Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Wine Samples
2.3. In Vitro Simulation Digestion Procedure
2.4. Cell Culture
2.5. Transport Experiments Using the Caco-2 Cell Model
2.6. Determination of the Phenolic Profile
2.7. Assessment of In Vitro Antioxidant Potential
2.7.1. DPPH Radical-Scavenging Activity
2.7.2. Ferric Reducing Antioxidant Power (FRAP)
2.7.3. ABTS Free Radical Scavenging Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Change in PCs during the Simulated Gastrointestinal Digestion and Transmembrane Process
3.2. Caco-2 Transepithelial Transport Assay
3.3. Antioxidant Activity
3.3.1. DPPH Radical-Scavenging Activity
3.3.2. FRAP Radical-Scavenging Activity
3.3.4. Correlation between PCs and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeon, S.; Sangtaek, S.; Bartolini, F. Wine market segmentation considering new consumption trend: Focusing on Korea wine festival participants. Korean J. Agric. Econ. 2019, 60, 153–175. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Consumer perception of red wine by the degree of familiarity using consumer-based methodology. Foods 2021, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Payini, V.; Mallya, J.; Piramanayagam, S. Indian women consumers’ wine choice: A study based on conjoint analysis. Int. J. Wine Bus. Res. 2022. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Garaguso, I.; Nardini, M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem. 2015, 179, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Q.; Zhang, B.; Zhang, Y.; Li, E. Effects of ultrasound on the formation of oxidative pigments in a model red wine solution containing glutathione. J. Food Compos. Anal. 2021, 103, 104092. [Google Scholar] [CrossRef]
- Brianso-Llort, L.; Simo-Servat, O.; Ramos-Perez, L.; Torres-Torronteras, J.; Hernandez, C.; Simo, R.; Selva, D.M. Effect of resveratrol content in red wine on circulating sex hormone-binding globulin: Lessons from a pilot clinical trial. Mol. Nutr. Food Res. 2022, 66, e2200125. [Google Scholar] [CrossRef]
- Gambini, J.; Gimeno-Mallench, L.; Olaso-Gonzalez, G.; Mastaloudis, A.; Traber, M.G.; Monleon, D.; Borras, C.; Vina, J. Moderate red wine consumption increases the expression of longevity-associated genes in controlled human populations and extends lifespan in drosophila melanogaster. Antioxidants 2021, 10, 301. [Google Scholar] [CrossRef]
- Navarro-García, F.; Ponce-Ruíz, N.; Rojas-García, A.E.; Ávila-Villarreal, G.; Herrera-Moreno, J.; Barrón-Vivanco, B.; Bernal-Hernández, Y.; González-Arias, C.; Medina-Díaz, I. The role of nutritional habits and moderate red wine consumption in PON1 status in healthy population. Appl. Sci. 2021, 11, 9503. [Google Scholar] [CrossRef]
- Radeka, S.; Rossi, S.; Bestulic, E.; Budic-Leto, I.; Kovacevic Ganic, K.; Horvat, I.; Lukic, I.; Orbanic, F.; Zaninovic Jurjevic, T.; Dvornik, S. Bioactive compounds and antioxidant activity of red and white wines produced from autochthonous croatian varieties: Effect of moderate consumption on human health. Foods 2022, 11, 1804. [Google Scholar] [CrossRef]
- Fernandez-Garcia, E.; Carvajal-Lerida, I.; Perez-Galvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009, 29, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci. Tech. 2019, 86, 399–411. [Google Scholar] [CrossRef]
- Jaroch, K.; Jaroch, A.; Bojko, B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J. Pharmaceut. Biomed. 2018, 147, 297–312. [Google Scholar] [CrossRef]
- Pongrac, P.; Scheers, N.; Sandberg, A.S.; Potisek, M.; Arcon, I.; Kreft, I.; Kump, P.; Vogel-Mikus, K. The effects of hydrothermal processing and germination on Fe speciation and Fe bioaccessibility to human intestinal Caco-2 cells in Tartary buckwheat. Food Chem. 2016, 199, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Ahsan, H.; Zia, M.; Siddiqui, T.; Khan, F. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef]
- Ahumada-Santos, Y.; Montes-Avila, J.; Uribe-Beltrán, M.; Díaz-Camacho, S.; López-Angulo, G.; Vega-Aviña, R.; López-Valenzuela, J.; Heredia, J.; Delgado-Vargas, F. Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Ind. Crop. Prod. 2013, 49, 143–149. [Google Scholar] [CrossRef]
- Lingua, M.; Wunderlin, D.; Baroni, M. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. J. Funct. Foods 2018, 44, 86–94. [Google Scholar] [CrossRef]
- Dordevic, N.O.; Stanisavljevic, N.; Todorovic Vukotic, N.; Novovic, K.; Zakula, J.J.; Stankovic, D.; Pajovic, S.B. Antioxidant and cytotoxic activity of red wine after in vitro simulated digestion in the presence of complex food matrix. Nat. Prod. Res. 2022, 1–6. [Google Scholar] [CrossRef]
- Motilva, M.; Macià, A.; Romero, M.; Rubió, L.; Mercader, M.; González-Ferrero, C. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J. Funct. Foods 2016, 25, 80–93. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Sánchez-Gutiérrez, M.; Freitas-Costa, C.; Vilas-Boas, A.; Campos, D.; Aguilar, C.; Madureira, A.; Pintado, M. Prebiotic effect, bioactive compounds and antioxidant capacity of melon peel (Cucumis melo L. inodorus) flour subjected to in vitro gastrointestinal digestion and human faecal fermentation. Food Res. Int. 2022, 154, 111045. [Google Scholar] [CrossRef] [PubMed]
- Hubatsch, I.; Ragnarsson, E.G.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Ouyang, Y.; He, Y.; Xiao, J.; Zhang, L.; Feng, N. Effect of catechin on dietary AGEs absorption and cytotoxicity in Caco-2 cells. Food Chem. 2021, 355, 129574. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Crupi, P.; Benucci, I.; Antonacci, D.; Di Luccia, A.; Esti, M. HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Res. Int. 2014, 66, 207–215. [Google Scholar] [CrossRef]
- Sabeena, F.K.H.; Baron, C.; Nielsen, N.; Jacobsen, C. Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem. 2010, 123, 1081–1089. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crop. Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Gamba, R.; Nagai, E.; Suzuki, T.; Koyanagi, T.; Enomoto, T. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Kashyap, P.; Riar, C.; Jindal, N. Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT 2022, 153, 112570. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.; Liu, R.; Dan Ramdath, D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Chait, Y.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT 2020, 117, 108623. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chen, C.L.; Jeng, T.L.; Lin, T.C.; Sung, J.M. Bioavailability of cranberry bean hydroalcoholic extract and its inhibitory effect against starch hydrolysis following in vitro gastrointestinal digestion. Food Res. Int. 2014, 64, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Campos, D.; Oliveira, A.; Nunes, J.; Vicente, A.; Pintado, M. Study of olive pomace antioxidant dietary fibre powder throughout gastrointestinal tract as multisource of phenolics, fatty acids and dietary fibre. Food Res. Int. 2021, 142, 110032. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Gonzalez, R.; Viuda-Martos, M.; Perez Alvarez, J.A.; Fernandez-Lopez, J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem. 2018, 256, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Helal, A.; Tagliazucchi, D.; Verzelloni, E.; Conte, A. Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. J. funct. foods 2014, 7, 506–516. [Google Scholar] [CrossRef]
- Garrido-Banuelos, G.; Buica, A.; du Toit, W. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–17. [Google Scholar] [CrossRef]
- Koehnlein, E.A.; Koehnlein, E.M.; Correa, R.C.; Nishida, V.S.; Correa, V.G.; Bracht, A.; Peralta, R.M. Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. Int. J. Food Sci. Nutr. 2016, 67, 614–623. [Google Scholar] [CrossRef]
- Ribeiro, T.; Oliveira, A.; Campos, D.; Nunes, J.; Vicente, A.; Pintado, M. Simulated digestion of an olive pomace water-soluble ingredient: Relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct. 2020, 11, 2238–2254. [Google Scholar] [CrossRef]
- Peña-Vázquez, I.; Dominguez-Fernández, M.; Camacho-Zamora, B.; Hernandez-Salazar, M.; Urías-Orona, V.; De Peña, M.; de la Garza, A. In vitro simulated gastrointestinal digestion impacts bioaccessibility and bioactivity of Sweet orange (Citrus sinensis) phenolic compounds. J. Funct. Foods 2022, 88, 104891. [Google Scholar] [CrossRef]
- Wu, T.; Grootaert, C.; Voorspoels, S.; Jacobs, G.; Pitart, J.; Kamiloglu, S.; Possemiers, S.; Heinonen, M.; Kardum, N.; Glibetic, M.; et al. Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent. J. Funct. Foods 2017, 38, 128–139. [Google Scholar] [CrossRef]
- Kosinska-Cagnazzo, A.; Diering, S.; Prim, D.; Andlauer, W. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem. 2015, 170, 288–294. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar Cipriano, P.; Kim, H.; Fang, C.; Paula Venancio, V.; Mertens-Talcott, S.U.; Talcott, S.T. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chem. 2022, 374, 131076. [Google Scholar] [CrossRef]
- Rastogi, H.; Jana, S. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells. Eur. J. Drug Metab. Pharm. 2016, 41, 33–43. [Google Scholar] [CrossRef]
- Tian, X.J.; Yang, X.W.; Yang, X.; Wang, K. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int. J. Pharm. 2009, 367, 58–64. [Google Scholar] [CrossRef]
- Rosillo, M.; Alarcon-de-la-Lastra, C.; Sanchez-Hidalgo, M. An update on dietary phenolic compounds in the prevention and management of rheumatoid arthritis. Food Funct. 2016, 7, 2943–2969. [Google Scholar] [CrossRef] [PubMed]
- Seymour, E.; Warber, S.; Kirakosyan, A.; Noon, K.; Gillespie, B.; Uhley, V.; Wunder, J.; Urcuyo, D.; Kaufman, P.; Bolling, S. Anthocyanin pharmacokinetics and dose-dependent plasma antioxidant pharmacodynamics following whole tart cherry intake in healthy humans. J. Funct. Foods 2014, 11, 509–516. [Google Scholar] [CrossRef]
- Stockley, C.; Teissedre, P.L.; Boban, M.; Di Lorenzo, C.; Restani, P. Bioavailability of wine-derived phenolic compounds in humans: A review. Food Funct. 2012, 3, 995–1007. [Google Scholar] [CrossRef]
- Augustin, S.; Gary, W. Chocolate: Modern science investigates an ancient medicine. J. Med. Food 2000, 3, 121–125. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Liu, Y.; Zhang, Q.; Li, Y.; Wu, Z. Release of phenolics compounds from Rubus idaeus L. dried fruits and seeds during simulated in vitro digestion and their bio-activities. J. Funct. Foods 2018, 46, 57–65. [Google Scholar] [CrossRef]
- Sabala, R.F.; Usui, M.; Tamura, Y.; Abd-Elghany, S.M.; Sallam, K.I.; Elgazzar, M.M. Prevalence of colistin-resistant Escherichia coli harbouring mcr-1 in raw beef and ready-to-eat beef products in Egypt. Food Control 2021, 119, 107436. [Google Scholar] [CrossRef]
- Muhammad, B.; Sadia, H.; Marwa, W.; Ahsan, J.; Muhammad, A.F.; Tahir, A. Bioavailability and metabolic pathway of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Rossetto, M.; Vanzani, P.; Lunelli, M.; Scarpa, M.; Mattivi, F.; Rigo, A. Peroxyl radical trapping activity of anthocyanins and generation of free radical intermediates. Free Radic. Res. 2007, 41, 854–859. [Google Scholar] [CrossRef] [PubMed]
PC Contents (mg/L) | Tianzhu | Helanshan | Cabernet | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Undigested | After Digestion | Transmembrane | Undigested | After Digestion | Transmembrane | Undigested | After Digestion | Transmembrane | ||
Delphinidin-3-glc | Anthocyanins | 2.38 ± 0.12 b | 2.87 ± 0.11 c | 0.57 ± 0.02 a | 2.05 ± 0.09 b | 2.63 ± 0.10 c | 0.53 ± 0.02 a | 3.45 ± 0.15 c | 2.96 ± 0.09 b | 0.59 ± 0.02 a |
Petunidin-3-glc | Anthocyanins | 6.21 ± 0.29 c | 5.33 ± 0.21 b | 1.06 ± 0.04 a | 5.86 ± 0.27 c | 4.98 ± 0.19 b | 1.40 ± 0.05 a | 8.29 ± 0.31 c | 5.79 ± 0.27 b | 1.56 ± 0.07 a |
Peonidin-3-glc | Anthocyanins | 4.92 ± 0.22 b | 4.31 ± 0.19 b | 0.86 ± 0.03 a | 4.66 ± 0.21 c | 4.02 ± 0.18 b | 1.40 ± 0.06 a | 5.37 ± 0.27 b | 5.11 ± 0.24 b | 1.72 ± 0.07 a |
Malvidin-3-glc | Anthocyanins | 163.2 ± 6.04 c | 103.8 ± 5.71 b | 20.68 ± 1.05 a | 113.2 ± 4.19 c | 88.2 ± 3.97 b | 35.55 ± 1.46 a | 208.32 ± 10.83 c | 153.43 ± 5.83 b | 62.38 ± 3.24 a |
Delphinidin-3-acglc | Anthocyanins | 0.48 ± 0.016 c | 0.22 ± 0.008 b | 0.04 ± 0.002 a | 0.33 ± 0.013 c | 0.14 ± 0.007 b | 0.02 ± 0.001 a | 0.67 ± 0.03 c | 0.29 ± 0.014 b | 0.04 ± 0.002 a |
Petunidin-3-acglc | Anthocyanins | 1.42 ± 0.05 c | 1.17 ± 0.04 b | 0.23 ± 0.008 a | 1.37 ± 0.05 c | 0.98 ± 0.05 b | 0.18 ± 0.005 a | 1.87 ± 0.08 c | 1.05 ± 0.05 b | 0.19 ± 0.008 a |
Malvidin-3-acglc | Anthocyanins | 51.6 ± 2.48 c | 39.3 ± 1.30 b | 7.83 ± 0.23 a | 45.5 ± 2.09 c | 30.5 ± 0.92 b | 6.06 ± 0.25 a | 63.4 ± 3.36 c | 39.8 ± 1.51 b | 8.02 ± 0.38 a |
Peonidin-3-acglc | Anthocyanins | 5.32 ± 0.29 c | 3.88 ± 0.16 b | 0.77 ± 0.03 a | 4.56 ± 0.23 c | 3.21 ± 0.14 b | 0.44 ± 0.02 a | 6.87 ± 0.27 c | 3.46 ± 0.15 b | 0.47 ± 0.02 a |
Catechin | Flavanols | 35.2 ± 1.80 c | 16.7 ± 0.75 b | 3.33 ± 0.15 a | 30.42 ± 1.58 c | 15.42 ± 0.83 b | 1.90 ± 0.07 a | 47.6 ± 1.62 c | 25.4 ± 0.86 b | 3.16 ± 0.15 a |
Epicatechin | Flavanols | 18.6 ± 0.95 b | 21.3 ± 0.98 c | 4.24 ± 0.20 a | 16.33 ± 0.60 b | 18.17 ± 0.81 b | 3.35 ± 0.16 a | 22.1 ± 0.86 c | 10.2 ± 0.38 b | 1.86 ± 0.10 a |
Procyanidin dimer | Flavanols | 8.31 ± 0.26 b | 7.64 ± 0.32 b | 1.52 ± 0.08 a | 7.62 ± 0.24 c | 5.98 ± 0.27 b | 0.62 ± 0.02 a | 9.67 ± 0.34 c | 5.64 ± 0.26 b | 0.58 ± 0.03 a |
Myricetin-3-glc | Flavonols | 51.42 ± 1.59 b | 43.22 ± 1.34 b | 8.61 ± 0.43 a | 39.43 ± 1.93 c | 28.45 ± 1.51 b | 0.64 ± 0.02 a | 60.54 ± 2.91 c | 36.91 ± 1.10 b | 0.81 ± 0.04 a |
Astilbin | Flavonols | 38.11 ± 1.87 c | 25.36 ± 1.32 b | 5.05 ± 0.19 a | 30.32 ± 1.46 b | 24.63 ± 1.13 b | 0.93 ± 0.04 a | 40.12 ± 1.69 c | 28.22 ± 1.07 b | 1.11 ± 0.05 a |
Laricitrin-3-glc | Flavonols | 36.54 ± 1.10 c | 28.63 ± 0.86 b | 5.70 ± 0.29 a | 28.34 ± 1.02 c | 18.76 ± 0.81 b | 0.55 ± 0.03 a | 45.33 ± 1.81 c | 29.78 ± 1.28 b | 0.84 ± 0.04 a |
Quercetin-3-glc | Flavonols | 195.65 ± 8.41 b | 188.45 ± 8.29 b | 37.54 ± 1.95 a | 167.35 ± 7.20 b | 145.43 ± 5.38 b | 5.10 ± 0.28 a | 256.17 ± 10.76 b | 202.22 ± 10.52 b | 7.47 ± 0.23 a |
Isoquercetin | Flavonols | 17.43 ± 0.85 b | 19.13 ± 0.69 b | 3.81 ± 0.18 a | 14.23 ± 0.57 b | 12.01 ± 0.37 b | 0.72 ± 0.04 a | 21.45 ± 1.12 c | 13.46 ± 0.59 b | 0.83 ± 0.04 a |
Syringetin-3-glc | Flavonols | 34.75 ± 1.11 b | 30.19 ± 1.03 b | 6.01 ± 0.22 a | 28.46 ± 1.28 c | 20.17 ± 1.01 b | 0.91 ± 0.03 a | 46.97 ± 2.58 c | 26.34 ± 0.90 b | 1.23 ± 0.04 a |
Isorhamnetin-3-glc | Flavonols | 15.34 ± 0.80 c | 9.88 ± 0.35 b | 1.97 ± 0.07 a | 11.43 ± 0.55 b | 9.87 ± 0.47 b | 0.69 ± 0.03 a | 19.42 ± 0.95 c | 10.82 ± 0.32 b | 0.74 ± 0.03 a |
Gallic acid | Phenolic Acids | 9.36 ± 0.37 c | 6.91 ± 0.26 b | 1.38 ± 0.05 a | 8.25 ± 0.25 c | 5.11 ± 0.25 b | 2.53 ± 0.14 a | 10.99 ± 0.52 b | 9.08 ± 0.44 b | 4.61 ± 0.23 a |
Fertaric acid | Phenolic Acids | 2.91 ± 0.14 b | 4.11 ± 0.18 c | 0.82 ± 0.03 a | 1.48 ± 0.07 b | 1.81 ± 0.10 c | 0.81 ± 0.04 a | 1.37 ± 0.05 a | 3.11 ± 0.12 b | 1.40 ± 0.07 a |
Ethyl gallate | Phenolic Acids | 70.98 ± 2.20 c | 40.83 ± 1.51 b | 8.13 ± 0.28 a | 61.38 ± 2.09 c | 30.18 ± 0.94 b | 8.64 ± 0.36 a | 60.22 ± 2.65 c | 38.42 ± 1.88 b | 10.70 ± 0.33 a |
Caftaric acid | Phenolic Acids | 6.45 ± 0.34 c | 5.35 ± 0.23 b | 1.07 ± 0.03 a | 5.84 ± 0.26 c | 3.46 ± 0.19 b | 0.49 ± 0.02 a | 4.77 ± 0.20 c | 3.01 ± 0.17 b | 0.43 ± 0.01 a |
Coutaric acid | Phenolic Acids | 4.32 ± 0.19 c | 3.21 ± 0.15 b | 0.64 ± 0.03 a | 3.84 ± 0.18 c | 2.97 ± 0.15 b | 0.61 ± 0.03 a | 2.85 ± 0.11 c | 1.96 ± 0.08 b | 0.38 ± 0.02 a |
PCs | Apparent Permeability Coefficients (×10−6 cm/s) | |||
---|---|---|---|---|
Tianzhu | Helanshan | Cabernet | ||
Delphinidin-3-glc | Anthocyanins | 12.45 ± 2.11 a | 12.59 ± 2.64 a | 12.38 ± 2.37 a |
Petunidin-3-glc | Anthocyanins | 17.13 ± 3.01 a | 17.56 ± 3.32 a | 16.89 ± 2.96 a |
Peonidin-3-glc | Anthocyanins | 21.42 ± 3.89 a | 21.69 ± 3.52 a | 21.13 ± 3.63 a |
Malvidin-3-glc | Anthocyanins | 25.37 ± 4.11 a | 25.19 ± 3.99 a | 25.41 ± 47.26 a |
Delphinidin-3-acglc | Anthocyanins | 8.78 ± 1.44 a | 8.64 ± 1.38 a | 8.57 ± 1.26 a |
Petunidin-3-acglc | Anthocyanins | 11.46 ± 2.05 a | 11.78 ± 2.11 a | 11.53 ± 2.01 a |
Malvidin-3-acglc | Anthocyanins | 12.37 ± 2.45 a | 12.42 ± 2.23 a | 12.59 ± 2.16 a |
Peonidin-3-acglc | Anthocyanins | 8.43 ± 1.32 a | 8.54 ± 1.45 a | 8.46 ± 1.61 a |
Catechin | Flavanols | 7.83 ± 1.17 a | 7.69 ± 1.23 a | 7.77 ± 1.14 a |
Epicatechin | Flavanols | 11.42 ± 1.46 a | 11.53 ± 1.53 a | 11.39 ± 1.77 a |
Procyanidin dimer | Flavanols | 6.54 ± 0.86 a | 6.48 ± 0.98 a | 6.41 ± 1.05 a |
Myricetin-3-glc | Flavonols | 1.35 ± 0.19 a | 1.41 ± 0.21 a | 1.38 ± 0.17 a |
Astilbin | Flavonols | 2.41 ± 0.26 a | 2.37 ± 0.34 a | 2.46 ± 0.23 a |
Laricitrin-3-glc | Flavonols | 1.79 ± 0.13 a | 1.83 ± 0.16 a | 1.76 ± 0.17 a |
Quercetin-3-glc | Flavonols | 2.23 ± 0.22 a | 2.19 ± 0.26 a | 2.31 ± 0.27 a |
Isoquercetin | Flavonols | 3.87 ± 0.23 a | 3.73 ± 0.27 a | 3.84 ± 0.29 a |
Syringetin-3-glc | Flavonols | 2.88 ± 0.23 a | 2.81 ± 0.29 a | 2.91 ± 0.21 a |
Isorhamnetin-3-glc | Flavonols | 4.35 ± 0.34 a | 4.39 ± 0.31 a | 4.29 ± 0.33 a |
Gallic acid | Phenolic Acids | 32.8 ± 4.13 a | 30.9 ± 3.99 a | 31.7 ± 3.82 a |
Fertaric acid | Phenolic Acids | 27.6 ± 3.89 a | 27.9 ± 3.64 a | 28.2 ± 4.11 a |
Ethyl gallate | Phenolic Acids | 18.3 ± 3.02 a | 17.9 ± 2.88 a | 17.4 ± 2.73 a |
Caftaric acid | Phenolic Acids | 8.45 ± 1.31 a | 8.77 ± 1.28 a | 8.93 ± 1.02 a |
Coutaric acid | Phenolic Acids | 12.46 ± 1.42 a | 12.91 ± 1.32 a | 12.13 ± 1.19 a |
DPPH Radical Scavenging Activity (%) | |||
---|---|---|---|
Undigested | After Digestion | Transmembrane | |
Tianzhu | 78.4 ± 3.88 b | 52.5 ± 2.35 b | 23.3 ± 2.21 b |
Helanshan | 71.5 ± 3.41 a | 46.8 ± 2.18 a | 20.8 ± 1.98 a |
Cabernet | 82.7 ± 4.21 c | 67.9 ± 2.49 c | 15.9 ± 2.43 c |
FRAP radical scavenging activity (%) | |||
Undigested | After digestion | Transmembrane | |
Tianzhu | 52.7 ± 2.64 b | 49.6 ± 2.51 b | 15.3 ± 1.12 b |
Helanshan | 47.1 ± 2.19 a | 41.9 ± 1.78 a | 13.4 ± 1.28 a |
Cabernet | 61.2 ± 2.97 c | 55.3 ± 2.85 c | 15.6 ± 1.42 b |
ABTS radical scavenging activity (%) | |||
Undigested | After digestion | Transmembrane | |
Tianzhu | 72.6 ± 3.66 a | 68.1 ± 3.25 a | 20.6 ± 1.97 a |
Helanshan | 72.1 ± 3.85 a | 70.6 ± 3.71 a | 21.7 ± 2.01 a |
Cabernet | 95.3 ± 4.78 b | 89.3 ± 4.16 b | 29.4 ± 2.84 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Kong, L.; Tian, Y. Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine. Foods 2022, 11, 3108. https://doi.org/10.3390/foods11193108
Xu C, Kong L, Tian Y. Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine. Foods. 2022; 11(19):3108. https://doi.org/10.3390/foods11193108
Chicago/Turabian StyleXu, Chunming, Lingqiang Kong, and Yuan Tian. 2022. "Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine" Foods 11, no. 19: 3108. https://doi.org/10.3390/foods11193108
APA StyleXu, C., Kong, L., & Tian, Y. (2022). Investigation of the Phenolic Component Bioavailability Using the In Vitro Digestion/Caco-2 Cell Model, as well as the Antioxidant Activity in Chinese Red Wine. Foods, 11(19), 3108. https://doi.org/10.3390/foods11193108