Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application
Abstract
:1. Introduction
2. Flaxseed Gum
2.1. Methods of Extraction
2.2. Chemical Composition and Structure
Constituent | Content [g/100 g] | References |
---|---|---|
Proteins | 1.5–22.1 | [24,39,41,47,52] |
Ashes | 0.6–11.2 | [24,39,41,47] |
Saccharides | 67.7–90.4 | [24,41] |
Fats | 0.3–2.1 | [24,41,47] |
Moisture | 3.4–5.5 | [24,41,47] |
Monosaccharide | Relative Monosaccharide Compositions [%] | |||
---|---|---|---|---|
Safdar et al. [24] | Kaushik et al. a [41] | Qian et al. [56] | Cui and Mazza b [49] | |
Arabinose | 8.3 | 25.4–28.0 | 9.8 | 6.9–10.7 |
Xylose | 13.5 | 42.9–47.6 | 29.7 | 16.1–29.5 |
Galactose | 18.7 | 13.0–14.0 | 17.2 | 15.8–21.6 |
Glucose | 20.0 | 2.3–3.1 | 2.1 | 1.7–6.2 |
Rhamnose | 23.9 | 7.0–8.2 | 12.7 | 16.7–20.4 |
Fucose | 8.0 | 2.9–3.8 | 5.4 | 4.0–5.3 |
Galacturonic acid | 6.8 | ND | 23.0 | 21.0–25.1 |
Mannose | 0.4 | NR | NR | ND |
Ribose | 0.2 | NR | NR | NR |
Glucuronic acid | 0.03 | NR | NR | NR |
Glucosamine | 0.2 | NR | NR | NR |
2.3. Functional Properties
2.4. Biological and Physiological Activities
2.5. Potential Applications
Functional Properties | Potential Application and Effects/Types of Food Products | References |
---|---|---|
Viscosity | Increase viscosity of food products or beverages; affects rheological properties/fruit and vegetable juices, salad dressings, bakery products | [26,40,61,70,71] |
Shear thinning and gelling properties | Increase viscosity or gelling properties of food products/gelled food products | [62,63,67] |
Water holding and oil binding capacities | Texture improvement; increase in the water-holding capacity of meat products; improvement of appearance, structure and porosity of bread/meat and bakery products | [3,27,41,60,69] |
Emulsifying activity and emulsion stability | Improvement of firmness and elasticity; stabilization of oil and water emulsions; egg white substitution/sausages, bakery products, ice creams | [26,64,74] |
Stabilizing and thickening properties | Improvement of creaming stability; foaming stability; decrease in a syneresis rate; affects pasting, dough rheology and baking procedure/plant oil, stirred yogurts, bread or other bakery products | [26,42,63,64,72] |
Thermal stability | Functional agent in heat-processed food products/thermal-treated food products | [50] |
Coating properties | Coating of plant or food products leading to prolonged shelf-life of food products due to inhibition of microbial spoilage and preserving the sensory characteristics; encapsulation of unstable compounds protecting them against oxidative deterioration/fruits, cheese, oils, volatile compounds and other plant or food products | [76,77,78,82,83,84,85,86,87] |
Prebiotic capacity | Promotion of survivability and growth of Lactobacillus rhamnosus in gastrointestinal tract/fruit tea, other functional food products | [79,80,81] |
Sensory-affecting properties | Improvement of the sensory properties/bakery or other food products | [46,69] |
3. Flaxseed Proteins and Peptides
3.1. Methods of Extraction and Purification
3.2. Structural Characteristics
3.3. Functional Properties
Functional Properties | Potential Application and Effects/Types of Food Products | References |
---|---|---|
Solubility | Fortification of beverages/protein drinks | [110,114] |
Foaming activity and stability | Texture improvement of aerated products; egg white substitution/whipped desserts or other similar products | [35,114,118,119] |
Emulsifying activity, capacity and emulsion stability | Texture improvement; stabilisation of products; oil dispersion; egg yolk substitution/(meat) emulsions, ice creams, sauces | [35,114,118,119] |
Thermal stability | Functional agent in heat-processed food products/thermal-treated food products | [100] |
Water holding and oil binding capacities | Improvement of texture, softness and juiciness/meat products, bakery products | [34,100,118,119] |
Interactions with (poly)saccharides | Synergically with carbohydrates increase in viscosity and viscoelasticity; water-binding capacity; improvement of emulsion stability, foaming capacity, foam stability; texture improvement; coating of food products for improvement of quality attributes and shelf-life; transport of the encapsulated probiotics into human intestine/meat emulsions, sauces, ice creams, gelled food products, food supplements | [36,75,120,121,122,123,124] |
Fungistatic activity | Prolonged shelf-life of food products/short shelf-life food products | [125,126,127] |
Sensory characteristics (proteins and thermal-treated protein hydrolysates) | Improvement of sensory properties of food products (color, aroma, flavour)/various food products | [94,116,117] |
3.4. Biological and Physiological Activities
3.5. Potential Applications
4. Practical Comparison of FG and FPs with other Commonly Used Hydrocolloids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomah, B.D. Flaxseed by-products. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, B.D., Vergara-Castaneda, H.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 267–289. [Google Scholar]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary flaxseed as a strategy for improving human health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuijsten, A.; Arts, I.C.W.; van’t Veer, P.; Hollman, P.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J. Nutr. 2005, 135, 2812–2816. [Google Scholar] [CrossRef]
- Morris, D.H. Flax: A Health and Nutrition Primer; Flax Council of Canada: Winnipeg, MB, Canada, 2007; p. 140. [Google Scholar]
- Singh, K.K.; Mridula, D.; Rehal, J.; Barnwal, P. Flaxseed: A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr. 2011, 51, 210–222. [Google Scholar] [CrossRef]
- Rubilar, M.; Gutiérrez, C.; Verdugo, M.; Shene, C.; Sineiro, J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010, 10, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Wüstenberg, T. General overview of food hydrocolloids. In Cellulose and Cellulose Derivatives in the Food Industry; Wüstenberg, T., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–68. [Google Scholar]
- Williams, P.A.; Phillips, G.O. 1—Introduction to food hydrocolloids. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 1–22. [Google Scholar]
- Izydorczyk, M.; Cui, S.; Wang, Q. Polysaccharide gums: Structures, functional properties, and applications. In Food Carbohydrates: Chemistry, Physical Properties and Applications, 1st ed.; Cui, S.W., Ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 46. [Google Scholar]
- González-Pérez, S.; Arellano, J.B. 15—Vegetable protein isolates. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 383–419. [Google Scholar]
- Xu, X.; Liu, W.; Liu, C.; Luo, L.; Chen, J.; Luo, S.; McClements, D.J.; Wu, L. Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocoll. 2016, 61, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Zang, X.; Yue, C.; Wang, Y.; Shao, M.; Yu, G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019, 85, 168–174. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Chang, C.; Wang, C.; Yang, Y.; Su, Y. Effect of enzymatic hydrolysis on heat stability and emulsifying properties of egg yolk. Food Hydrocoll. 2019, 97, 105224. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Liu, Y.; Wu, T.; Zhang, M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocoll. 2018, 81, 39–47. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. Int. J. Biol. Macromol. 2016, 93, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D.; Barak, S.; Patel, A.; Shah, N. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol. 2018, 112, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Mary, P.R.; Prashanth, K.V.H.; Vasu, P.; Kapoor, M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601). Carbohydr. Res. 2019, 486, 107822. [Google Scholar] [CrossRef] [PubMed]
- Wongputtisin, P.; Khanongnuch, C. Prebiotic properties of crude oligosaccharide prepared from enzymatic hydrolysis of basil seed gum. Food Sci. Biotechnol. 2015, 24, 1767–1773. [Google Scholar] [CrossRef]
- Jian, H.-L.; Zhu, L.-W.; Zhang, W.-M.; Sun, D.-F.; Jiang, J.-X. Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum. Int. J. Biol. Macromol. 2013, 55, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.; Kamińska-Dwórznicka, A.; Antczak, A.; Jakubczyk, E.; Matwijczuk, A. Effect of ι-carrageenan and its acidic and enzymatic hydrolysates on ice crystal structure changes in model sucrose solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128744. [Google Scholar] [CrossRef]
- Yemenicioğlu, A.; Farris, S.; Turkyilmaz, M.; Gulec, S. A review of current and future food applications of natural hydrocolloids. Int. J. Food Sci. Technol. 2020, 55, 1389–1406. [Google Scholar] [CrossRef]
- Safdar, B.; Pang, Z.; Liu, X.; Jatoi, M.A.; Mehmood, A.; Rashid, M.T.; Ali, N.; Naveed, M. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 2019, 43, e13014. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Tse, T.J.; Wang, Y.; Reaney, M.J.T. Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci. Technol. 2018, 75, 146–157. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Izydorczyk, M.S. Functional Food Carbohydrates; CRC Press: Boca Raton, FL, USA, 2006; p. 588. [Google Scholar]
- Drozłowska, E.; Bartkowiak, A.; Łopusiewicz, Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers 2020, 12, 2207. [Google Scholar] [CrossRef]
- Jiang, Y.; Reddy, C.K.; Huang, K.; Chen, L.; Xu, B. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. Int. J. Biol. Macromol. 2019, 133, 1156–1163. [Google Scholar] [CrossRef]
- Vieira, J.M.; Mantovani, R.A.; Raposo, M.F.J.; Coimbra, M.A.; Vicente, A.A.; Cunha, R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019, 213, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Safdar, B.; Zhihua, P.; Xinqi, L.; Jatoi, M.A.; Rashid, M.T. Influence of different extraction techniques on recovery, purity, antioxidant activities, and microstructure of flaxseed gum. J. Food Sci. 2020, 85, 3168–3182. [Google Scholar] [CrossRef]
- Bouaziz, F.; Koubaa, M.; Barba, F.J.; Roohinejad, S.; Chaabouni, S.E. Antioxidant properties of water-soluble gum from flaxseed hulls. Antioxidants 2016, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Li, Y.; Mai, Y.; Gao, L.; Ou, S.; Wang, Y.; Liu, L.; Peng, X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods 2018, 47, 136–142. [Google Scholar] [CrossRef]
- Thakur, G.; Mitra, A.; Pal, K.; Rousseau, D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2009, 60, 126–136. [Google Scholar] [CrossRef]
- Oomah, B.D.; Mazza, G. Flaxseed proteins—A review. Food Chem. 1993, 48, 109–114. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chem. 2018, 255, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Dev, D.K.; Quensel, E. Preparation and functional properties of linseed protein products containing differing levels of mucilage. J. Food Sci. 1988, 53, 1834–1837. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Qi, W.; Guo, Q. Bioactive protein/peptides of flaxseed: A review. Trends Food Sci. Technol. 2019, 92, 184–193. [Google Scholar] [CrossRef]
- Cui, S. Polysaccharide Gums from Agricultural Products: Processing, Structures and Functionality; CRC Press: Boca Raton, FL, USA, 2000; p. 284. [Google Scholar]
- Roulard, R.; Petit, E.; Mesnard, F.; Rhazi, L. Molecular investigations of flaxseed mucilage polysaccharides. Int. J. Biol. Macromol. 2016, 86, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shim, Y.Y.; Reaney, M.J.T. Flaxseed gum solution functional properties. Foods 2020, 9, 681. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017, 215, 333–340. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Wang, L.-J.; Li, S.-J.; Adhikari, B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010, 81, 128–133. [Google Scholar] [CrossRef]
- Qian, K.-Y.; Cui, S.W.; Nikiforuk, J.; Goff, H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012, 362, 47–55. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G.; Oomah, B.D.; Biliaderis, C.G. Optimization of an Aqueous Extraction Process for Flaxseed Gum by Response Surface Methodology. LWT—Food Sci. Technol. 1994, 27, 363–369. [Google Scholar] [CrossRef]
- Fabre, J.-F.; Lacroux, E.; Valentin, R.; Mouloungui, Z. Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind. Crops Prod. 2015, 65, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Kaewmanee, T.; Bagnasco, L.; Benjakul, S.; Lanteri, S.; Morelli, C.F.; Speranza, G.; Cosulich, M.E. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014, 148, 60–69. [Google Scholar] [CrossRef]
- Hadad, S.; Goli, S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol. 2018, 114, 408–414. [Google Scholar] [CrossRef]
- Kamel, R.; Afifi, S.M.; Kassem, I.A.A.; Elkasabgy, N.A.; Farag, M.A. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int. J. Biol. Macromol. 2020, 165, 2550–2564. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G. Physicochemical characteristics of flaxseed gum. Food Res. Int. 1996, 29, 397–402. [Google Scholar] [CrossRef]
- Hellebois, T.; Fortuin, J.; Xu, X.; Shaplov, A.S.; Gaiani, C.; Soukoulis, C. Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. Int. J. Biol. Macromol. 2021, 192, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Warr, J.; Michaud, P.; Picton, L.; Muller, G.; Courtois, B.; Ralainirina, R.; Courtois, J. Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia 2003, 58, 331–335. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Niu, Y.; Kurek, M.A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed—A physicochemical approach. Food Hydrocoll. 2019, 90, 105–112. [Google Scholar] [CrossRef]
- Warrand, J.; Michaud, P.; Picton, L.; Muller, G.; Courtois, B.; Ralainirina, R.; Courtois, J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int. J. Biol. Macromol. 2005, 35, 121–125. [Google Scholar] [CrossRef]
- Ding, H.H.; Qian, K.; Goff, H.D.; Wang, Q.; Cui, S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018, 254, 266–271. [Google Scholar] [CrossRef]
- Elboutachfaiti, R.; Delattre, C.; Quéro, A.; Roulard, R.; Duchêne, J.; Mesnard, F.; Petit, E. Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage. Food Hydrocoll. 2017, 62, 273–279. [Google Scholar] [CrossRef]
- Qian, K.Y.; Cui, S.W.; Wu, Y.; Goff, H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocoll. 2012, 28, 275–283. [Google Scholar] [CrossRef]
- Fedeniuk, R.W.; Biliaderis, C.G. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 1994, 42, 240–247. [Google Scholar] [CrossRef]
- Troshchynska, Y.; Bleha, R.; Synytsya, A.; Štětina, J. Chemical composition and rheological properties of seed mucilages of various yellow- and brown-seeded flax (Linum usitatissimum L.) cultivars. Polymers 2022, 14, 2040. [Google Scholar] [CrossRef]
- Ren, X.; He, H.; Li, T. Variations in the structural and functional properties of flaxseed gum from six different flaxseed cultivars. Food Sci. Nutr. 2021, 9, 6131–6138. [Google Scholar] [CrossRef]
- Bárta, J.; Bártová, V.; Jarošová, M.; Švajner, J.; Smetana, P.; Kadlec, J.; Filip, V.; Kyselka, J.; Berčíková, M.; Zdráhal, Z.; et al. Oilseed cake flour composition, functional properties and antioxidant potential as effects of sieving and species differences. Foods 2021, 10, 2766. [Google Scholar] [CrossRef]
- Chang, Y.; Li, Y.; Miao, Q.; Jiang, H.; Gao, X. Rheological properties of six plant-based seed gums. Am. J. Anal. Chem. 2017, 08, 690–707. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Mazza, G.; Biliaderis, C.G. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994, 42, 1891–1895. [Google Scholar] [CrossRef]
- Chen, H.-H.; Xu, S.-Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng. 2006, 77, 295–303. [Google Scholar] [CrossRef]
- Sun, J.; Liu, W.-y.; Feng, M.-q.; Xu, X.-l.; Zhou, G.-h. Characterization of olive oil emulsions stabilized by flaxseed gum. J. Food Eng. 2019, 247, 74–79. [Google Scholar] [CrossRef]
- Yu, X.; Huang, S.; Yang, F.; Qin, X.; Nie, C.; Deng, Q.; Huang, F.; Xiang, Q.; Zhu, Y.; Geng, F. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocoll. 2022, 125, 107447. [Google Scholar] [CrossRef]
- Yang, C.; Hu, C.; Zhang, H.; Chen, W.; Deng, Q.; Tang, H.; Huang, F. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. Int. J. Biol. Macromol. 2020, 153, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhu, X.; Zhen, W.; Li, Z.; Kang, J.; Sun, X.; Wang, S.; Cui, S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocoll. 2021, 112, 106289. [Google Scholar] [CrossRef]
- Kristensen, M.; Jensen, M.G.; Aarestrup, J.; Petersen, K.E.N.; Søndergaard, L.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr. Metab. 2012, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, T.; Ziobro, R.; Juszczak, L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT—Food Sci. Technol. 2015, 62, 257–264. [Google Scholar] [CrossRef]
- Stewart, S.; Mazza, G. Effect of flaxseed gum on quality and stability of a model salad dressing. J. Food Qual. 2000, 23, 373–390. [Google Scholar] [CrossRef]
- Qin, L.; Xu, S.-y.; Zhang, W.-b. Effect of enzymatic hydrolysis on the yield of cloudy carrot juice and the effects of hydrocolloids on color and cloud stability during ambient storage. J. Sci. Food Agric. 2005, 85, 505–512. [Google Scholar] [CrossRef]
- Basiri, S.; Haidary, N.; Shekarforoush, S.S.; Niakousari, M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018, 187, 59–65. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Xu, X.; Zhou, G. Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. J. Food Sci. 2011, 76, C472–C478. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.W.; Meng, L.; Li, X.; Ma, L.; Dai, R. Effect of the interaction between carrageenan, gellan gum and flaxseed gum on quality attributes of starch-free emulsion-type sausage. J. Muscle Foods 2010, 21, 255–267. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Shen, J.; Wang, Y.; Reaney, M.J.T. Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocoll. 2017, 64, 18–27. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Adhikari, B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 2016, 86, 1–8. [Google Scholar] [CrossRef]
- Pham, L.B.; Wang, B.; Zisu, B.; Truong, T.; Adhikari, B. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll. 2020, 107, 105944. [Google Scholar] [CrossRef]
- Hasanvand, E.; Rafe, A. Characterization of flaxseed gum/rice bran protein complex coacervates. Food Biophys. 2018, 13, 387–395. [Google Scholar] [CrossRef]
- Lai, K.; How, Y.; Pui, L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul. 2021, 38, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Mohd Ghazali, H.; How, Y.H.; Pui, L.P. Preliminary evaluation of potential prebiotic capacity of selected legumes and seed mucilage on the probiotic strain Lactobacillus rhamnosus GG. Asia-Pac. J. Mol. Biol. Biotechnol. 2021, 29, 60–72. [Google Scholar] [CrossRef]
- Lai, K.-W.; How, Y.-H.; Pui, L.-P. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. J. Food Process. Preserv. 2020, 44, e14965. [Google Scholar] [CrossRef]
- Soleimani-Rambod, A.; Zomorodi, S.; Naghizadeh Raeisi, S.; Khosrowshahi Asl, A.; Shahidi, S.-A. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Saldaña, M.D.A.; Jin, Z.; Sun, W.; Gao, P.; Bilige, M.; Sun, W. Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan for Mongolian cheese preservation. Innov. Food Sci. Emerg. Technol. 2021, 73, 102785. [Google Scholar] [CrossRef]
- Yousuf, B.; Srivastava, A.K. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. 2017, 104, 1030–1038. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; Correa-Cerón, R.C.; Ortiz-Lechuga, E.G.; Solís-Arévalo, K.K.; Castillo-Hernández, S.L.; Gallardo-Rivera, C.T.; Arévalo Niño, K. Effect of linseed (Linum usitatissimum) mucilage and chitosan edible coatings on quality and shelf-life of fresh-cut cantaloupe (Cucumis melo). Coatings 2019, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Treviño-Garza, M.Z.; García, S.; Heredia, N.; Alanís-Guzmán, M.G.; Arévalo-Niño, K. Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biol. Technol. 2017, 128, 63–75. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Cedran, M.F.; Garcia, S. Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius). Food Bioprocess Technol. 2018, 11, 1605–1614. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y. Highlights on functional foods, with special reference to flaxseed. J. Nat. Fibers 2005, 2, 63–68. [Google Scholar] [CrossRef]
- Long, J.-j.; Zu, Y.-g.; Fu, Y.-j.; Luo, M.; Mu, P.-s.; Zhao, C.-j.; Li, C.-y.; Wang, W.; Li, J. Oil removal from oily water systems using immobilized flaxseed gum gel beads. RSC Adv. 2012, 2, 5172–5177. [Google Scholar] [CrossRef]
- Wang, M.; Huang, G.; Zhang, G.; Chen, Y.; Liu, D.; Li, C. Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant. Miner. Eng. 2021, 168, 106938. [Google Scholar] [CrossRef]
- Prado, N.S.; Silva, I.S.V.d.; Silva, T.A.L.; Oliveira, W.J.d.; Motta, L.A.d.C.; Pasquini, D.; Otaguro, H. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater. Res. 2018, 21, e20180134. [Google Scholar] [CrossRef]
- Smith, A.K.; Johnsen, V.L.; Beckel, A.C. Linseed proteins. Ind. Eng. Chem. 1946, 38, 353–356. [Google Scholar] [CrossRef]
- Sosulski, F.W.; Bakal, A. Isolated proteins from rapeseed, flax and sunflower meals. Can. Inst. Food Technol. J. 1969, 2, 28–32. [Google Scholar] [CrossRef]
- Lan, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocoll. 2020, 104, 105731. [Google Scholar] [CrossRef]
- Perreault, V.; Hénaux, L.; Bazinet, L.; Doyen, A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 2017, 221, 1805–1812. [Google Scholar] [CrossRef]
- Vassel, B.; Nesbitt, L.L. The nitrogenous constituents of flaxseed: II. The isolation of a purified protein fraction. J. Biol. Chem. 1945, 159, 571–584. [Google Scholar] [CrossRef]
- Youle, R.J.; Huang, A.H.C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 1981, 68, 44–48. [Google Scholar] [CrossRef]
- Dev, D.K.; Sienkiewicz, T. Isolation and subunit composition of 11 S globulin of linseed (Linum usitatissimum L.). Food/Nahr. 1987, 31, 767–769. [Google Scholar] [CrossRef]
- Madhusudhan, K.T.; Singh, N. Studies on linseed proteins. J. Agric. Food Chem. 1983, 31, 959–963. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef]
- Wanasundara, P.K.J.P.D.; Shahidi, F. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J. Food Sci. 1996, 61, 604–607. [Google Scholar] [CrossRef]
- Ye, X.-P.; Xu, M.-F.; Tang, Z.-X.; Chen, H.-J.; Wu, D.-T.; Wang, Z.-Y.; Songzhen, Y.-X.; Hao, J.; Wu, L.-M.; Shi, L.-E. Flaxseed protein: Extraction, functionalities and applications. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Lin, Y.-S.; Hou, W.-C.; Aluko, R.E. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods 2009, 1, 199–207. [Google Scholar] [CrossRef]
- Logarušić, M.; Radošević, K.; Bis, A.; Panić, M.; Slivac, I.; Gaurina Srček, V. Biological potential of flaxseed protein hydrolysates obtained by different proteases. Plant Foods Hum. Nutr. 2020, 75, 518–524. [Google Scholar] [CrossRef]
- Giacomino, S.; Peñas, E.; Ferreyra, V.; Pellegrino, N.; Fournier, M.; Apro, N.; Olivera Carrión, M.; Frias, J. Extruded flaxseed meal enhances the nutritional quality of cereal-based products. Plant Foods Hum. Nutr. 2013, 68, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Rabetafika, H.N.; Van Remoortel, V.; Danthine, S.; Paquot, M.; Blecker, C. Flaxseed proteins: Food uses and health benefits. Int. J. Food Sci. Technol. 2011, 46, 221–228. [Google Scholar] [CrossRef]
- Madhusudhan, K.T.; Singh, N. Isolation and characterization of the major fraction (12 S) of linseed proteins. J. Agric. Food Chem. 1985, 33, 673–677. [Google Scholar] [CrossRef]
- Marcone, M.F.; Kakuda, Y.; Yada, R.Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chem. 1998, 62, 27–47. [Google Scholar] [CrossRef]
- Chung, M.W.Y.; Lei, B.; Li-Chan, E.C.Y. Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem. 2005, 90, 271–279. [Google Scholar] [CrossRef]
- Krause, J.-P.; Schultz, M.; Dudek, S. Effect of extraction conditions on composition, surface activity and rheological properties of protein isolates from flaxseed (Linum usitatissimum L). J. Sci. Food Agric. 2002, 82, 970–976. [Google Scholar] [CrossRef]
- Madhusudhan, K.T.; Singh, N. Isolation and characterization of a small molecular weight protein of linseed meal. Phytochemistry 1985, 24, 2507–2509. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Poth, A.G.; Reaney, M.J.T. Conlinin in flaxseed (Linum usitatissimum L.) gum and its contribution to emulsification properties. Food Hydrocoll. 2016, 52, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Tirgar, M.; Silcock, P.; Carne, A.; Birch, E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017, 215, 417–424. [Google Scholar] [CrossRef]
- Martínez-Flores, H.E.; Barrera, E.S.; Garnica-Romo, M.G.; Penagos, C.J.C.; Saavedra, J.P.; Macazaga-Alvarez, R. Functional characteristics of protein flaxseed concentrate obtained applying a response surface methodology. J. Food Sci. 2006, 71, C495–C498. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Mikołajczak, B. The effect of roasting on the protein profile and antiradical capacity of flaxseed meal. Foods 2020, 9, 1383. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-K.; Thakur, K.; Liu, D.-H.; Zhang, J.-G.; Wei, Z.-J. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chem. 2018, 263, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-K.; Ni, Z.-J.; Thakur, K.; Liao, A.-M.; Huang, J.-H.; Wei, Z.-J. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: Effect of cysteine, initial pH, and thermal treatment. Int. J. Food Prop. 2019, 22, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Mueller, K.; Eisner, P.; Kirchhoff, E. Simplified fractionation process for linseed meal by alkaline extraction—Functional properties of protein and fibre fractions. J. Food Eng. 2010, 99, 49–54. [Google Scholar] [CrossRef]
- Mueller, K.; Eisner, P.; Yoshie-Stark, Y.; Nakada, R.; Kirchhoff, E. Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). J. Food Eng. 2010, 98, 453–460. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.-J.; Li, D.; Bhandari, B.; Wu, W.-F.; Shi, J.; Chen, X.D.; Mao, Z.-H. Effects of potato starch addition and cooling rate on rheological characteristics of flaxseed protein concentrate. J. Food Eng. 2009, 91, 392–401. [Google Scholar] [CrossRef]
- Dev, D.K.; Quensel, E. Functional properties of linseed protein products containing different levels of mucilage in selected food systems. J. Food Sci. 1989, 54, 183–186. [Google Scholar] [CrossRef]
- Min, C.; Ma, W.; Kuang, J.; Huang, J.; Xiong, Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022, 126, 107482. [Google Scholar] [CrossRef]
- Sharma, M.; Saini, C.S. Efficacy of flaxseed protein-based edible coatings on the quality of whole guava (Psidium guajava) during storage. Food Sci. Appl. Biotechnol. 2021, 4, 93–104. [Google Scholar] [CrossRef]
- Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem. 2017, 216, 97–105. [Google Scholar] [CrossRef]
- Manthey, F.A.; Sinha, S.; Wolf-Hall, C.E.; Hall, C.A., III. Effect of flaxseed flour and packaging on shelf life of refrigerated pasta. J. Food Process. Preserv. 2008, 32, 75–87. [Google Scholar] [CrossRef]
- Xu, Y.; Hall, C., III; Wolf-Hall, C. Antifungal activity stability of flaxseed protein extract using response surface methodology. J. Food Sci. 2007, 73, M9–M14. [Google Scholar] [CrossRef]
- Xu, Y.; Hall, C.; Wolf-Hall, C.; Manthey, F. Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system. Int. J. Food Microbiol. 2008, 121, 262–267. [Google Scholar] [CrossRef]
- Marambe, H.K.; Shand, P.J.; Wanasundara, J.P.D. In vitro digestibility of flaxseed (Linum usitatissimum L.) protein: Effect of seed mucilage, oil and thermal processing. Int. J. Food Sci. Technol. 2013, 48, 628–635. [Google Scholar] [CrossRef]
- Oomah, B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high Fischer ratio peptide mixture. J. Agric. Food Chem. 2010, 58, 4762–4768. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Lu, Y.-L.; Han, C.-H.; Hou, W.-C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009, 116, 277–284. [Google Scholar] [CrossRef]
- Silva, F.G.D.e.; Hernández-Ledesma, B.; Amigo, L.; Netto, F.M.; Miralles, B. Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT—Food Sci. Technol. 2017, 76, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.-F.; Chen, Y.-A.; Luo, C.; Chiang, W.-D. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. Int. J. Food Sci. Technol. 2016, 51, 681–689. [Google Scholar] [CrossRef]
- Doyen, A.; Udenigwe, C.C.; Mitchell, P.L.; Marette, A.; Aluko, R.E.; Bazinet, L. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chem. 2014, 145, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Omoni, A.O.; Aluko, R.E. Mechanism of the inhibition of calmodulin-dependent neuronal nitric oxide synthase by flaxseed protein hydrolysates. J. Am. Oil Chem. Soc. 2006, 83, 335–340. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Mol. Nutr. Food Res. 2006, 50, 958–966. [Google Scholar] [CrossRef]
- Gui, B.; Shim, Y.Y.; Reaney, M.J.T. Distribution of cyclolinopeptides in flaxseed fractions and products. J. Agric. Food Chem. 2012, 60, 8580–8589. [Google Scholar] [CrossRef]
- Sharav, O.; Shim, Y.Y.; Okinyo-Owiti, D.P.; Sammynaiken, R.; Reaney, M.J.T. Effect of cyclolinopeptides on the oxidative stability of flaxseed oil. J. Agric. Food Chem. 2014, 62, 88–96. [Google Scholar] [CrossRef]
- Tolkachev, O.N.; Zhuchenko, A.A. Biologically active substances of flax: Medicinal and nutritional properties (a review). Pharm. Chem. J. 2004, 34, 360–367. [Google Scholar] [CrossRef]
- Anzlovar, S.; Serra, M.D.; Dermastia, M.; Menestrina, G. Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Mol. Plant-Microbe Interact. 1998, 11, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Lipilina, E.; Ganji, V. Incorporation of ground flaxseed into bakery products and its effect on sensory and nutritional characteristics—A pilot study. J. Foodserv. 2009, 20, 52–59. [Google Scholar] [CrossRef]
- Wu, M.; Li, D.; Wang, L.-J.; Özkan, N.; Mao, Z.-H. Rheological properties of extruded dispersions of flaxseed-maize blend. J. Food Eng. 2010, 98, 480–491. [Google Scholar] [CrossRef]
- Juodeikiene, G.; Zadeike, D.; Trakselyte-Rupsiene, K.; Gasauskaite, K.; Bartkiene, E.; Lele, V.; Viskelis, P.; Bernatoniene, J.; Ivanauskas, L.; Jakstas, V. Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT 2020, 124, 109180. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Wang, L.-J.; Özkan, N. Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. J. Food Eng. 2010, 96, 555–561. [Google Scholar] [CrossRef]
- Ghosal, S.; Bhattacharyya, D.K.; Bhowal, J. Production, characterization, and storage stability of nutritionally enriched flaxseed-based spread. J. Food Process. Preserv. 2022, 46, e16574. [Google Scholar] [CrossRef]
- Alpaslan, M.; Hayta, M. The effects of flaxseed, soy and corn flours on the textural and sensory properties of a bakery product. J. Food Qual. 2006, 29, 617–627. [Google Scholar] [CrossRef]
- Koca, A.F.; Anil, M. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. J. Sci. Food Agric. 2007, 87, 1172–1175. [Google Scholar] [CrossRef]
- Lunardello, K.A.; Yamashita, F.; de Toledo Benassi, M.; de Rensis, C.M.V.B. The physicochemical characteristics of nonfat set yoghurt containing some hydrocolloids. Int. J. Dairy Technol. 2012, 65, 260–267. [Google Scholar] [CrossRef]
- Akdeniz, V.; Akalın, A.S. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends Food Sci. Technol. 2019, 86, 392–398. [Google Scholar] [CrossRef]
- Basiri, S.; Tajbakhsh, S.; Shekarforoush, S.S. Fortification of stirred yoghurt with mucilage-free flaxseed and its physicochemical, microbial, textural and sensory properties. Int. Dairy J. 2022, 131, 105384. [Google Scholar] [CrossRef]
- Delouee Arabshahi, S.; Rahati Ghochani, S.; Mohammadi, A. Effect of flaxseed (Linum usitatissimum) mucilage on physicochemical and sensorial properties of semi-fat set yoghurt. J. Food Biosci. Technol. 2020, 10, 91–100. [Google Scholar]
- Nguyen, P.T.M.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017, 72, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.B.X.; Nguyen, P.T.M.; Bhandari, B.; Prakash, S. Influence of different functional ingredients on physical properties, rheology, tribology, and oral perceptions of no fat stirred yoghurt. J. Texture Stud. 2018, 49, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Sodini, I.; Montella, J.; Tong, P.S. Physical properties of yogurt fortified with various commercial whey protein concentrates. J. Sci. Food Agric. 2005, 85, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Remeuf, F.; Mohammed, S.; Sodini, I.; Tissier, J.P. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int. Dairy J. 2003, 13, 773–782. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Liu, X. Soybean peptides promote yoghurt fermentation and quality. Biotechnol. Lett. 2020, 42, 1927–1937. [Google Scholar] [CrossRef]
Amino Acid | Content (g/100 g Protein) | |||
---|---|---|---|---|
NorLin (Brown) [6] | subsp. panambi (Brown) [105] | Omega (Yellow) [6] | Foster (Yellow) [34] | |
Alanine | 4.4 | 3.8 | 4.5 | 4.7 |
Arginine | 9.2 | 9.4 | 9.4 | 10.0 |
Aspartic acid | 9.3 | 9.9 | 9.7 | 10.0 |
Cysteine | 1.1 | 1.0 | 1.1 | 1.8 |
Glutamic acid | 19.6 | 19.5 | 19.7 | 20.0 |
Glycine | 5.8 | 5.9 | 5.8 | 5.9 |
Histidine E | 2.2 | 2.4 | 2.3 | 2.1 |
Isoleucine E | 4.0 | 3.9 | 4.0 | 4.1 |
Leucine E | 5.8 | 5.7 | 5.9 | 6.0 |
Lysine E | 4.0 | 3.8 | 3.9 | 4.0 |
Methionine E | 1.5 | 1.7 | 1.4 | 1.4 |
Phenylalanine E | 4.6 | 4.8 | 4.7 | 4.8 |
Proline | 3.5 | 3.7 | 3.5 | 3.8 |
Serine | 4.5 | 5.0 | 4.6 | 4.7 |
Threonine E | 3.6 | 4.1 | 3.7 | 3.8 |
Tryptophan E | 1.8 | 1.5 | NR | NR |
Tyrosine | 2.3 | 2.3 | 2.3 | 2.4 |
Valine E | 4.6 | 4.8 | 4.7 | 5.1 |
Hydrocolloid Added to Yogurt | Description of Yogurt | Amount Added (%) | Increase/Decrease in Apparent Viscosity Compared to Control (Pa·s) | Reference |
---|---|---|---|---|
Demucilaged flaxseeds (protein) | The authors did not specify fat and protein content in the yogurt | 3.0% | Viscosity ↑ from ca. 1.95 to 2.5 | [150] |
Flaxseed gum/mucilage | Semi-fat (1.5%) yogurt | 0.10, 0.15 and 0.20% | Viscosity ↑ from ca. 2.45 * to 2.90, 3.05 and 3.15, respectively | [151] |
κ-Carrageenan | Pot-set yogurt containing 0.1% fat and 3.9% protein | 0.01, 0.04, 0.08% | viscosity ↑ from 0.71 * to 0.87, 1.21 and 3.54, respectively | [152] |
Starch (modified) ⁑ | Pot-set yogurt containing 0.1% fat and 3.9% protein | 0.5, 1.0, 1.5% | Change of viscosity from 0.71 * to 0.56, 0.72 and 0.82, respectively, however it was not significant | [152] |
Xanthan gum | Pot-set yogurt containing 0.1% fat and 3.9% protein | 0.005, 0.01, 0.015% | Viscosity ↑ from 0.71 * to 1.50, 2.79 and 4.35, respectively | [152] |
Pectin | Skim yogurt with 0.1% fat | 0.20, 0.25, 0.30% | Viscosity ↑ from 0.16 * to 0.38, 0.51 and 0.57, respectively | [153] |
Inulin | Skim yogurt with 0.1% fat | 7, 8, 9% | Viscosity did not differ (0.16 for all samples) | [153] |
Whey protein | Five commercially available whey protein concentrates were compared to skim milk powder * used for yogurt preparation | All yogurts were standardized to 4.5% protein | Viscosity ↓ from 1.10 * to 0.38–84 | [154] |
Bovine gelatine (140 bloom) | Pot-set yogurt containing 0.1% fat and 3.9% protein | 0.5, 1.0, 1.5% | Viscosity ↓ from 0.71 * to 0.29, 0.31 and 0.21, respectively | [152] |
Sodium caseinate | Commercially available sodium caseinate compared to skim milk powder * used for yogurt preparation | All yogurts were standardized to 4.5% protein | Viscosity ↑ from ca. 0.9 * to 2 | [155] |
Soy protein hydrolysates | The authors did not specify fat and protein content in the yogurt | 0.1, 0.2, 0.3% | Viscosity changed from ca. 2.11 * to 1.90, 1.99 and 2.2 respectively | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenc, F.; Jarošová, M.; Bedrníček, J.; Smetana, P.; Bárta, J. Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods 2022, 11, 2304. https://doi.org/10.3390/foods11152304
Lorenc F, Jarošová M, Bedrníček J, Smetana P, Bárta J. Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods. 2022; 11(15):2304. https://doi.org/10.3390/foods11152304
Chicago/Turabian StyleLorenc, František, Markéta Jarošová, Jan Bedrníček, Pavel Smetana, and Jan Bárta. 2022. "Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application" Foods 11, no. 15: 2304. https://doi.org/10.3390/foods11152304
APA StyleLorenc, F., Jarošová, M., Bedrníček, J., Smetana, P., & Bárta, J. (2022). Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods, 11(15), 2304. https://doi.org/10.3390/foods11152304