Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Materials
2.2. Reconstituted Milk
2.3. Screening and Identification of LAB with Reducing α-CN
2.4. Strain Safety
2.4.1. Hemolysis Characteristics
2.4.2. Nitrate Reductase Test
2.4.3. Drug Sensitivity
2.4.4. Biogenic Amines
2.5. Identification of Strain
2.6. Optimization of Fermentation Conditions
2.6.1. Inoculation Amounts
2.6.2. Fermentation Time
2.6.3. Culture Temperatures
2.7. Verification of Antigen Reducing in Fermented Standard Proteins and Pasteurized Milk
2.7.1. Standard Milk Protein Medium Fermentation and Sample Preparation
2.7.2. Antigenicity Test
2.7.3. SDS-PAGE
2.8. Statistical Analysis
3. Results and Discussion
3.1. Strain Screening
3.2. Safety Evaluation
3.3. Optimization of Fermentation Condition for Reducing α-CN Antigen
3.4. SDS-PAGE Analysis and Antigenicity Analysis from ELISA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinberg, E.G. The WAO white book on allergy 2011–2012. Curr. Allergy Clin. Immunol. 2011, 24, 156–157. [Google Scholar]
- Devdas, J.M.; Mckie, C.; Fox, A.T.; Ratageri, V.H. Food Allergy in Children: An Overview. Indian J. Pediatr. 2018, 85, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Fritsché, R. Role for technology in dairy allergy. Aust. J. Dairy Technol. 2003, 58, 89. [Google Scholar]
- Dupont, C. Diagnosis of cow’s milk allergy in children: Determining the gold standard? Expert Rev. Clin. Immunol. 2014, 10, 257–267. [Google Scholar] [CrossRef]
- Rosario, C.S.; Filho, N.R. Childhood Anaphylaxis: State of the Art. Curr. Treat. Options Allergy 2020, 7, 64–70. [Google Scholar] [CrossRef]
- Dunlop, J.H.; Keet, C.A. Epidemiology of Food Allergy. Immunol. Allergy Clin. N. Am. 2018, 38, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Sophia, T.; Kostas, D.; Kostas, P. Cow’s milk allergenicity. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 16. [Google Scholar]
- Cerecedo, I.; Zamora, J.; Shreffler, W.; Lin, J.; Dieguez, M.; Bardina, L.; Wang, J.; De La Hoz, B.; Sampson, H. Mapping of the IgG and IgE Sequential Epitopes of Milk Allergens Using a Peptide Microarray-Based Immunoassay. J. Allergy Clin. Immunol. 2008, 121, S249. [Google Scholar] [CrossRef]
- Bu, G.; Luo, Y.; Chen, F.; Liu, K.; Zhu, T. Milk processing as a tool to reduce cow’s milk allergenicity: A mini-review. Dairy Sci. Technol. 2013, 93, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovegrove, J.A.; Osman, D.L.; Morgan, J.B.; Hampton, S.M. Transfer of cow’s milk beta-lactoglobulin to human serum after a milk load: A pilot study. Gut 1993, 34, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Syed, Q.A.; Hassan, A.; Sharif, S.; Ishaq, A.; Saeed, F.; Afzaal, M.; Hussain, M.; Anjum, F.M. Structural and functional properties of milk proteins as affected by heating, high pressure, Gamma and ultraviolet irradiation: A review. Int. J. Food Prop. 2021, 24, 871–884. [Google Scholar] [CrossRef]
- Eigenmann, P.A.; Frossard, C.P. The T lymphocyte in food-allergy disorders. Curr. Opin. Allergy Clin. Immunol. 2003, 3, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Byun, M.-W.; Kim, J.-H.; Lee, J.-W.; Park, J.-W.; Hong, C.-S.; Kang, I.-J. Effects of Gamma Radiation on the Conformational and Antigenic Properties of a Heat-Stable Major Allergen in Brown Shrimp. J. Food Prot. 2000, 63, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Kleber, N.; Hinrichs, J. Antigenic response of β-lactoglobulin in thermally treated bovine skim milk and sweet whey. Milchwissenschaft 2007, 62, 121–124. [Google Scholar]
- Peñas, E.; Préstamo, G.; Polo, F.; Gomez, R. Enzymatic proteolysis, under high pressure of soybean whey: Analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chem. 2006, 99, 569–573. [Google Scholar] [CrossRef]
- Pintado, M.E.; Malcata, F.X. Hydrolysis of ovine, caprine and bovine whey proteins by trypsin and pepsin. Bioprocess Eng. 2000, 23, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B.; Ki, K.S.; Khan, M.A.; Lee, W.S.; Lee, H.J.; Ahn, B.S.; Kim, H.S. Peptic and Tryptic Hydrolysis of Native and Heated Whey Protein to Reduce Its Antigenicity. J. Dairy Sci. 2007, 90, 4043–4050. [Google Scholar] [CrossRef] [Green Version]
- Hussein, S.; Gelencsér, É.; Polgár, M.; Hajós, G. Effect of enzymatic modification on the biological activity and nutritive value of cow and buffalo casein. Acta Aliment. 2000, 29, 273–288. [Google Scholar] [CrossRef]
- Cross, M.; Stevenson, L.; Gill, H. Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria? Int. Immunopharmacol. 2001, 1, 891–901. [Google Scholar] [CrossRef]
- Bu, G.; Luo, Y.; Zhang, Y.; Chen, F. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J. Sci. Food Agric. 2010, 90, 2015–2020. [Google Scholar] [CrossRef]
- Fotschki, J.; Szyc, A.; Wróblewska, B. Immunoreactivity of lactic acid-treated mare’s milk after simulated digestion. J. Dairy Res. 2015, 82, 78–85. [Google Scholar] [CrossRef]
- El-Ghaish, S.; Dalgalarrondo, M.; Choiset, Y.; Sitohy, M.; Ivanova, I.; Haertlé, T.; Chobert, J.-M. Characterization of a new isolate of Lactobacillus fermentum IFO 3956 from Egyptian Ras cheese with proteolytic activity. Eur. Food Res. Technol. 2010, 230, 635–643. [Google Scholar] [CrossRef]
- El-Ghaish, S.; Rabesona, H.; Choiset, Y.; Sitohy, M.; Haertlé, T.; Chobert, J.-M. Proteolysis byLactobacillus fermentumIFO3956 isolated from Egyptian milk products decreases immuno-reactivity of αS1-casein. J. Dairy Res. 2011, 78, 203–210. [Google Scholar] [CrossRef]
- Ying, Z.; Luo, Y. Effect of fermentation in combination with protease hydrolysis on the antigenicity of whey protein. J. Dairy Sci. Technol. 2010, 90, 151–155. [Google Scholar]
- Wroblewska, B.; Karamac, M.; Amarowicz, R.; Szymkiewicz, A.; Troszynska, A.; Kubicka, E. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. Int. J. Food Sci. Technol. 2004, 39, 839–850. [Google Scholar] [CrossRef]
- Biscola, V.; Tulini, F.; Choiset, Y.; Rabesona, H.; Ivanova, I.; Chobert, J.-M.; Todorov, S.; Haertlé, T.; Franco, B. Proteolytic activity of Enterococcus faecalis VB63F for reduction of allergenicity of bovine milk proteins. J. Dairy Sci. 2016, 99, 5144–5154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chobert, J.M.; Bertrand-Harb, C.; Nicolas, M.G.; Gaertner, H.F.; Puigserver, A.J. Solubility and emulsifying properties of caseins chemically modified by covalent attachment of L-methionine and L-valine. J. Agric. Food Chem. 1987, 35, 638–644. [Google Scholar] [CrossRef]
- Shi, J.; Luo, Y.; Xiao, Y.; Li, Z.; Xu, Q.; Yao, M. Effects of fermentation by Lactobacillus casei on the antigenicity and allergenicity of four bovine milk proteins. Int. Dairy J. 2014, 35, 75–80. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Turnidge, J.D. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology, 11th ed.; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2015; pp. 1253–1273. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.; Liu, S.; Qiao, W.; Shi, R.; Jiang, T. Determination of biogenic amines in different dairy products byahigh performance liquid chromatography method. China Dairy Ind. 2018, 46, 4. [Google Scholar]
- Messick, J.B.; Berent, L.M.; Cooper, S.K. Development and Evaluation of a PCR-Based Assay for Detection of Haemobartonella felis in Cats and Differentiation of H. felis from Related Bacteria by Restriction Fragment Length Polymorphism Analysis. J. Clin. Microbiol. 1998, 36, 462–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, F.Q.; Kai, Q.; Zhong, Q.D.; Lv, X.L.; Li, J.Y.; Xiong, Z.H. Evaluation of available protein components in milk-based infant formula by SDS-PAGE. Food Ferment. Ind. 2012, 38, 190–197. [Google Scholar]
- Wu, X.; Liu, M.; Xia, L.; Wu, H.; Liu, Z.; Xu, X. Conjugation of functional oligosaccharides reduced in vitro allergenicity of β-lactoglobulin. Food Agric. Immunol. 2013, 24, 379–391. [Google Scholar] [CrossRef]
- Jedrychowski, L. Reduction of the Antigenicity of Whey Proteins by Lactic Acid Fermentation. Food Agric. Immunol. 1999, 11, 91–99. [Google Scholar] [CrossRef]
- Sharma, C.; Gulati, S.; Thakur, N.; Singh, B.P.; Gupta, S.; Kaur, S.; Mishra, S.K.; Puniya, A.K.; Gill, J.P.S.; Panwar, H. Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech 2017, 7, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Luo, B.; Cai, J.; Yang, B.; Zhang, Y.; Tian, F.; Ni, Y. Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. J. Dairy Sci. 2021, 104, 5166–5184. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Luo, Y.; Li, Z.; & Liu, X. Effect of fermentation with Lactobacillus delbrueckii subsp. Bulgaricus on the anti-genicity of β-casein in cow’s milk. China Dairy Ind. 2012, 40, 11–14. [Google Scholar]
- El Soda, M.; Desmazeaud, M.J.; Le Bars, D.; Zevaco, C. Cell-Wall-Associated Proteinases in Lactobacillus casei and Lactobacillus plantarum. J. Food Prot. 1986, 49, 361–365. [Google Scholar] [CrossRef]
Biogenic Amine | Content (mg/kg) |
---|---|
Tryptamine | 4.2345 ± 0.0715 a |
Putrescine | 0 ± 0.0303 d |
Cadaverine | 2.4258 ± 0.0408 b |
Histamine | 0.5827 ± 0.3727 c |
Tyramine | 2.9750 ± 0.005 b |
Spermidine | 3.7835 ± 0.0725 a |
Antibiotic | Diameter of Bacteriostatic Zone/mm | Sensitivity |
---|---|---|
Ampicillin | 38.16 ± 0.01 b | H |
Clindamycin | 40.02 ± 0.01 a | H |
Tetracycline | 19.24 ± 0.79 e | H |
Chloramphenicol | 34.03 ± 0.03 c | H |
Gentamicin | 1.11 ± 0.17 f | L |
Erythromycin | 23.48 ± 0.20 d | H |
Vancomycin | 0 | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, G.; Zhang, Z.; Wang, J.; Jiang, S.; Wang, H.; Xu, Y.; Li, X.; Chi, L.; Li, Y.; Tuo, Y.; et al. Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen. Foods 2022, 11, 88. https://doi.org/10.3390/foods11010088
Mu G, Zhang Z, Wang J, Jiang S, Wang H, Xu Y, Li X, Chi L, Li Y, Tuo Y, et al. Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen. Foods. 2022; 11(1):88. https://doi.org/10.3390/foods11010088
Chicago/Turabian StyleMu, Guangqing, Zhao Zhang, Jiayi Wang, Shujuan Jiang, Hongxin Wang, Yunpeng Xu, Xinling Li, Lei Chi, Yue Li, Yanfeng Tuo, and et al. 2022. "Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen" Foods 11, no. 1: 88. https://doi.org/10.3390/foods11010088
APA StyleMu, G., Zhang, Z., Wang, J., Jiang, S., Wang, H., Xu, Y., Li, X., Chi, L., Li, Y., Tuo, Y., & Zhu, X. (2022). Antigenicity and Safety Evaluation of Lactiplantibacillus plantarum 7-2 Screened to Reduce α-Casein Antigen. Foods, 11(1), 88. https://doi.org/10.3390/foods11010088