Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
Extraction of Essential Oil
2.3. Manufacturing of SLY
2.4. Proximate Composition Analysis
2.4.1. Chemical Composition
2.4.2. Determination of Total Phenolic Compounds
2.4.3. Determination of Total Flavonoids
2.4.4. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.5. Microbiological Analysis
2.5.1. Antimicrobial Activity of REO
- Minimum inhibitory concentrations (MICs):
2.5.2. Standard Plate Count Technique
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Components in REO
3.2. Antimicrobial Activity of REO
Minimum Inhibitory Concentration (MICs):
3.3. The Effect of REO Addition on the Shelf-Life of SLY
3.3.1. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3.3.2. Physico-Chemical Characterization
- Acidity:
- Total solids:
- Total protein:
- Fat:
3.3.3. Microbiological Changes
3.3.4. Sensory Evaluations
4. Discussion
4.1. Phytochemical Components in REO
4.1.1. Total Phenolics and Total Flavonoids
4.1.2. The Chemical Analysis and Identification of REO by GC/MS
4.2. Antimicrobial Activity of REO
Minimum Inhibitory Concentration (MICs)
4.3. The effect of REO Addition on the Shelf-Life of SLY
4.3.1. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4.3.2. Physico-Chemical Characterization
- Acidity:
- Total solid:
- Total protein:
- Fat:
4.3.3. Microbiological Changes
4.3.4. Sensory Evaluations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inanli, A.G.; Tümerkan, E.T.A.; El-Abed, N.; Regenstein, J.M.; Özogul, F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci. Technol. 2020, 97, 404–416. [Google Scholar] [CrossRef]
- Stratford, M. Food and beverage spoilage yeasts. In Yeasts in Food and Beverages; Amparo, Q., Graham, H.F., Eds.; The Yeast Handbook; Springer: Berlin, Germany, 2006; pp. 335–379. [Google Scholar]
- Burt, S.A.; Fledderman, M.J.; Haagsman, H.P.; van Knapen, F.; Veldhuizen, E.J.A. Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapour. Int. J. Food Microbiol. 2007, 119, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Tager, L.R.; Krause, K.M. Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci. 2011, 94, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- Berardini, N.; Knödler, M.; Schieber, A.; Carle, R. Utilization of mango peels as a source of pectin and polyphenolics. Innov. Food Sci. Emerg. Technol. 2005, 6, 442–452. [Google Scholar] [CrossRef]
- Belletti, N.; Kamdem, S.S.; Tabanelli, G.; Lanciotti, R.; Gardini, F. Modeling of combined effects of citral, linalool and β-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment. Int. J. Food Microbiol. 2010, 136, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.J.; Anand, U.; Altemimi, A.B.; Tripathi, V.; Guo, Y.; Pratap-Singh, A. Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants 2021, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Prieto, M.A.; Barreiro, M.F.; Carvalho, A.M.; Oliveira, M.B.P.; Vázquez, J.A.; Ferreira, I.C.F.R. Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food Bioprod. Process. 2016, 98, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, M.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef]
- Siejak, P.; Smułek, W.; Fathordobady, F.; Grygier, A.; Baranowska, H.M.; Rudzinska, M.; Masewicz, Ł.; Jarzebska, M.; Nowakowski, P.T.; Makiej, A.; et al. Multidisciplinary Studies of Folk Medicine “Five Thieves’ Oil” (Olejek Pieciu Złodziei) Components. Molecules 2021, 26, 2931. [Google Scholar] [CrossRef]
- Bourlioux, P.; Pochart, P. Nutritional and Health Properties of Yogurt. World Rev. Nutr. Diet 1988, 56, 217–258. [Google Scholar]
- Sahana, N.; Yasarb, K.; Hayaloglu, A.A. Physical, chemical and flavour quality of non-fat yogurt as affected by ab-glucan hydrocolloidal composite during storage. Food Hydrocoll. 2008, 22, 1291–1297. [Google Scholar] [CrossRef]
- Penna, A.L.B.; Gurram, S.; Barbosa-Cánovas, G.V. High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt. Food Res. Int. 2007, 40, 510–519. [Google Scholar] [CrossRef]
- Najafi, N.M.; Koocheki, A.; Rezaii, Z. Investigation of the effect of whey protein concentration on the properties of soft frozen yogurt. In Proceedings of the 9th International Hydrocolloids Conference, Singapore, 15 June 2008; Available online: http://profdoc.um.ac.ir/paper-abstract-1008710.html (accessed on 1 June 2022).
- Ghalem, B.R.; Zouaoui, B. Microbiological, physico-chemical and sensory quality aspects of yogurt enriched with Rosmarinus officinalis oil. Afr. J. BioTechnol. 2013, 12, 192–198. [Google Scholar]
- Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.P.; Devkota, H.P.; Nigam, M.; Adetunji, C.O.; Srivastava, N.; Saklani, S.; Shukla, I.; Azmi, L.; Shariati, M.A.; Coutinho, H.D.M.; et al. Combination of essential oils in dairy products: A review of their functions and potential benefits. LWT-Food Sci. Technol. 2020, 133, 110116. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P.A. pH and Titratable Acidity. In Food Analysis; Nielsen, S.S., Ed.; Springer: Berlin, Germany, 2010; pp. 219–238. [Google Scholar]
- AOAC Association of Official Analytical Chemists. Official Methods 965.33. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kleyn, D.H.; Lynch, J.M.; Barbano, D.M.; Bloom, M.J.; Mitchell, M.W.; Cooper, L.S.; Cusak, E.; Fick, M.; Hanks, T.; Hesen, M.K.; et al. Determination of Fat in Raw and Processed Milks by the Gerber Method: Collaborative Study. J. AOAC Int. 2001, 84, 1499–1508. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metallur. 2005, 40, 255–260. [Google Scholar]
- Wehr, H.M.; Frank, J.F. Standard Methods for the Examination of Dairy Products, 18th ed.; American Public Health Association: Washington, DC, USA, 2004. [Google Scholar]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Ashenafi, M. Microbiological quality of ayib, a traditional Ethiopian cottage cheese. Int. J. Food Microbiol. 1990, 10, 263–268. [Google Scholar] [CrossRef]
- Rashad, Y.M.G.; Faid, S.M. Effect of using different types of yeasts on the quality of Egyptian balady bread. J. Am. Sci. 2014, 10, 100–109. [Google Scholar]
- Kamel, D.G.; Hammam, A.R.A.; Khalid, A.; Dina, A.; Osman, M. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics. Food Sci. Nutr. 2020, 9, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Adris, A.A.; Tower, M.A.; Soultan, A.A.A.; Bellail, A.A.; Ibrahim, F.A.A. Antioxidant and Antimicrobial Activities of Rosmarinus officinalis L. Growing Naturally in El-Jabal El-Akhdar Province –Libya and its Effect on Keeping Quality of Cold Serola dumeriri Fillets. J. Food Dairy Sci. Mansoura Univ. 2019, 10, 23–30. [Google Scholar] [CrossRef]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT-Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Binzet, G.; Binzet, R.; Arslan, H. The essential oil compositions of Rosmarinus officinalis L. leaves growing in Mersin, Turkey. Eur. J. Chem. 2020, 11, 370–376. [Google Scholar] [CrossRef]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef]
- Elena, P.C.; Rocio, J.; Julio, E.P.; Manuel, A.; Javier, V. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT-Food Sci. Technol. 2009, 42, 705–709. [Google Scholar]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Kholy, W.E.; Aamer, R.A.; Mailam, M.A. Effect of Some Essential Oils on the Quality of UF-Soft Cheese During Storage. Alex. J. Food Sci. Technol. 2017, 14, 13–28. [Google Scholar]
- Jardak, M.; Elloumi-Mseddi, J.; Aifa, S.; Mnif, S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017, 16, 190. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef]
- Taheri, M.; Monshizadeh, M.; Kordiani, H.E. The relationship between organizational culture and organizational success: A case study. Manag. Sci. Lett. 2015, 5, 507–516. [Google Scholar] [CrossRef]
- Hamedo, H.A. Monitoring of Antimicrobial Activity of Essential Oils Using Molecular Markers. Open Biotechnol. J. 2009, 3, 103–107. [Google Scholar] [CrossRef]
- Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydro diffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.W.; Yin, Z.Q.; Wei, Q.; Jia, R.Y.; Zhou, L.J.; Xu, J.; Song, X.; Zhou, Y.; Du, Y.H.; et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar]
- Yeddes, W.; Nowacka, M.; Rybak, K.; Younes, I.; Hammami, M.; Saidani-Tounsi, M.; Witrowa-Rajchert, D. Evaluation of the Antioxidant and Antimicrobial Activity of Rosemary Essential Oils as Gelatin Edible Film Component. Food Sci. Technol. Res. 2019, 25, 321–329. [Google Scholar] [CrossRef]
- Valková, V.; Dúranová, H.; Galovicová, L.; Vukovic, N.L.; Vukic, M.; Kacániová, M. In Vitro Antimicrobial Activity of Lavender, Mint, and Rosemary Essential Oils and the Effect of Their Vapours on Growth of Penicillium spp. In a Bread Model System. Molecules 2021, 26, 3859. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Ponce, A.G.; del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. Lebens-Mittel-Wiss. Und-Technol.-LWT 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Abers, M.; Schroeder, S.; Goelz, L.; Sulser, A.; St. Rose, T.; Puchalski, K.; Langland, J. Antimicrobial activity of the volatile substances from essential oils. BMC Complement. Med. Ther. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Tsujisawa, T.; Nishihara, T.; Nakamura, M.; Kakinoki, Y. Antifungal activity of chemo type essential oils from rosemary against Candida albicans. Open J. Stomatol. 2013, 3, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Kabouche, Z.; Boutaghane, N.; Laggoune, S.; Kabouche, A.; Ait-Kaki, Z.; Benlabed, K. Comparative antibacterial activity of five Lamiaceae essential oils from Algeria. Int. J. Aromather. 2005, 15, 129–133. [Google Scholar] [CrossRef]
- Zakia, L.L. Spices and herbs—Their antimicrobial activity and its determination. J. Food Saf. 1988, 9, 97–118. [Google Scholar] [CrossRef]
- Deans, S.G.; Noble, R.C.; Hiltunen, R.; Wuryani, W.; Penzes, L.G. Antimicrobial and antioxidant properties of Syzygium aromaticum (L.) Merr. & Perry impact upon bacteria, fungi and fatty acid levels in ageing mice. Flav. Frag. J. 1995, 10, 323–328. [Google Scholar]
- Al-Marzoqi, A.H.; Hameed, I.H.; Idan, S.A. Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). Afr. J. BioTechnol. 2015, 14, 2812–2830. [Google Scholar]
- Udaweediye, L.R.; Premathilaka, R.; Ginigandarage, M.S.; Wiranjanee, S. Bioactive compounds and antioxidant activity of bunchosia armeniaca. World J. Pharm. Pharm. Sci. 2014, 5, 1237–1247. [Google Scholar]
- Saeidnia, S. Phthalate. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier Inc./Academic Press: London, UK, 2014; Volume 3, pp. 928–933. [Google Scholar]
- Karthi, S.; Somanath, B.; Ali, A.H. Efficacy of Methanolic Extract of a Marine Ascidian, Lissoclinum bistratum for Antimicrobial Activity. J. Chem. Biol. Phys. Sci. 2015, 5, 4119–4125. [Google Scholar]
- Vallianou, I.; Hadzopoulou-Cladaras, M. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression. PLoS ONE 2016, 11, e0147117. [Google Scholar] [CrossRef] [Green Version]
- Erland, L.; Bitcon, C.R.; Lemke, A.D.; Mahmoud, S.S. Antifungal Screening of Lavender Essential oils and Essential Oil Constituents on three Post-harvest Fungal Pathogens. Nat. Prod. Commun. 2016, 11, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Van der Wat, L.; Dovey, M.; Naudé, Y.; Forbes, P.B.C. Investigation into the Aroma of Rosemary using Multi-Channel Silicone Rubber Traps, Off-line Olfactometry and Comprehensive Two-dimensional Gas Chromatography-Mass SpectrometryS. Afr. J. Chem. 2013, 66, 21–26. [Google Scholar]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar]
- Zuccarini, P.; Soldan, G. Camphor: Benefits and risks of a widely used natural product. Acta Biol. Szeged. 2009, 53, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, M.G.; Wilson, M.A.; Gaskey, G.M. Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle). Flavour Fragr. J. 2003, 18, 106–115. [Google Scholar] [CrossRef]
- Priestap, H.A.; van Baren, C.M.; Lira, P.D.L.; Coussio, J.D.; Bandoni, A.L. Volatile constituents of Aristolochia argentina. Phytochemistry 2003, 63, 221–225. [Google Scholar] [CrossRef]
- Sujatha, P.; Evanjaline, M.; Muthukumarasamy, S.; Mohan, V.R. Determination of bioactive components of Barleria Courtallica Nees (ACANTHACEAE) by gas chromatography-mass spectrometry analysis. Asian J. Pharm. Clin. Res. 2017, 10, 273–283. [Google Scholar]
- Türkez, H.; Çelik, K.; Toğar, B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology 2014, 66, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oruch, R.; Pryme, I.F. The biological significance of vitamin A in humans: A review of nutritional aspects and Clinical considerations. Sci. Jet 2012, 1, 19. [Google Scholar]
- Pavithra, P.S.; Amr, S.V. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sci. 2018, 197, 19–29. [Google Scholar] [CrossRef]
- Altameme, H.J.; Hameed, I.H.; Abdulhasan, K.M. Analysis of alkaloid phytochemical compounds in the ethanolic extract of Datura stramonium and evaluation of antimicrobial activity. Afr. J. Biotechnol. 2015, 14, 1668–1674. [Google Scholar]
- Hadi, M.Y.; Mohammed, G.J.; Hameed, I.H. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J. Pharmacogn. Phytother. 2016, 8, 8–24. [Google Scholar]
- Mumtaz, M.Z.; Kausar, F.; Hassan, M.; Javaid, S.; Malik, A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 12. [Google Scholar] [CrossRef]
- Parker, J.K. Introduction to Aroma Compounds in Foods. In Flavour Development, Analysis and Perception in Food and Beverages; Parker, J.K., Elmore, S., Methven, L., Eds.; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Al Bratty, M.; Makeen, H.A.; Alhazmi, H.A.; Syame, S.M.; Abdalla, A.N.; Homeida, H.E.; Sultana, S.; Ahsan, W.; Khalid, A. Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. J. Chem. 2020, 2020, 4521951. [Google Scholar] [CrossRef]
- Kadhim, W.A.; Kadhim, M.J.; Hameed, I.H. Antibacterial Activity of Several Plant Extracts Against Proteus Species. Int. J. Pharm. Clin. Res. 2017, 8, 88–94. [Google Scholar]
- Dan, T.; Wang, D.; Jin, R.L.; Zhang, H.P.; Zhou, T.T.; Sun, T.S. Characterization of volatile compounds in fermented milk using solid-phase micro extraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, W.H.; El Gamal, A.A.; El-Sheddy, E.; Al-Oquil, M.; Farshori, N.N. The chemical composition and antimicrobial activity of the essential oil of Lavandula coronopifolia growing in Saudi Arabia. J. Chem. Pharm. Res. 2014, 6, 604–615. [Google Scholar]
- Lee, H.S.; Bilehal, D.; Lee, G.S.; Ryu, D.S.; Kim, H.K.; Suk, D.H.; Lee, D.S. Anti-inflammatory effect of the hexane fraction from Orostachys japonicusin RAW 264.7 cells by suppression of NF-κB and PI3K-Akt signaling. J. Funct. Foods 2013, 5, 1217–1225. [Google Scholar] [CrossRef]
- Hussein, J.; Hussein, M.; Hadi, Y.; Imad, I.H. Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography—Mass spectrometry. J. Pharmacogn. Phytother. 2016, 8, 60–89. [Google Scholar] [CrossRef] [Green Version]
- Guler, M.O.; Stupp, S.I. A Self-Assembled Nanofiber Catalyst for Ester Hydrolysis. J. Am. Chem. Soc. 2007, 129, 12082–12083. [Google Scholar] [CrossRef]
- Gurbuz, B.; Bahtiyarca, R.; Uyanik, M.; Rezaeieh, K.A.P. Rosemary (Rosmarinus officinalis L.) cultivation studies under Ankara ecological coditions. Ind. Crop. Prod. 2016, 88, 12–16. [Google Scholar] [CrossRef]
- Senthil, J.; Rameashkannan, M.V.; Mani, P. Phytochemical profiling of ethanolic leaves extract of lpomoea sepiara (Koenig Ex. Roxb). IJIRSET 2016, 5, 3140–3147. [Google Scholar]
- Ali, H.I.; Dey, M.; Alzubaidi, A.K.; Alneamah, S.J.A.; Altemimi, A.B.; Pratap-Singh, A. Effect of Rosemary (Rosmarinus officinalis L.) Supplementation on Probiotic Yogurt: Physicochemical Properties, Microbial Content, and Sensory Attributes. Foods 2021, 10, 2393. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, R.X.; Cao, X.; Liu, X.; Qin, X. Improved Physicochemical Properties of Yogurt Fortified with Fish Oil/γ-Oryzanol by Nanoemulsion Technology. Molecules 2018, 23, 56. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, O.M.; Abdel Nabi, A.S.Z. Chemical Composition of Mish “A Traditional Fermented Dairy Product” from Different Plants during Storage. Pak. J. Nutr. 2010, 9, 209–212. [Google Scholar]
- Al-Soudy, M.; E-Batawy, O.I.; Abdel Fattah, A.A.; Safaa, T.G.; El-Dsouky, W.I. Production of function yoghurt drink fortified with different types of herbal extracts and its biological attributes in hepatitis rats. Arab Univ. J. Agric. Sci. 2000, 82, 217–228. [Google Scholar]
- El-Sayed, S.A.; Mahmood, S.S.; Mohamed, A.F.; Ahmed, E.; Mohamed, A.E. Chemical Composition of Hydro distillation and Solvent Free Microwave Extraction of Essential Oils from Mentha piperita L. Growing in Taif, Kingdom of Saudi Arabia, and their Anticancer and Antimicrobial Activity. Orient. J. Chem. 2018, 34, 222–233. [Google Scholar]
- Thabet, H.M.; Nogaim, Q.A.; Qasha, A.S.; Abdoalaziz, O.; Alnsheme, N. Evaluation of the effects of some plant derived essential oils on shelf-life extension of Labneh. Merit Res. J. Food Sci. Technol. 2014, 2, 8–14. [Google Scholar]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010, 120, 308–312. [Google Scholar] [CrossRef]
- Kaminarides, S.; Stamou, P.; Massouras, T. Comparison of the Characteristics of Set Type Yogurt Made from Ovine Milk of Different Fat Content. Int. J. Food Sci. Technol. 2007, 42, 1019–1028. [Google Scholar] [CrossRef]
Peak No. | RT* (min) | Compound Name | Area% |
---|---|---|---|
1 | 5.81 | Octadecanal, 2-bromo- | 0.0126 |
2 | 7.32 | 9-Hexadecenoic acid | 0.0295 |
3 | 7.6 | Morphinan-4,5-epoxy-3,6-di-ol 6-[7-nitrobenzofurazan-4-yl]amino- | 0.0077 |
4 | 8.79 | 2,4,6,8,10-Tetradecapentaenoic acid9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-3-(hydroxyl methyl)-1,1,6,8-tetra methyl-5-oxo-1H-cyclopropa[3,4]benz = [1,2-e]azulen-9-ylester, | 0.0061 |
5 | 9.82 | Ocimene | 0.0209 |
6 | 10.9 | Tricyclo[2.2.1.0(2,6)]heptane,1,7,7-tri methyl- | 0.2565 |
7 | 11.46 | α-Pinene | 15.3175 |
8 | 11.55 | 3-Carene | 8.2993 |
9 | 12.56 | Camphene | 8.3843 |
10 | 16.13 | α-Phellandrene | 0.3851 |
11 | 16.56 | 1R-à-Pinene | 0.2715 |
12 | 17.56 | Limonene | 0.0053 |
13 | 17.8 | Eucalyptol | 9.3686 |
14 | 18.11 | Trifluoroacetyl-α-terpineol | 3.6107 |
15 | 19.14 | Phenylalanine,4-amino-N-t-butyloxycarbonyl-, t-butylester | 0.0015 |
16 | 19.47 | 2-Furanmethanol, | 0.0232 |
17 | 19.88 | à-D-Glucopyranoside, methyl | 0.0034 |
18 | 20.19 | Bicyclo[4.1.0]hept-2-ene, | 0.7319 |
19 | 20.34 | 1,6-Octadien-3-ol, 3,7-di methyl- | 2.1247 |
20 | 20.54 | trans-Z-α-Bisabolene epoxide | 0.0061 |
21 | 20.88 | Oxiraneoctanoic acid, 3-octyl-, cis- | 0.0049 |
22 | 21.17 | 2,5-Octadecadiynoic acid, methyl ester | 0.0105 |
23 | 21.42 | Fenchol, exo- | 0.1846 |
24 | 21.85 | Camphenol, 6- | 0.0987 |
25 | 22.36 | 2,4,6-Decatrienoic acid, 1a,2,5,5a,6,9,10,10a-octahydro-5,5a-di hydroxy-4-(hydroxyl methyl)-1,1,7,9-tet ramethyl-11-oxo-1H-2,8a-methanocycl openta[a]cyclopropa[e]cyclodecen-6-yl ester, [1aR-(1aà,2à,5á,5aá,6á,8aà,9à,10aà)]- | 0.0057 |
26 | 22.7 | Isopinocarveol | 0.0103 |
27 | 23.17 | Bicyclo[2.2.1]heptan-2-one, 1,7,7-tri methyl-, (1R)- (camphor) | 21.8229 |
28 | 24.03 | Borneol | 8.1423 |
29 | 24.36 | 3-Cyclohexen-1-ol, | 1.2918 |
30 | 24.97 | 3-Cyclohexene-1-methanol, à,à4-tri methyl- | 4.4136 |
31 | 25.34 | (-)-Myrtenol | 0.0170 |
32 | 25.53 | 9-Octadecenoic acid,(2-phenyl-1,3-dioxolan-4-yl)methyl ester, trans- | 0.0117 |
33 | 26.17 | 6-Octen-1-ol, 3,7-di methyl- | 0.0756 |
34 | 26.68 | Ingol 12-acetate | 0.0103 |
35 | 27.23 | Isobornyl formate | 0.0161 |
36 | 27.77 | Geranyl vinyl ether | 0.0391 |
37 | 28.7 | E,E,Z-1,3,12-Nonadecatriene-5,14-diol | 0.0096 |
38 | 29.04 | Linoleic acid ethyl ester | 0.0120 |
39 | 29.54 | 2,2,4-Tri methyl-3-(3,8,12,16-tetrameth yl-heptadeca-3,7,11,15-tetraenyl)-cycl ohexanol | 0.0072 |
40 | 29.75 | Thymol | 0.0303 |
41 | 30.65 | Bornyl acetate | 1.3593 |
42 | 31 | Phenol, 2-methyl-5-(1-methyl ethyl)- | 0.0488 |
43 | 31.77 | 9,10-Secocholesta-5,7,10(19)-triene-3, | 0.0013 |
44 | 32.6 | 2-Butenoic acid, 2-methyl-,2-(acetyloxy)-1,1a,2,3,4,6,7,10,11,11adecahydro-7,10-dihydroxy-1,1,3,6,9-pe ntamethyl-4a,7a-epoxy-5H-cyclopenta[a]cyclopropa[f]cycloundecen-11-yl ester, [1aR-[1aR*,2R*,3S*,4aR*,6S*,7S*,7aS | 0.0127 |
45 | 33.05 | Doconexent | 0.0091 |
46 | 34.15 | Gibberellic acid | 0.0063 |
47 | 34.61 | Eugenol | 0.2061 |
48 | 35.49 | Retinol | 0.0006 |
49 | 35.9 | Ylangene | 0.1776 |
50 | 36.13 | Copaene | 0.8834 |
51 | 36.69 | 1H-Cycloprop[e]azulene, decahydro-1,1,7-tri methyl-4-methylene-, [1aR-(1aà,4aá,7à,7aá,7bà)] | 0.0679 |
52 | 37.31 | Androstan-17-one, 3-ethyl-3-hydroxy-, (5à)- | 0.0120 |
53 | 38.46 | Caryophyllene | 9.8533 |
54 | 38.7 | Aromadendrene | 0.0999 |
55 | 39.52 | Humulen-(v1) | 0.1179 |
56 | 39.83 | α-Caryophyllene | 1.1039 |
57 | 40.87 | 1,6-Cyclodecadiene,1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]- | 0.0494 |
58 | 41.32 | Longifolene-(V4) | 0.2488 |
59 | 41.73 | Seychellene | 0.0396 |
60 | 42.46 | 1H-Indene, 2,3-dihydro-1,1,5,6-tetra methyl-, | 0.0118 |
61 | 42.84 | α-Cubebene | 0.0368 |
62 | 43.06 | α-Guaiene | 0.0280 |
63 | 43.42 | α-Calacorene | 0.0713 |
64 | 44.17 | 6,9,12,15-Docosatetraenoic acid, methyl ester | 0.0395 |
65 | 45.14 | Cyclopropanebutanoic acid, | 0.0018 |
66 | 45.79 | Caryophyllene oxide | 0.0771 |
67 | 46.5 | Pseudosolasodine diacetate | 0.0061 |
68 | 47.13 | Cubenol | 0.0321 |
69 | 47.69 | Patchoulene | 0.0168 |
70 | 47.91 | Methyl jasmonate | 0.0093 |
71 | 48.35 | .tau.-Cadinol | 0.0818 |
72 | 49.5 | Longipinocarveol, trans | 0.0409 |
73 | 50.33 | 1H-2,8a-Methanocyclopenta[a]cyclopr opa[e]cyclodecen-11-one, 1a,2,5,5a,6,9,10,10a-octahydro-5,5a,6-t rihydroxy-1,4-bis(hydroxyl methyl)-1,7,9-tri methyl-, [1S-(1à,1aà,2à,5á,5aá,6á,8aà,9à,10aà)]- | 0.0341 |
74 | 54.21 | Cinnamic acid, 4-hydroxy-3-methoxy-, | 0.0007 |
75 | 55.01 | Agaricic acid | 0.0008 |
76 | 55.6 | 7aH-Cyclopenta[a]cyclopropa[f]cycloundecene-2,4,7,7a,10,11-hexol,1,1a,2,3,4,4a,5,6,7,10,11,11a-dodecahydro-1,1,3,6,9-penta methyl-,2,4,7,10,11-pentaacetate | 0.0160 |
77 | 59.2 | Dodecyl cis-9,10-epoxyoctadecanoate | 0.0038 |
78 | 59.7 | Butanoic acid,1a,2,5,5a,6,9,10,10a-octahydro | 0.0022 |
79 | 60.97 | 1-Heptatriacotanol | 0.0143 |
80 | 61.56 | Prednisone | 0.0114 |
81 | 62.69 | Docosanoic acid, 1,2,3-propanetriyl ester | 0.0095 |
82 | 64.12 | 2-(16-Acetoxy-11-hydroxy-4,8,10,14-tetra methyl-3- | 0.0031 |
83 | 64.63 | 4aà,4bá-Gibbane-1à,10á-dicarboxylic acid | 0.0007 |
84 | 65.03 | 7,8-Epoxylanostan-11-ol, 3-acetoxy | 0.0018 |
85 | 65.42 | 4a-Phorbol 12,13-didecanoate | 0.0020 |
86 | 70.37 | Hexadecanoic acid,1-(hydroxyl methyl)-1,2-ethanediyl ester | 0.0059 |
87 | 71.68 | 1-Monolinoleoylglycerol tri methyl silyl ether | 0.0142 |
88 | 74.31 | psi.,.psi.-Carotene,1,1′,2,2′-tetrahydro-1,1′-dimethoxy- | 0.0008 |
89 | 74.73 | Glycine N-[(3à,5á,7à,12à)-24-oxo-3,7,12-tris[(tri methyl silyl)oxy]cholan-24-yl]-,methyl ester | 0.0062 |
90 | 75.44 | 9,12,15-Octadecatrienoic acid, | 0.0007 |
91 | 75.66 | 3-Pyridinecarboxylic acid,2,7,10-tris(acetyloxy)-1,1a,2,3,4,6,7,10,11,11a-decahydro-1,1,3,6,9-penta methyl-4-oxo-4a,7a-epoxy-5H-cyclopenta[a]cyclopropa[f]cycloundecen-11-ylester,[1aR-] | 0.0059 |
REO Concentration (%) | 12.5 | 25 | 50 | 100 | DMSO * | |
---|---|---|---|---|---|---|
Microorganisms | Inhibition Zone (mm) | |||||
Escherichia coli (G-ve) AUMC No. B-53 | 0 | 6 | 7 | 13 | 0 | |
Salmonella marcescens (G-ve) AUMC No. B- | 0 | 6 | 7 | 13 | 0 | |
Staphylococcus aureus (G + ve) AUMC No. B-54 | 0 | 6 | 8 | 14 | 0 | |
Aspergillus flavus AUMC No. 1276 | Nd | Nd | Nd | 7 | 0 | |
Candida albicans AUMC No. 9160 | Nd | Nd | Nd | 9 | 0 |
No | Compounds/Treatments | C | T1 | T2 | |||
---|---|---|---|---|---|---|---|
Fresh | After 16 Days | Fresh | After 16 Days | Fresh | After 16 Days | ||
1 | Octadecanal, 2-bromo- | 2.807 | 0 | 0.593 | 0.566 | 0.292 | 0.292 |
2 | 9-Octadecenoic acid,(2-phenyl-1,3-dioxolan-4-yl) methyl ester, trans- | 0.265 | 0.455 | 0.197 | 0.299 | 0.126 | 0.118 |
3 | 1-Heptatriacotanol | 1.347 | 0.381 | 0.264 | 0.448 | 0.182 | 0.079 |
4 | psi.,.psi.-Carotene,3,4-didehydro-1,2-dihydro-1-methoxy | 0 | 0.692 | 0 | 0.508 | 0.419 | 0.161 |
5 | psi.,.psi.-Carotene,1,1′,2,2′-tetrahydro-1,1′-dimethoxy- | 3.226 | 0 | 1.382 | 0 | 0.183 | 0 |
6 | Docosanoic acid, 1,2,3-propanetriyl ester | 0.906 | 0.830 | 2.175 | 5.428 | 2.583 | 7.619 |
8 | Eucalyptol | 4.681 | 2.632 | 45.936 | 37.258 | 48.772 | 40.417 |
9 | α-Pinene | 0 | 0 | 8.308 | 4.609 | 7.069 | 3.610 |
11 | α-D-Glucopyranoside, methyl2-(acetyl amino)-2-deoxy-3-O-(tri methyl silyl)-, cyclic methyl boronate | 0.366 | 0 | 0.057 | 0.068 | 0.065 | 0.114 |
12 | 2,4,6,8,10-Tetradecapentaenoic acid9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b- dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-oxo-1H-cy clopropa[3,4]benz[1,2-e]azulen-9-ylester | 0.605 | 0.149 | 0.121 | 0.142 | 0.068 | 0.050 |
13 | Morphinan-4,5-epoxy-3,6-di-ol6-[7-nitrobenzofurazan-4-yl]amino- | 0.408 | 0.238 | 0 | 0.040 | 0.046 | 0 |
14 | Oleic acid, eicosyl ester | 2.366 | 2.949 | 0.414 | 2.188 | 0.588 | 1.065 |
15 | Geranyl isovalerate | 0.828 | 0.409 | 0.239 | 0 | 0 | 0 |
16 | 9,10-Secocholesta-5,7,10-triene-3,24,25-triol, | 0.961 | 0.124 | 0.726 | 0 | 0.802 | 1.967 |
17 | Bis(benzimidazol-2-ylmethyl)sulfone | 0 | 0.218 | 0.180 | 0.166 | 0 | 0 |
18 | 9-Hexadecenoic acid | 1.017 | 0.895 | 0.252 | 0.314 | 0 | 0 |
19 | Hexadecanoic acid,1-(hydroxyl methyl)-1,2-ethanediyl ester | 1.318 | 1.525 | 0.675 | 1.259 | 0.601 | 0.541 |
20 | Cyclopropanebutanoic acid,2-[[2-[[2-[(2-pentylcyclopropyl)methyl]cyclopropyl]methyl]cyclopropyl]methyl]-, methyl ester | 2.429 | 0.778 | 0.447 | 0.558 | 0.313 | 0.275 |
21 | 4aà,4bá-Gibbane-1à,10á-dicarboxylic acid, | 1.438 | 0.327 | 0.274 | 0.511 | 0.182 | 0.088 |
22 | 3-Pyridinecarboxylic acid,2,7,10-tris(acetyloxy)-1,1a,2,3,4,6,7,10,11,11a-decahydro-1,1,3,6,9-penta methyl-4-oxo-4a,7a-epoxy-5H-cyclopenta[a]cyclopropa[f]cycloundecen-11-ylester,[1aR-] | 2.093 | 0.284 | 0.300 | 0.169 | 0.208 | 0.047 |
23 | Octadecane, 3-ethyl-5-(2-ethylbutyl)- | 2.223 | 0.542 | 0.356 | 0.342 | 0.221 | 0.191 |
24 | Agaricic acid | 0.876 | 0.186 | 0.146 | 0.131 | 0.093 | 0.175 |
25 | Phenol, 2,4-bis(1,1-di methyl ethyl) | 42.117 | 11.887 | 7.059 | 7.005 | 4.473 | 4.186 |
26 | 1-Nonadecene | 10.516 | 2.005 | 1.867 | 2.188 | 1.256 | 1.154 |
27 | 7-Methyl-Z-tetradecen-1-ol acetate | 1.020 | 0.294 | 0.178 | 0.188 | 0.114 | 0.160 |
28 | 9,12,15-Octadecatrienoic acid, 2-phenyl-1,3-dioxan-5-yl ester | 2.916 | 1.173 | 0.599 | 3.534 | 0.456 | 0.461 |
29 | Oxiraneoctanoic acid, 3-octyl-, cis- | 0.838 | 0.215 | 0.202 | 0.223 | 0.125 | 0.097 |
30 | Cinnamic acid, 4-hydroxy-3-methoxy-, | 0.477 | 0.202 | 0.155 | 0 | 0.111 | 0.068 |
31 | Cholest-22-ene-21-ol, | 0 | 0.249 | 0.091 | 0.168 | 0.159 | 0.129 |
32 | Phorbol | 0.117 | 0.235 | 0 | 0.124 | 0.0548 | 0 |
33 | Bacteriochlorophyll-c-stearyl | 0 | 3.328 | 0 | 2.016 | 1.386 | 0.678 |
34 | Butanoic acid,1a,2,5,5a,6,9,10,10a-octahydro | 0 | 0.136 | 0 | 0 | 0 | 0.0924 |
35 | Phthalic acid, butyl undecyl ester | 2.629 | 0.841 | 0.487 | 0.787 | 0.339 | 0.322 |
36 | Dodecyl cis-9,10-epoxyoctadecanoate | 0 | 5.232 | 0 | 2.259 | 0 | 5.654 |
37 | Pregn-5-ene-3,11-dione,17,20:20,21- | 0.318 | 0.588 | 0.122 | 0.063 | 0.125 | 0.207 |
38 | Methyl 9,12-epithiostearate | 0 | 0.830 | 0 | 0.477 | 0 | 0 |
39 | 3,5,9-Trioxa-4-phosphatricosan-1-aminium | 0 | 0.542 | 0 | 1.791 | 0 | 0.183 |
40 | Eicosanoic acid,2-[(1-oxohexadecyl)oxy]- | 0 | 21.207 | 0 | 0.814 | 0 | 2.801 |
41 | 7,8-Epoxylanostan-11-ol, 3-acetoxy | 0.548 | 7.066 | 0.105 | 0.562 | 0.053 | 1.224 |
42 | Hexa-t-butylselenatrisiletane | 0 | 4.938 | 1.086 | 0 | 1.110 | 2.424 |
43 | 4a-Phorbol 12,13-didecanoate | 0.161 | 0.224 | 0.059 | 1.511 | 0.128 | 0.111 |
44 | Glycocholic acid | 0 | 1.068 | 0 | 3.151 | 0 | 0 |
45 | Acetic acid,17-(4-hydroxy-5-methoxy-1,5-di methyl hexyl)-4,4,10,13,14-penta methyl | 0.268 | 12.329 | 0.081 | 0.0451 | 0.0534 | 0.568 |
46 | 4-Piperidineacetic acid,1-acetyl-5-ethyl-2-[3-(2- | 0 | 2.215 | 0 | 1.022 | 0 | 0.866 |
47 | Glycerol 2-acetate 1,3-dipalmitate | 0 | 9.230 | 0 | 0.206 | 0 | 2.633 |
48 | Camphene | 0 | 0 | 2.463 | 1.452 | 1.957 | 1.082 |
49 | Ocimene | 0.937 | 0 | 0.287 | 0.307 | 0.226 | 0.219 |
50 | 3-Carene | 0 | 0 | 0.130 | 0 | 0.098 | 0 |
51 | Limonene | 0 | 0 | 1.459 | 0.866 | 1.225 | 0.606 |
52 | Octadecanoic acid,(2-phenyl-1,3-dioxolan-4-yl)methyl ester, cis- | 1.017 | 0.145 | 0.185 | 0.097 | 0.125 | 0.051 |
53 | 1,6-Octadien-3-ol, 3,7-dimethyl- | 0 | 0 | 0.942 | 0.680 | 0.941 | 0.693 |
54 | Camphor | 0 | 0 | 10.046 | 8.242 | 11.340 | 10.249 |
55 | 6,9,12,15-Docosatetraenoic acid, methyl ester | 0.842 | 0 | 0.281 | 0.352 | 0 | 0.276 |
56 | Borneol | 0 | 0 | 3.748 | 2.850 | 4.018 | 3.397 |
57 | Phenylalanine,4-amino-N-t-butyloxycarbonyl-, t-butylester | 0.531 | 0 | 0.072 | 0 | 0 | 0.105 |
58 | Tetradecanoic acid,3,3a,4,6a,7,8,9,10,10a | 0.542 | 0 | 0.070 | 0.131 | 0.055 | 0.068 |
59 | Bornyl acetate | 0 | 0 | 0.508 | 0 | 0.541 | 0.375 |
60 | Caryophyllene | 0 | 0 | 2.757 | 1.654 | 2.564 | 1.757 |
61 | Copaene | 0 | 0 | 0.230 | 0 | 0.218 | 0.136 |
62 | Retinol | 0 | 0 | 0.103 | 0 | 0.102 | 0.154 |
63 | Aromadendrene oxide-(2) | 0 | 0 | 0.462 | 0 | 0.417 | 0 |
64 | α-guaiene | 0 | 0 | 0.200 | 0 | 0.195 | 0 |
65 | Estra-1,3,5(10)-trien-17á-ol | 0.733 | 0 | 0.049 | 0.151 | 0.045 | 0 |
66 | Ethanol, 2-(octadecyloxy)- | 1.437 | 0 | 0.356 | 0 | 0 | 0 |
67 | 2-(16-Acetoxy-11-hydroxy-4,8,10,14-tetra methyl-3- | 0.443 | 0 | 0.068 | 0.071 | 0.063 | 0 |
68 | Glycine N-[(3à,5á,7à,12à)-24-oxo-3,7,12-tris[(tri methyl silyl)oxy]cholan-24-yl]-,methyl ester | 0.332 | 0 | 0.153 | 0 | 2.583 | 0 |
69 | 1-Monolinoleoylglycerol trim ethyl silyl | 1.425 | 0 | 0.290 | 0 | 0.525 | 0 |
Microbial Type | Storage Time (d) | Treatments | ||
---|---|---|---|---|
Control | T1 | T2 | ||
Total bacterial count | Fresh | 7.24 ± 0.24 | 7.24 ± 0.010 | 7.25 ± 0.010 |
4 | 7.47 ± 0.373 | 7.34 ± 0.010 | 7.30 ± 0.010 | |
8 | 8.09 ± 0.090 | 7.86 ± 0.117 | 7.80 ± 0.179 | |
12 | 8.51 ± 0.036 | 8.42 ± 0.040 | 8.31 ± 0.036 | |
16 | 8.66 ± 0.056 | 8.55 ± 0.055 | 8.506 ± 0.112 | |
Mean | 7.99 a | 7.88 b | 7.83 b | |
Lactic acid bacteria | Fresh | 7.02 ± 0.02 | 7.10 ± 0.01 | 7.20 ± 0.01 |
4 | 7.40 ± 0.01 | 7.50 ± 0.02 | 7.70 ± 0.02 | |
8 | 8.18 ± 0.02 | 8.55 ± 0.20 | 8.64 ± 0.13 | |
12 | 8.37 ± 0.01 | 8.73 ± 0.06 | 8.82 ± 0.05 | |
16 | 8.39 ± 0.01 | 8.75 ± 0.07 | 8.89 ± 0.01 | |
Mean | 7.87 c | 8.13 b | 8.25 a | |
Yeasts count | Fresh | 0.00 | 0.00 | 0.00 |
4 | 0.00 | 0.00 | 0.00 | |
8 | 6.88 ± 0.04 | 0.00 | 0.00 | |
12 | 7.62 ± 0.24 | 7.10 ± 0.10 | 6.77 ± 0.06 | |
16 | 8.04 ± 0.35 | 7.20 ± 0.10 | 6.84 ± 0.01 | |
Mean | 4.506 a | 2.86 b | 2.72 c | |
Molds count | Fresh | ND | ND | ND |
4 | ND | ND | ND | |
8 | 6.20 ± 0.17 | ND | ND | |
12 | 6.26 ± 0.24 | ND | ND | |
16 | 6.26 ± 0.24 | ND | ND | |
Mean | 3.74 a | 0.00 b | 0.00 b | |
Coliform count | Fresh | ND* | ND | ND |
4 | ND | ND | ND | |
8 | ND | ND | ND | |
12 | ND | ND | ND | |
16 | ND | ND | ND | |
Mean | ND | ND | ND |
Items | Storage Time (d) | Treatments | SEM | ||
---|---|---|---|---|---|
Control | T1 | T2 | |||
Flavor | Fresh | 39.00 ± 1.00 | 40.00 ± 1.00 | 40.33 ± 0.577 | 0.32 |
4 | 38.00 ± 1.00 | 41.33 ± 0.577 | 41.33 ± 0.577 | 0.60 | |
8 | 36.33 ± 0.577 | 42.00 ± 1.00 | 42.00 ± 1.00 | 0.98 | |
12 | 35.00 ± 1.00 | 43.00 ± 1.00 | 43.00 ± 1.00 | 1.36 | |
16 | 33.00 ± 1.00 | 43.67 ± 0.577 | 43.33 ± 0.577 | 1.76 | |
Mean | 36.27 b | 42.00 a | 42.00 a | 0.48 | |
Body and texture | Fresh | 12.00 ± 0.577 | 12.33 ± 1.00 | 13.00 ± 0.577 | 0.29 |
4 | 11.00 ± 0.577 | 12.33 ± 1.00 | 12.33 ± 0.577 | 0.42 | |
8 | 10.33 ± 0.577 | 12.00 ± 0.577 | 12.67 ± 0.577 | 0.47 | |
12 | 9.33 ± 1.00 | 13.00 ± 1.00 | 13.00 ± 1.00 | 0.66 | |
16 | 9.00 ± 1.00 | 13.33 ± 1.00 | 12.67 ± 1.155 | 0.75 | |
Mean | 10.33 b | 12.60 a | 12.73 a | 0.24 | |
Appearance | Fresh | 12.00 ± 1.00 | 12.33 ± 0.577 | 13.00 ± 1.00 | 0.29 |
4 | 11.00 ± 1.00 | 12.33 ± 1.155 | 12.33 ± 1.528 | 0.42 | |
8 | 10.33 ± 0.577 | 12.00 ± 1.00 | 12.67 ± 1.528 | 0.47 | |
12 | 9.33 ± 0.577 | 13.00 ± 1.00 | 13.00 ± 1.00 | 0.66 | |
16 | 9.00 ± 1.00 | 13.33 ± 0.577 | 12.67 ± 1.528 | 0.75 | |
Mean | 10.33 b | 12.60 a | 12.73 a | 0.24 | |
Overall acceptability | Fresh | 87.33 ± 1.155 | 89.33 ± 2.082 | 91.00 ± 1.00 | 0.68 |
4 | 84.67 ± 1.155 | 89.67 ± 1.155 | 90.33 ± 0.577 | 0.94 | |
8 | 81.33 ± 0.577 | 89.67 ± 1.528 | 91.00 ± 3.00 | 1.62 | |
12 | 78.33 ± 1.528 | 92.00 ± 1.00 | 93.00 ± 2.00 | 2.41 | |
16 | 75.00 ± 1.00 | 94.00 ± 1.00 | 92.67 ± 2.082 | 3.09 | |
Mean | 81.33 b | 90.93 a | 91.60 a | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, D.G.; Mansour, A.I.A.; El-diin, M.A.H.N.; Hammam, A.R.A.; Mehta, D.; Abdel-Rahman, A.M. Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making. Foods 2022, 11, 1993. https://doi.org/10.3390/foods11141993
Kamel DG, Mansour AIA, El-diin MAHN, Hammam ARA, Mehta D, Abdel-Rahman AM. Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making. Foods. 2022; 11(14):1993. https://doi.org/10.3390/foods11141993
Chicago/Turabian StyleKamel, Dalia Gamal, Ali I. A. Mansour, Mohamed A. H. Nagm El-diin, Ahmed R. A. Hammam, Dipakkumar Mehta, and Asmaa Mohamed Abdel-Rahman. 2022. "Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making" Foods 11, no. 14: 1993. https://doi.org/10.3390/foods11141993
APA StyleKamel, D. G., Mansour, A. I. A., El-diin, M. A. H. N., Hammam, A. R. A., Mehta, D., & Abdel-Rahman, A. M. (2022). Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making. Foods, 11(14), 1993. https://doi.org/10.3390/foods11141993