Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Product Definition
2.2. Objective and Scope
2.3. Life Cycle Inventory Analysis
2.3.1. Inventory Data
2.3.2. Assignment Procedure
2.3.3. Sensitivity Analysis
2.4. Impact Assessment of the Life Cycle
Evaluation Methodology
- Abiotic depletion: abiotic depletion potential (extraction of non-energy natural resources) in relation to the depletion potential of a reference resource (expressed in kg Sb-eq).
- Abiotic depletion (fossil fuels): potential depletion of fossil fuel reserves (extraction of energy resources) (expressed in MJ).
- Global warming (GWP100a): global warming potential for a time horizon of 100 years (expressed in kg CO2-eq).
- Ozone layer depletion (ODP): ozone layer depletion potential (expressed in kg CFC-11-eq).
- Human toxicity: toxicity to humans (expressed in kg 1.4-DB-eq).
- Fresh toilet aquatic ecotoxicity: ecotoxicity for freshwater resources (expressed in kg 1.4-DB-eq).
- Marine water ecotoxicity: ecotoxicity for the marine environment (expressed in kg 1.4-DB-eq).
- Terrestrial ecotoxicity: ecotoxicity for the terrestrial environment (expressed in kg 1.4- DB-eq).
- Photochemical oxidation: photochemical oxidation (expressed in kg C2H4-eq).
- Acidification: emission of acidifying gases into the atmosphere (expressed in kg SO2-eq).
- Eutrophication: eutrophication (expressed in kg PO4-eq).
3. Results and Discussion
3.1. Interpretation of Inventory Data
3.2. Interpretation of Life Cycle Impact Assessment
- Regarding ecotoxicity for the marine environment, the processes that contributed the most to this category were the production of electricity (55.1%), mains water (22.3%), fertilizers (8.5%), and pesticides (8.2%).
- Regarding the abiotic depletion potential, the production of fertilizers (99.0%) was the largest contributor to this category. This is due to the large number of raw materials (chemicals and minerals) used in the manufacture of pesticides.
- Regarding ecotoxicity for freshwater resources, the processes that contributed the most to this category were electricity production (38.4%), irrigation water (31.4%), pesticides (9.7%), and fertilizers (9.1%).
- Regarding toxicity to humans, the processes that contributed the most to this category were the production of pesticides (39.7%), electricity (29.5%), and tap water (15.3%).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alamoush, A.; Ballini, F.; Ölçer, A. Ports, maritime transport, and industry: The immediate impact of COVID-19 and the way forward. Marit. Technol. Res. 2022, 4, 250092. [Google Scholar] [CrossRef]
- Torres, R.J.; Abessa, D.M.S.; Santos, F.C.; Maranho, L.A.; Davanso, M.B.; do Nascimento, M.R.L.; Mozeto, A.A. Effects of dredging operations on sediment quality: Contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil. J. Soils Sediments 2009, 9, 420–432. [Google Scholar] [CrossRef]
- Tozzi, F.; Del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; Hernández García, F.; Martínez Nicolás, J.J.; Giordani, E. Use of a remediated dredged marine sediment as a substrate for food crop cultivation: Sediment characterization and assessment of fruit safety and quality using strawberry (Fragaria × ananassa Duch.) as model species of contamination transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, P.; Legua, P.; Pérez-Sarmiento, F.; Martínez-Font, R.; José Martínez-Nicolás, J.; Hernández, F. Effect of a New Remediated Substrate on Fruit Quality and Bioactive Compounds in Two Strawberry Cultivars. J. Food Nutr. Res. 2017, 5, 579–586. [Google Scholar] [CrossRef]
- Renella, G. Recycling and Reuse of Sediments in Agriculture: Where Is the Problem? Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Martínez-Nicolas, J.J.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Melgarejo, P.; Hernández, F.; Legua, P. Physico- Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock. Foods 2022, 11, 2487. [Google Scholar] [CrossRef]
- Bianchi, V.; Masciandaro, G.; Ceccanti, B.; Peruzzi, E.; Iannelli, R. Phytoremediation of contaminated sediments: Evaluation of agronomic properties and risk assessment. Chem. Ecol. 2011, 27, 1–11. [Google Scholar] [CrossRef]
- Masciandaro, G.; Di Biase, A.; Macci, C.; Peruzzi, E.; Iannelli, R.; Doni, S. Phytoremediation of dredged marine sediment: Monitoring of chemical and biochemical processes contributing to sediment reclamation. J. Environ. Manage. 2014, 134, 166–174. [Google Scholar] [CrossRef]
- Lundberg, K.; Ohlsson, Y.; Andersson-Sköld, Y.; Bergman, R.; Falemo, S.; Edeskär, T.; Scheffler, A. Dredging Contaminated Sediments in the Baltic Sea—A Guide to Sustainability Assessment Tools; Swedish Geotechnical Institute: Linköping, Sweden, 2013; Volume 60. [Google Scholar]
- Crocetti, P.; González-Camejo, J.; Li, K.; Foglia, A.; Eusebi, A.L.; Fatone, F. An overview of operations and processes for circular management of dredged sediments. Waste Manag. 2022, 146, 20–35. [Google Scholar] [CrossRef]
- Freeman, B.W.J.; Evans, C.D.; Musarika, S.; Morrison, R.; Newman, T.R.; Page, S.E.; Wiggs, G.F.S.; Bell, N.G.A.; Styles, D.; Wen, Y.; et al. Responsible agriculture must adapt to the wetland character of mid-latitude peatlands. Glob. Chang. Biol. 2022, 28, 3795–3811. [Google Scholar] [CrossRef]
- Martínez-nicolás, J.J.; Legua, P.; Hernández, F.; Martínez-font, R.; Giordani, E.; Melgarejo, P. Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant. Sustainability 2021, 13, 9661. [Google Scholar] [CrossRef]
- Chiellini, C.; Iannelli, R.; Petroni, G. Temporal characterization of bacterial communities in a phytoremediation pilot plant aimed at decontaminating polluted sediments dredged from Leghorn harbor, Italy. N. Biotechnol. 2013, 30, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Macci, C.; Vannucchi, F.; Doni, S.; Peruzzi, E.; Lucchetti, S.; Castellani, M.; Masciandaro, G. Recovery and environmental recycling of sediments: The experience of CNR-IRET Pisa. J. Soils Sediments 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- ISO 14040:2006; ISO Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Londres, UK, 2006.
- Svensson, N.; Norén, A.; Modin, O.; Karlfeldt Fedje, K.; Rauch, S.; Strömvall, A.M.; Andersson-Sköld, Y. Integrated cost and environmental impact assessment of management options for dredged sediment. Waste Manag. 2022, 138, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, P.; Núñez-Gómez, D.; José Martínez-Nicolás, J.; Hernández, F.; Martínez-Font, R.; Lidón, V.; García-Sánchez, F.; Legua, P. Metabolomic Profile of Citrus limon Leaves (‘Verna’ Variety) by 1H-NMR and Multivariate Analysis Technique. Agronomy 2022, 12, 1060. [Google Scholar] [CrossRef]
- Doni, S.; Macci, C.; Peruzzi, E.; Iannelli, R.; Masciandaro, G. Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecol. Eng. 2015, 81, 146–157. [Google Scholar] [CrossRef]
- Ole Kenneth, N. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Quantis, L. Comparative life cycle assessment of horticultural growing media based on peat and other growing media constituents. In Final Report Prepared by Quantis for the European Peat and Growing Media Association (EPAGMA); Quantis: Lausanne, Switzerland, 2012; p. 156. [Google Scholar]
- Li, Y.; Han, Y.; Zhang, Y.; Luo, W.; Li, G. Anaerobic digestion of different agricultural wastes: A techno-economic assessment. Bioresour. Technol. 2020, 315, 123836. [Google Scholar] [CrossRef]
- Tozzi, F.; Pecchioli, S.; Renella, G.; Melgarejo, P.; Legua, P.; Macci, C.; Doni, S.; Masciandaro, G.; Giordani, E.; Lenzi, A. Remediated marine sediment as growing medium for lettuce production: Assessment of agronomic performance and food safety in a pilot experiment. J. Sci. Food Agric. 2019, 99, 5624–5630. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Legua, P.; Núñez-Gómez, D.; Martínez-Font, R.; Hernández, F.; Giordani, E.; Melgarejo, P. Potential of dredged bioremediated marine sediment for strawberry cultivation. Sci. Rep. 2020, 10, 19878. [Google Scholar] [CrossRef]
- Mattei, P.; D’Acqui, L.P.; Nicese, F.P.; Lazzerini, G.; Masciandaro, G.; Macci, C.; Doni, S.; Sarteschi, F.; Giagnoni, L.; Renella, G. Use of phytoremediated sediments dredged in maritime port as plant nursery growing media. J. Environ. Manag. 2017, 186, 225–232. [Google Scholar] [CrossRef] [PubMed]
Peat Content | Port Sediment Content | |||
---|---|---|---|---|
Acronym | (L per 40 L pot) | (L per 40 L pot) | ||
(%) | (%) | |||
S25 | 30 | 75 | 10 | 25 |
S50 | 20 | 50 | 20 | 50 |
S75 | 10 | 25 | 30 | 75 |
Hydrocarbons C10–C14 | Lead (Pb) | Cadmium (Cd) | Nickel (Ni) | Chromium (Cr) | Mercury (Hg) | Copper (Cu) | Zinc (Zn) | |
---|---|---|---|---|---|---|---|---|
(µg kg−1) | (mg kg−1) | |||||||
Initial-Before lemon tree planting (May 2020) | ||||||||
S25 | 40.0 | 38.7 | 0.8 | 34.1 | 44.5 | 0.1 | 29.0 | 150 |
S50 | 60.9 | 44.6 | 0.9 | 57.0 | 68.0 | 0.2 | 38.4 | 228 |
S75 | 17.8 | 50.3 | 1.4 | 59.0 | 70.0 | 0.1 | 41.9 | 245 |
Final-After lemon fruit harvest (January 2022) | ||||||||
S25 | 0.0 | 48.9 | 0.9 | 52.0 | 54.0 | 0.1 | 37.8 | 485 |
S50 | 0.0 | 58.7 | 1.1 | 61.0 | 69.0 | 0.2 | 47.8 | 352 |
S75 | 0.0 | 57.2 | 1.1 | 61.0 | 79.0 | 0.2 | 49.9 | 296 |
Culture Media | |||
---|---|---|---|
Parameter | S25 | S50 | S75 |
Lemon fruits production | |||
Number of fruits | 290 | 590 | 124 |
Weight (kg) | 50.7 | 90.5 | 17.3 |
Drainage water | |||
Drainage volume (m3) * | 0.14 | 0.05 | 0.20 |
Pb (µg L−1) | 5.22 | 0.0 | 0.0 |
Cr (µg L−1) | 11.1 | 0.0 | 0.0 |
Cd (µg L−1) | 22.73 | 40.03 | 13.24 |
Zn (µg L−1) | 603 | 607.3 | 533.4 |
Cu (µg L−1) | 63.6 | 101.2 | 67.27 |
Culture Media | |||||
---|---|---|---|---|---|
Parameter | Unit | S25 | S50 | S75 | |
Electricity | kWh | 1.74 | 0.629 | 3.33 | |
Irrigation water | kg | 673 | 329 | 1698 | |
Peat | kg | 33.7 | 12.6 | 33.0 | |
Isabión (10% Syngenta) | g | 18.5 | 9.03 | 46.6 | |
Inputs | Amalgerol | g | 18.9 | 9.24 | 47.6 |
Ammonium nitrate | g | 13.4 | 6.54 | 33.7 | |
Calcium nitrate | g | 31.7 | 15.5 | 79.8 | |
Novatec (20-5-10) | g | 32.1 | 15.7 | 81.0 | |
Pest treatments | g | 9.21 | 5.16 | 27.0 | |
Urea | g | 0.985 | 0.552 | 2.89 | |
Pb to soil | mg | 0.705 | 0.00 | 0.00 | |
Cr to soil | mg | 1.50 | 0.00 | 0.00 | |
Ni to soil | mg | 3.07 | 1.88 | 2.59 | |
Outputs | Cd to soil | mg | 0.397 | 0.141 | 0.511 |
Zn to soil | mg | 81.4 | 28.5 | 104 | |
Cu to soil | mg | 8.59 | 4.75 | 13.2 | |
NH3 to air | g | 0.896 | 0.440 | 2.27 | |
NO2 to air | g | 0.717 | 0.352 | 1.82 |
Culture Media | ||||
---|---|---|---|---|
Impact Category | Unit | S25 | S50 | S75 |
Abiotic depletion | kg Sb eq | 1.58 × 10−5 | 8.83 × 10−6 | 4.62 × 10−5 |
Abiotic depletion (fossil fuels) | MJ | 1.38 × 10+1 | 5.80 | 2.82 × 10+1 |
Global warming (GWP100a) | kg CO2 eq | 1.33 | 5.45 × 10−1 | 2.47 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 2.59 × 10−7 | 1.32 × 10−7 | 6.67 × 10−7 |
Human toxicity | kg 1.4-DB eq | 4.42 × 10−1 | 2.01 × 10−1 | 1.01 |
Fresh water aquatic ecotoxicity | kg 1.4-DB eq | 3.03 × 10−1 | 1.30 × 10−1 | 6.40 × 10−1 |
Marine aquatic ecotoxicity | kg 1.4-DB eq | 1.29 × 10+3 | 5.26 × 10+2 | 2.67 × 10+3 |
Terrestrial ecotoxicity | kg 1.4-DB eq | 4.07 × 10−3 | 1.71 × 10−3 | 5.80 × 10−3 |
Photochemical oxidation | kg C2H4 eq | 3.47 × 10−4 | 1.47 × 10−4 | 7.01 × 10−4 |
Acidification | kg SO2 eq | 8.84 × 10−3 | 3.78 × 10−3 | 1.8 × 10−2 |
Eutrophication | kg PO4--- eq | 2.45 × 10−3 | 1.08 × 10−3 | 5.3 × 10−3 |
Impact Category | Unit | Direct Environmental Flows | Irrigation Water | Peat | Fertilizers | Bio Stimulant | Pest Treatment | Electricity |
---|---|---|---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.00 | 6.95 × 10−8 | 1.8 × 10−8 | 6.59 × 10−8 | 2.46 × 10−11 | 1.56 × 10−5 | 3.7 × 10−8 |
Abiotic depletion (fossil fuels) | MJ | 0.00 | 1.61 | 2.19 | 2.65 | 2.48 × 10−2 | 1.21 | 6.09 |
Global warming (GWP100a) | kg CO2 eq | 0.00 | 1.41 × 10−1 | 3.95 × 10−1 | 1.85 × 10−1 | 1.45 × 10−3 | 8.15 × 10−2 | 5.30 × 10−1 |
Ozone layer depletion (ODP) | kg CFC- 11 eq | 0.00 | 8.49 × 10−9 | 2.39 × 10−8 | 3.54 × 10−8 | 2.0 × 10−10 | 1.63 × 10−7 | 2.73 × 10−8 |
Human toxicity | kg 1.4- DB eq | 1.84 × 10−3 | 6.27 × 10−2 | 4.23 × 10−2 | 2.97 × 10−2 | 3.8 × 10−5 | 1.42 × 10−1 | 1.63 × 10−1 |
Fresh water aquatic ecotoxicity | kg 1.4- DB eq | 1.45 × 10−2 | 8.37 × 10−2 | 2.03 × 10−2 | 2.42 × 10−2 | 1.49 × 10−5 | 2.25 × 10−2 | 1.38 × 10−1 |
Marine aquatic ecotoxicity | kg 1.4- DB eq | 52.6 | 2.40 × 10+2 | 7.43 × 10+1 | 9.16 × 10+1 | 4.9 × 10−2 | 7.70 × 10+1 | 8.01 × 10+2 |
Terrestrial ecotoxicity | kg 1.4- DB eq | 2.95 × 10−3 | 1.79 × 10−4 | 1.13 × 10−4 | 1.59 × 10−4 | 1.21 × 10−7 | 8.72 × 10−5 | 5.82 × 10−4 |
Photochemical oxidation | kg C2H4 eq | 2.02 × 10−5 | 2.91 × 10−5 | 7.16 × 10−5 | 4.05 × 10−5 | 9.08 × 10−8 | 4.7 × 10−5 | 1.38 × 10−4 |
Acidification | kg SO2 eq | 1.80 × 10−3 | 7.15 × 10−4 | 9.70 × 10−4 | 7.23 × 10−4 | 1.08 × 10−6 | 7.82 × 10−4 | 3.85 × 10−3 |
Eutrophication | kg PO4- -- eq | 4.09 × 10−4 | 4.56 × 10−4 | 2.83 × 10−4 | 2.49 × 10−4 | 1.93 × 10−7 | 2.12 × 10−4 | 8.46 × 10−4 |
Impact Category | Unit | Direct Environmental Flows | Irrigation Water | Peat | Fertilizers | Biostimulant | Pest Treatment | Electricity |
---|---|---|---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.00 | 3.40 × 10−8 | 7.03 × 10−9 | 3.23 × 10−8 | 1.21 × 10−11 | 8.74 × 10−6 | 1.37 × 10−8 |
Abiotic depletion (fossil fuels) | MJ | 0.00 | 7.87 × 10−1 | 8.19 × 10−1 | 1.30 | 1.21 × 10−2 | 6.7 × 10−1 | 2.20 |
Global warming (GWP100a) | kg CO2 eq | 0.00 | 6.90 × 10−2 | 1.48 × 10−1 | 9.07 × 10−2 | 7.1 × 10−4 | 4.57 × 10−2 | 1.92 × 10−1 |
Ozone layer de- pletion (ODP) | kg CFC- 11 eq | 0.00 | 4.15 × 10−9 | 8.94 × 10−9 | 1.73 × 10−8 | 9.7 × 10−11 | 9.16 × 10−8 | 9.8 × 10−9 |
Human toxicity | kg 1.4- DB eq | 8.64 × 10−04 | 3.07 × 10−2 | 1.58 × 10−2 | 1.45 × 10−2 | 1.90 × 10−5 | 7.96 × 10−2 | 5.92 × 10−2 |
Fresh water aquatic ecotoxicity | kg 1.4- DB eq | 7.47 × 10−03 | 4.09 × 10−2 | 7.57 × 10−3 | 1.18 × 10−2 | 7.29 × 10−6 | 1.26 × 10−2 | 5.0 × 10−2 |
Marine aquatic ecotoxicity | kg 1.4- DB eq | 2.99 | 1.18 × 10+2 | 2.78 × 10+1 | 4.48 × 10+1 | 2.4 × 10−2 | 4.31 × 10+1 | 2.90 × 10+2 |
Terrestrial ecotoxicity | kg 1.4- DB eq | 1.24 × 10−03 | 8.76 × 10−5 | 4.2 × 10−5 | 7.76 × 10−5 | 5.90 × 10−8 | 4.89 × 10−5 | 2.1 × 10−4 |
Photochemical oxidation | kg C2H4 eq | 9.80 × 10−06 | 1.42 × 10−5 | 2.68 × 10−5 | 1.98 × 10−5 | 4.4 × 10−8 | 2.68 × 10−5 | 5.0 × 10−5 |
Acidification | kg SO2 eq | 8.79 × 10−04 | 3.49 × 10−4 | 3.63 × 10−4 | 3.54 × 10−4 | 5.29 × 10−7 | 4.38 × 10−4 | 1.39 × 10−3 |
Eutrophication | kg PO4- eq | 2.0 × 10−04 | 2.23 × 10−4 | 1.06 × 10−4 | 1.2 × 10−4 | 9.4 × 10−8 | 1.19 × 10−4 | 3.06 × 10−4 |
Impact Category | Unit | Direct Environmental Flows | Irrigation Water | Peat | Fertilizers | Biostimulant | Pest Treatment | Electricity |
---|---|---|---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.00 | 1.75 × 10−7 | 1.84 × 10−8 | 1.6 × 10−7 | 6.2 × 10−11 | 4.58 × 10−5 | 7.2 × 10−8 |
Abiotic depletion (fossil fuels) | MJ | 0.00 | 4.06 | 2.14 | 6.69 | 6.25 × 10−2 | 3.55 | 1.17 × 10+1 |
Global warming (GWP100a) | kg CO2 eq | 0.00 | 3.56 × 10−1 | 3.87 × 10−1 | 4.68 × 10−1 | 3.67 × 10−3 | 2.39 × 10−1 | 1.01 |
Ozone layer depletion (ODP) | kg CFC- 11 eq | 0.00 | 2.14 × 10−8 | 2.34 × 10−8 | 8.94 × 10−8 | 5.04 × 10−10 | 4.80 × 10−7 | 5.2 × 10−8 |
Human toxicity | kg 1.4- DB eq | 3.02 × 10−3 | 1.58 × 10−1 | 4.14 × 10−2 | 7.50 × 10−2 | 9.79 × 10−5 | 4.17 × 10−1 | 3.13 × 10−1 |
Fresh water aquatic ecotoxicity | kg 1.4- DB eq | 1.76 × 10−2 | 2.1 × 10−1 | 1.98 × 10−2 | 6.10 × 10−2 | 3.76 × 10−5 | 6.62 × 10−2 | 2.64 × 10−1 |
Marine aquatic ecotoxicity | kg 1.4- DB eq | 5.42 | 6.06 × 10+2 | 7.28 × 10+1 | 2.31 × 10+2 | 1.26 × 10−1 | 2.26 × 10+2 | 1.53 × 10+3 |
Terrestrial ecotoxicity | kg 1.4- DB eq | 3.46 × 10−3 | 4.52 × 10−4 | 1.1 × 10−4 | 4.0 × 10−4 | 3.04 × 10−7 | 2.56 × 10−4 | 1.1 × 10−3 |
Photochemical oxidation | kg C2H4 eq | 5.10 × 10−5 | 7.34 × 10−5 | 7.02 × 10−5 | 1.02 × 10−4 | 2.29 × 10−7 | 1.40 × 10−4 | 2.64 × 10−4 |
Acidification | kg SO2 eq | 4.54 × 10−3 | 1.80 × 10−3 | 9.49 × 10−4 | 1.82 × 10−3 | 2.73 × 10−6 | 2.30 × 10−3 | 7.36 × 10−3 |
Eutrophication | kg PO4- eq | 1.03 × 10−3 | 1.15 × 10−3 | 2.7 × 10−4 | 6.28 × 10−4 | 4.87 × 10−7 | 6.2 × 10−4 | 1.62 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, F.; Martínez-Nicolás, J.J.; Melgarejo, P.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Legua, P. Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production. Foods 2022, 11, 3053. https://doi.org/10.3390/foods11193053
Hernández F, Martínez-Nicolás JJ, Melgarejo P, Núñez-Gómez D, Lidón V, Martínez-Font R, Legua P. Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production. Foods. 2022; 11(19):3053. https://doi.org/10.3390/foods11193053
Chicago/Turabian StyleHernández, Francisca, Juan José Martínez-Nicolás, Pablo Melgarejo, Dámaris Núñez-Gómez, Vicente Lidón, Rafael Martínez-Font, and Pilar Legua. 2022. "Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production" Foods 11, no. 19: 3053. https://doi.org/10.3390/foods11193053
APA StyleHernández, F., Martínez-Nicolás, J. J., Melgarejo, P., Núñez-Gómez, D., Lidón, V., Martínez-Font, R., & Legua, P. (2022). Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production. Foods, 11(19), 3053. https://doi.org/10.3390/foods11193053