coriander | 4 | 0.5 | <0.06/4 | <0.25 | <0.12/4 | <0.06 | <0.015 | <0.012 | <0.03 | 4 ** |
CI04E1 | Serratia fonticola | Coriander | 8 * | 1 | <0.06/4 | <0.25 | <0.12/4 | <0.06 | <0.015 | <0.012 | <0.03 | 8 ** |
ES16E | Rahnella aquatillis | Escarole | 1 | 2 * | <0.06/4 | <0.25 | <0.12/4 | 0.12 | <0.015 | <0.012 | <0.03 | 4 ** |
ES48E | Rahnella aquatillis | Escarole | 8 * | 2 * | <0.06/4 | <0.25 | <0.12/4 | 0.12 | <0.015 | <0.012 | <0.03 | 4 ** |
LE18E | Serratia fonticola | Lettuce | 2 | 0.5 | <0.06/4 | <0.25 | <0.12/4 | <0.06 | <0.015 | <0.012 | <0.03 | 2 ** |
PJ02E | Serratia fonticola | Parsley | 16 * | >64 * | 0.5/4 | 1 | <0.12/4 | 4 * | <0.015 | <0.012 | <0.03 | 4 ** |
TO30E | Rahnella aquatillis | Tomato | 0.5 | 1 | <0.06/4 | <0.25 | <0.12/4 | <0.06 | <0.015 | <0.012 | <0.03 | 4 ** |
AG24E | Serratia fonticola | Water | 4 | 0.5 | <0.06/4 | <0.25 | <0.12/4 | <0.06 | <0.015 | <0.012 | <0.03 | 8 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintor-Cora, A.; Álvaro-Llorente, L.; Otero, A.; Rodríguez-Calleja, J.M.; Santos, J.A. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods 2021, 10, 2609. https://doi.org/10.3390/foods10112609
Pintor-Cora A, Álvaro-Llorente L, Otero A, Rodríguez-Calleja JM, Santos JA. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods. 2021; 10(11):2609. https://doi.org/10.3390/foods10112609
Chicago/Turabian StylePintor-Cora, Alberto, Laura Álvaro-Llorente, Andrés Otero, Jose M. Rodríguez-Calleja, and Jesús A. Santos. 2021. "Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce" Foods 10, no. 11: 2609. https://doi.org/10.3390/foods10112609
APA StylePintor-Cora, A., Álvaro-Llorente, L., Otero, A., Rodríguez-Calleja, J. M., & Santos, J. A. (2021). Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods, 10(11), 2609. https://doi.org/10.3390/foods10112609