Relevant Fusarium Mycotoxins in Malt and Beer
Abstract
:1. Introduction
2. Fusarium Fungi in Brewing Cereals
2.1. Barley
2.2. Wheat
2.3. Sorghum
2.4. Other Minor Malting Cereals
3. Fusarium Mycotoxins Transfer from the Cereals to Industrial-Like Beer
3.1. Malting
3.2. Mashing and Boiling
3.3. Fermentation
4. Fusarium Mycotoxins and Craft Beer
5. Concluding Remarks and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Arie, T. Fusarium Diseases of Cultivated Plants, Control, Diagnosis, and Molecular and Genetic Studies. J. Pestic. Sci. 2019, 44, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Meussdoerffer, F.G. A Comprehensive History of Beer Brewing. In Handbook of Brewing: Processes, Technology, Markets; Eßlinger, H.M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 1–42. ISBN 9783527316748. [Google Scholar]
- Ksieniewicz-Woźniak, E.; Bryła, M.; Waśkiewicz, A.; Yoshinari, T.; Szymczyk, K. Selected Trichothecenes in Barley Malt and Beer from Poland and an Assessment of Dietary Risks Associated with Their Consumption. Toxins 2019, 11, 715. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Fancello, F.; Balmas, V.; Zara, G.; Dettori, M.; Budroni, M. The Microbiome of Sardinian Barley and Malt. J. Inst. Brew. 2018, 124, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Donadini, G.; Pietri, A. Known and Emerging Mycotoxins in Small- and Large-Scale Brewed Beer. Beverages 2018, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent Advances on Toxicity and Determination Methods of Mycotoxins in Foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Zachariasova, M.; Vaclavikova, M.; Lacina, O.; Vaclavik, L.; Hajslova, J. Deoxynivalenol Oligoglycosides: New “Masked” Fusarium Toxins Occurring in Malt, Beer, and Breadstuff. J. Agric. Food Chem. 2012, 60, 9280–9291. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, K.C.; Rocha, L.O.; Fontes, L.C.; Carnielli, L.; Reis, T.A.; Corrêa, B. Mycotoxin Analysis of Industrial Beers from Brazil: The Influence of Fumonisin B1 and Deoxynivalenol in Beer Quality. Food Chem. 2017, 218, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Schabo, D.C.; Freire, L.; Sant’Ana, A.S.; Schaffner, D.W.; Magnani, M. Mycotoxins in Artisanal Beers: An Overview of Relevant Aspects of the Raw Material, Manufacturing Steps and Regulatory Issues Involved. Food Res. Int. 2021, 141, 110114. [Google Scholar] [CrossRef]
- Rubert, J.; Soler, C.; Marín, R.; James, K.J.; Mañes, J. Mass Spectrometry Strategies for Mycotoxins Analysis in European Beers. Food Control 2013, 30, 122–128. [Google Scholar] [CrossRef]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Co-Occurrence of Nivalenol, Deoxynivalenol and Deoxynivalenol-3-Glucoside in Beer Samples. Food Control 2018, 92, 319–324. [Google Scholar] [CrossRef]
- Malachova, A.; Cerkal, R.; Ehrenbergerova, J.; Dzuman, Z.; Vaculova, K.; Hajslova, J. Fusarium Mycotoxins in Various Barley Cultivars and Their Transfer into Malt. J. Sci. Food Agric. 2010, 90, 2495–2505. [Google Scholar] [CrossRef]
- Mastanjević, K.; Šarkanj, B.; Mastanjević, K.; Šantek, B.; Krstanović, V. Fusarium Culmorum Mycotoxin Transfer from Wheat to Malting and Brewing Products and By-Products. World Mycotoxin J. 2019, 12, 55–66. [Google Scholar] [CrossRef]
- Pietri, A.; Bertuzzi, T.; Agosti, B.; Donadini, G. Transfer of Aflatoxin B1 and Fumonisin B1 from Naturally Contaminated Raw Materials to Beer during an Industrial Brewing Process. Food Addit. Contam. Part A 2010, 27, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Mastanjević, K.; Šarkanj, B.; Krska, R.; Sulyok, M.; Warth, B.; Mastanjević, K.; Šantek, B.; Krstanović, V. From Malt to Wheat Beer: A Comprehensive Multi-Toxin Screening, Transfer Assessment and Its Influence on Basic Fermentation Parameters. Food Chem. 2018, 254, 115–121. [Google Scholar] [CrossRef] [PubMed]
- The Brewers of Europe EUROPEAN BEER TRENDS STATISTICS REPORT, 2020 ed.; 2020. Available online: https://brewersofeurope.org/uploads/mycms-files/documents/publications/2020/european-beer-trends-2020.pdf (accessed on 7 October 2021).
- Carballo, D.; Fernández-Franzón, M.; Ferrer, E.; Pallarés, N.; Berrada, H. Dietary Exposure to Mycotoxins through Alcoholic and Non-Alcoholic Beverages in Valencia, Spain. Toxins 2021, 13, 438. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Schabo, D.C.; Alvarenga, V.O.; Schaffner, D.W.; Magnani, M. A Worldwide Systematic Review, Meta-Analysis, and Health Risk Assessment Study of Mycotoxins in Beers. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5742–5764. [Google Scholar] [CrossRef]
- Foroud, N.A.; Baines, D.; Gagkaeva, T.Y.; Thakor, N.; Badea, A.; Steiner, B.; Bürstmayr, M.; Bürstmayr, H. Trichothecenes in Cereal Grains—An Update. Toxins 2019, 11, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Xiang, B.; Shi, H.; Yu, P.; Song, Y.; Li, S. Recent Advances on Type A Trichothecenes in Food and Feed: Analysis, Prevalence, Toxicity, and Decontamination Techniques. Food Control 2020, 118, 107371. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Proctor, R.H. Molecular Biology of Fusarium Mycotoxins. Int. J. Food Microbiol. 2007, 119, 47–50. [Google Scholar] [CrossRef]
- Wang, S.; Wu, K.; Xue, D.; Zhang, C.; Rajput, S.A.; Qi, D. Mechanism of Deoxynivalenol Mediated Gastrointestinal Toxicity: Insights from Mitochondrial Dysfunction. Food Chem. Toxicol. 2021, 153, 112214. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Toxicological Mechanisms and Potential Health Effects of Deoxynivalenol and Nivalenol. World Mycotoxin J. 2010, 3, 323–347. [Google Scholar] [CrossRef]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an Endocrine Disruptor in Humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, Mechanism of Action and Toxicity. Anim. Feed. Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Risks to Human and Animal Health Related to the Presence of Beauvericin Enniatins Food and Feed. EFSA J. 2014, 12, 3802–3976. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium-Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin—A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Moretti, A.; Mulè, G.; Ritieni, A.; Logrieco, A. Further Data on the Production of Beauvericin, Enniatins and Fusaproliferin and Toxicity to Artemia Salina by Fusarium Species of Gibberella Fujikuroi Species Complex. Int. J. Food Microbiol. 2007, 118, 158–163. [Google Scholar] [CrossRef]
- Liu, J.B.; Wang, Y.M.; Peng, S.Q.; Han, G.; Dong, Y.S.; Yang, H.Y.; Yan, C.H.; Wang, G.Q. Toxic Effects of Fusarium Mycotoxin Butenolide on Rat Myocardium and Primary Culture of Cardiac Myocytes. Toxicon 2007, 50, 357–364. [Google Scholar] [CrossRef]
- Sondergaard, T.E.; Hansen, F.T.; Purup, S.; Nielsen, A.K.; Bonefeld-Jørgensen, E.C.; Giese, H.; Sørensen, J.L. Fusarin C Acts like an Estrogenic Agonist and Stimulates Breast Cancer Cells in Vitro. Toxicol. Lett. 2011, 205, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, M.R.F.; Tessmann, D.J.; Kemmelmeier, C. Production of Mycotoxins by Fusarium Graminearum Isolated from Small Cereals (Wheat, Triticale and Barley) Affected with Scab Disease in Southern Brazil. Braz. J. Microbiol. 2006, 37, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell: Oxford, UK, 2007; ISBN 0813819199. [Google Scholar]
- Brown, D.W.; Proctor, R.H. Fusarium: Genomics, Molecular and Cellular Biology; Brown, D.W., Proctor, R.H., Eds.; Caiser Academic Press: Norfolk, UK, 2013; ISBN 9781908230256. [Google Scholar]
- Drakopoulos, D.; Sulyok, M.; Jenny, E.; Kägi, A.; Bänziger, I.; Logrieco, A.F.; Krska, R.; Vogelgsang, S. Fusarium Head Blight and Associated Mycotoxins in Grains and Straw of Barley: Influence of Agricultural Practices. Agronomy 2021, 11, 801. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Bowman, J.P.; Stewart, D.C.; Evans, D.E. The Fungal Community Structure of Barley Malts from Diverse Geographical Regions Correlates with Malt Quality Parameters. Int. J. Food Microbiol. 2015, 215, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, P.B.; Jones, B.L.; Steffenson, B.J.; Enzymes, B.J.S.; Sciences, F.; Dakota, N.; Berne, L. Enzymes Associated with Fusarium Infection of Barley. J. Am. Soc. Brew. Chem. 2002, 60, 130–134. [Google Scholar]
- Martínez, M.; Albuquerque, L.R.; Arata, A.F.; Biganzoli, F.; Pinto, V.F.; Stenglein, S.A. Effects of Fusarium Graminearum and Fusarium Poae on Disease Parameters, Grain Quality and Mycotoxins Contamination in Bread Wheat (Part I). J. Sci. Food Agric. 2020, 100, 863–873. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium Head Blight of Wheat and Barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Běláková, S.; Benešová, K.; Čáslavský, J.; Svoboda, Z.; Mikulíková, R. The Occurrence of the Selected Fusarium Mycotoxins in Czech Malting Barley. Food Control 2014, 37, 93–98. [Google Scholar] [CrossRef]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The Global Overview of the Occurrence of Mycotoxins in Cereals: A Three-Year Survey. Curr. Opin. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Sulyok, M.; Krska, R.; Logrieco, A.F.; Vogelgsang, S. Raised Concerns about the Safety of Barley Grains and Straw: A Swiss Survey Reveals a High Diversity of Mycotoxins and Other Fungal Metabolites. Food Control 2021, 125, 107919. [Google Scholar] [CrossRef]
- Juskiw, P.E.; Oatway, L.; Oro, M.; Nyachiro, J.M.; Anbessa, Y.; Xi, K.; Turkington, T.K.; Lohr, S.; Bowness, J.; Capettini, F. Registration of ‘Lowe’, a Two-Rowed Malting Barley with Enhanced Resistance to Fusarium Head Blight. J. Plant Regist. 2019, 13, 301–310. [Google Scholar] [CrossRef]
- Hu, G.; Evans, C.P.; Satterfield, K.; Ellberg, S. Registration of Spring Malting Barley Germplasm ARS84-27, ARS98-31, and ARS10-82. J. Plant Regist. 2021, 15, 345–350. [Google Scholar] [CrossRef]
- Hückelhoven, R.; Hofer, K.; Coleman, A.; Heß, M. Fusarium Infection of Malting Barley Has to Be Managed over the Entire Value Chain. J. Plant Dis. Prot. 2018, 125, 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Chu, B.; Yang, X.; Jin, Y. Relationship between the Index of Protein Modification (Kolbach Index) and Degradation of Macromolecules in Wheat Malt. J. Food Sci. 2021, 86, 2300–2311. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Climate Change Will Influence Disease Resistance Breeding in Wheat in Northwestern Europe. Theor. Appl. Genet. 2021, 134, 1771–1785. [Google Scholar] [CrossRef]
- Bianco, A.; Fancello, F.; Balmas, V.; Dettori, M.; Motroni, A.; Zara, G.; Budroni, M. Microbial Communities and Malt Quality of Durum Wheat Used in Brewing. J. Inst. Brew. 2019, 125, 222–229. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanovic´, V.; Velic´, N.; Šantek, B.; Novak, M.; Slačanac, V. Gushing Potential of Wheat Malt Infected with Fusarium Culmorum. J. Hyg. Eng. Des. 2014, 6, 166–170. [Google Scholar]
- Mastanjević, K.; Španić, V.; Horvat, D.; Mastanjević, K.; Šarkanj, B.; Krstanović, V.; Šantek, B. Establishing the Impact of Fusarium Culmorum Infection and Fungicide Treatment on Wheat Malt Quality. J. Food Processing Preserv. 2018, 42, 1–9. [Google Scholar] [CrossRef]
- Beta, T.; Rooney, L.W.; Waniska, R.D. Malting Characteristics of Sorghum Cultivars. Cereal Chem. 1995, 72, 533–538. [Google Scholar]
- Dewar, J.; Taylor, J.R.N.; Berjak, P. Determination of Improved Steeping Conditions for Sorghum Malting. J. Cereal Sci. 1997, 26, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Ogbonna, A.C. Current Developments in Malting and Brewing Trials with Sorghum in Nigeria: A Review. J. Inst. Brew. 2011, 117, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, A.; Wenndt, A.; Boyles, R. The Sorghum Grain Mold Disease Complex: Pathogens, Host Responses, and the Bioactive Metabolites at Play. Front. Plant Sci. 2021, 12, 660171. [Google Scholar] [CrossRef]
- Lahouar, A.; Crespo-Sempere, A.; Marín, S.; Saïd, S.; Sanchis, V. Toxigenic Molds in Tunisian and Egyptian Sorghum for Human Consumption. J. Stored Prod. Res. 2015, 63, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Tesfaendrias, M.T.; McLaren, N.W.; Swart, W.J. Grain Mold Fungi and Their Effect on Sorghum Grain Quality. S. Afr. J. Plant Soil 2011, 28, 172–180. [Google Scholar]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Occurrence of Fusarium Mycotoxins in Cereal Crops and Processed Products (Ogi) from Nigeria. Toxins 2016, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Oueslati, S.; Blesa, J.; Moltó, J.C.; Ghorbel, A.; Mañes, J. Presence of Mycotoxins in Sorghum and Intake Estimation in Tunisia. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 307–318. [Google Scholar] [CrossRef]
- Bauer, J.I.; Gross, M.; Gottschalk, C.; Usleber, E. Investigations on the Occurrence of Mycotoxins in Beer. Food Control 2016, 63, 135–139. [Google Scholar] [CrossRef]
- Makun, H.A.; Makun Hussaini, A.; Gbodi Timothy, A.; Akanya Olufunmilayo, H.; Salako Ezekiel, A.; Godwin, H.O. Fungi and Some Mycotoxins Found in Mouldy Sorghum in Niger State, Nigeria. World J. Agric. Sci. 2009, 5, 5–17. [Google Scholar]
- Tariku, A. Global Impacts of Sorghum Anthracnose Disease on Sorghum Production and Its Management Option: A Review. J. Agric. Res. Adv. 2021, 03, 37–41. [Google Scholar]
- Nelson, M. The Geography of Beer in Europe from 1000 BC to AD 1000. In The Geography of Beer. Regions, Environment, and Societies; Patterson, M., Hoalst-Pullen, N., Eds.; Springer Science + Business Media: Berlin, Germany, 2014; pp. 9–21. [Google Scholar]
- Wijngaard, H.H.; Ulmer, H.M.; Arendt, E.K. The Effect of Germination Time on the Final Malt Quality of Buckwheat. J. Am. Soc. Brew. Chem. 2006, 64, 214–221. [Google Scholar] [CrossRef]
- Phiarais, B.P.N.; Mauch, A.; Schehl, B.D.; Zarnkow, M.; Gastl, M.; Herrmann, M.; Zannini, E.; Arendt, E.K. Processing of a Top Fermented Beer Brewed from 100% Buckwheat Malt with Sensory and Analytical Characterisation. J. Inst. Brew. 2010, 116, 265–274. [Google Scholar] [CrossRef]
- Pelembe, L.A.M.; Dewar, J.; Taylor, J.R.N. Effect of Germination Moisture and Time on Pearl Millet Malt Quality—With Respect to Its Opaque and Lager Beer Brewing Potential. J. Inst. Brew. 2004, 110, 320–325. [Google Scholar] [CrossRef]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K. Brewing with 100% Oat Malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Pater, A.; Knapik, A.; Duliński, R. The Effect of Different Oat (Avena Sativa L) Malt Contents in a Top-Fermented Beer Recipe on the Brewing Process Performance and Product Quality. J. Cereal Sci. 2021, 101, 103301. [Google Scholar] [CrossRef]
- Jurjevic, Z.; Wilson, D.M.; Wilson, J.P.; Geiser, D.M.; Juba, J.H.; Mubatanhema, W.; Widstrom, N.W.; Rains, G.C. Fusarium Species of the Gibberella Fujikuroi Complex and Fumonisin Contamination of Pearl Millet and Corn in Georgia, USA. Mycopathologia 2005, 159, 401–406. [Google Scholar] [CrossRef]
- Jin, Z.; Gillespie, J.; Barr, J.; Wiersma, J.J.; Sorrells, M.E.; Zwinger, S.; Gross, T.; Cumming, J.; Bergstrom, G.C.; Brueggeman, R.; et al. Malting of Fusarium Head Blight-Infected Rye (Secale Cereale): Growth of Fusarium Graminearum, Trichothecene Production, and the Impact on Malt Quality. Toxins 2018, 10, 369. [Google Scholar] [CrossRef] [Green Version]
- Polišenská, I.; Jirsa, O.; Vaculová, K.; Pospíchalová, M.; Wawroszova, S.; Frydrych, J. Fusarium Mycotoxins in Two Hulless Oat and Barley Cultivars Used for Food Purposes. Foods 2020, 9, 1037. [Google Scholar] [CrossRef]
- Kalinova, J.; Voženilkova, B.; Moudry, J. Occurrence of Fusarium Spp and Bacteria on Surface of Buckwheat Achenes (Fagopyrum Esculentum Moench). In Proceedings of the 9th International Symposium on Buckwheat, Prague, Czech Republic, 18–22 August 2004; pp. 491–493. [Google Scholar]
- Logrieco, A.; Bailey, J.A.; Corazza, L.; Cooke, B.M. Mycotoxins in Plant Disease. Eur. J. Plant Pathol. 2002, 108, 82–85. [Google Scholar]
- Mošovská, S.; Bírošová, L. Antimycotic and Antifungal Activities of Amaranth and Buckwheat Extracts. Asian J. Plant Sci. 2012, 11, 160–162. [Google Scholar] [CrossRef]
- Leung, E.H.W.; NG, T.B. A Relatively Stable Antifungal Peptide from Buckwheat Seeds with Antiproliferative Activity toward Cancer Cells. J. Pept. Sci. 2007, 13, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Pascari, X.; Gil-Samarra, S.; Marín, S.; Ramos, A.J.; Sanchis, V. Fate of Zearalenone, Deoxynivalenol and Deoxynivalenol-3-Glucoside during Malting Process. Lwt 2019, 99, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Sachambula, L. Transfer of Fusarium Mycotoxins and ‘Masked’ Deoxynivalenol (Deoxynivalenol-3-Glucoside) from Field Barley through Malt to Beer. Food Addit. Contam. Part A 2008, 25, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Vegi, A.; Schwarz, P.; Wolf-Hall, C.E. Quantification of Tri5 Gene, Expression, and Deoxynivalenol Production during the Malting of Barley. Int. J. Food Microbiol. 2011, 150, 150–156. [Google Scholar] [CrossRef]
- Beattie, S.; Schwarz, P.B.; Horsley, R.; Barr, J.; Casper, H.H. The Effect of Grain Storage Conditions on the Viability of Fusarium and Deoxynivalenol Production in Infested Malting Barley. J. Food Prot. 1998, 61, 103–106. [Google Scholar] [CrossRef]
- Maul, R.; Müller, C.; Rieß, S.; Koch, M.; Methner, F.J.; Irene, N. Germination Induces the Glucosylation of the Fusarium Mycotoxin Deoxynivalenol in Various Grains. Food Chem. 2012, 131, 274–279. [Google Scholar] [CrossRef]
- Lemmens, M.; Scholz, U.; Berthiller, F.; Dall ’asta, C.; Koutnik, A.; Schuhmacher, R.; Adam, G.; Buerstmayr, H.; Mesterházy, Á.; Krska, R.; et al. The Ability to Detoxify the Mycotoxin Deoxynivalenol Colocalizes with a Major Quantitative Trait Locus for Fusarium Head Blight Resistance in Wheat. Mol. Plant-Microbe Interact. 2005, 18, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.M.; Mauch, A.; Jacob, F.; Waters, D.M.; Arendt, E.K. Fundamental Study on the Influence of Fusarium Infection on Quality and Ultrastructure of Barley Malt. Int. J. Food Microbiol. 2012, 156, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Kostelanska, M.; Zachariasova, M.; Lacina, O.; Fenclova, M.; Kollos, A.L.; Hajslova, J. The Study of Deoxynivalenol and Its Masked Metabolites Fate during the Brewing Process Realised by UPLC-TOFMS Method. Food Chem. 2011, 126, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Medina, Á.; Valle-Algarra, F.M.; Mateo, R.; Gimeno-Adelantado, J.V.; Mateo, F.; Jiménez, M. Survey of the Mycobiota of Spanish Malting Barley and Evaluation of the Mycotoxin Producing Potential of Species of Alternaria, Aspergillus and Fusarium. Int. J. Food Microbiol. 2006, 108, 196–203. [Google Scholar] [CrossRef]
- Geiβinger, C.; Gastl, M.; Becker, T. Enzymes from Cereal and Fusarium Metabolism Involved in the Malting Process–A Review. J. Am. Soc. Brew. Chem. 2021, 1–16. [Google Scholar] [CrossRef]
- Jin, Z.; Solanki, S.; Ameen, G.; Gross, T.; Sharma Poudel, R.; Borowicz, P.; Brueggeman, R.S.; Schwarz, P. Expansion of Internal Hyphal Growth in Fusarium Head Blight Infected Grains Contribute to the Elevated Mycotoxin Production during the Malting Process. Mol. Plant-Microbe Interact. 2021, 34, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Pascari, X.; Rodriguez-Carrasco, Y.; Juan, C.; Mañes, J.; Marin, S.; Ramos, A.J.; Sanchis, V. Transfer of Fusarium Mycotoxins from Malt to Boiled Wort. Food Chem. 2019, 278, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Wolf-Hall, C.E. Mold and Mycotoxin Problems Encountered during Malting and Brewing. Int. J. Food Microbiol. 2007, 119, 89–94. [Google Scholar] [CrossRef]
- Inoue, T.; Nagatomi, Y.; Uyama, A.; Mochizuki, N. Fate of Mycotoxins during Beer Brewing and Fermentation. Biosci. Biotechnol. Biochem. 2013, 77, 1410–1415. [Google Scholar] [CrossRef] [Green Version]
- Catteuw, A.; Broekaert, N.; de Baere, S.; Lauwers, M.; Gasthuys, E.; Huybrechts, B.; Callebaut, A.; Ivanova, L.; Uhlig, S.; de Boevre, M.; et al. Insights into In Vivo Absolute Oral Bioavailability, Biotransformation, and Toxicokinetics of Zearalenone, a-Zearalenol, b-Zearalenol, Zearalenone-14-Glucoside and Zearalenone-14-Sulfate in Pigs. J. Agric. Food Chem. 2019, 67, 3448–3458. [Google Scholar] [CrossRef]
- Prusova, N.; Dzuman, Z.; Jelinek, L.; Karabin, M.; Hajslova, J.; Rychlik, M.; Stranska, M. Free and Conjugated Alternaria and Fusarium Mycotoxins during Pilsner Malt Production and Double-Mash Brewing. Food Chem. 2022, 369, 130926. [Google Scholar] [CrossRef]
- Shetty, P.H.; Jespersen, L. Saccharomyces Cerevisiae and Lactic Acid Bacteria as Potential Mycotoxin Decontaminating Agents. Trends Food Sci. Technol. 2006, 17, 48–55. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Franco, L.T.; Rottinghaus, G.E.; Kobashigawa, E.; Ledoux, D.R.; Daković, A.; Oliveira, C.A.F. In Vitro Evaluation of the Ability of Beer Fermentation Residue Containing Saccharomyces Cerevisiae to Bind Mycotoxins. Food Res. Int. 2015, 77, 643–648. [Google Scholar] [CrossRef]
- Wall-Martínez, H.A.; Pascari, X.; Bigordà, A.; Ramos, A.J.; Marín, S.; Sanchis, V. The Fate of Fusarium Mycotoxins (Deoxynivalenol and Zearalenone) through Wort Fermenting by Saccharomyces Yeasts (S. Cerevisiae and S. Pastorianus). Food Res. Int. 2019, 126, 108587. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Kanhere, S.R.; Daley, E.F.; Farber, J.M. Fermentation of Wort Containing Deoxynivalenol and Zearalenone. Mycotoxin Res. 1992, 8, 58–66. [Google Scholar] [CrossRef]
- Sørensen, J.L.; Sondergaard, T.E. The Effects of Different Yeast Extracts on Secondary Metabolite Production in Fusarium. Int. J. Food Microbiol. 2014, 170, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.; Abrunhosa, L.; Keller, K.; Rosa, C.A.; Cavaglieri, L.; Venâncio, A. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces Cerevisiae Strains Isolated from Bovine Forage. Toxins 2015, 7, 3297–3308. [Google Scholar] [CrossRef] [Green Version]
- Nathanail, A.V.; Gibson, B.; Han, L.; Peltonen, K.; Ollilainen, V.; Jestoi, M.; Laitila, A. The Lager Yeast Saccharomyces Pastorianus Removes and Transforms Fusarium Trichothecene Mycotoxins during Fermentation of Brewer’s Wort. Food Chem. 2016, 203, 448–455. [Google Scholar] [CrossRef]
- Garda, J.; Macedo, R.M.; Faria, R.; Bernd, L.; Dors, G.C.; Badiale-Furlong, E. Alcoholic Fermentation Effects on Malt Spiked with Trichothecenes. Food Control 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Khatibi, P.A.; Montanti, J.; Nghiem, N.P.; Hicks, K.B.; Berger, G.; Brooks, W.S.; Griffey, C.A.; Schmale, D.G. Conversion of Deoxynivalenol to 3-Acetyldeoxynivalenol in Barley-Derived Fuel Ethanol Co-Products with Yeast Expressing Trichothecene 3-O-Acetyltransferases. Biotechnol. Biofuels 2011, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Baiano, A. Craft Beer: An Overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Europe Economics. The Brewers of Europe The Contribution Made by Beer to the European Economy; The Brewers of Europe: London, UK, 2020. [Google Scholar]
- Donadini, G.; Porretta, S. Uncovering Patterns of Consumers’ Interest for Beer: A Case Study with Craft Beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; van Dam, R.; van Doorn, R.; Katerere, D.; Berthiller, F.; Haasnoot, W.; Nielen, M.W.F. Mycotoxin Profiling of 1000 Beer Samples with a Special Focus on Craft Beer. PLoS ONE 2017, 12, e0185887. [Google Scholar] [CrossRef] [Green Version]
- Lulamba, T.E.; Stafford, R.A.; Njobeh, P.B. A Sub-Saharan African Perspective on Mycotoxins in Beer—A Review. J. Inst. Brew. 2019, 125, 184–199. [Google Scholar] [CrossRef]
- Eyinade, G.A.; Mushunje, A.; Yusuf, S.F.G. The Willingness to Consume Organic Food: A Review. Food Agric. Immunol. 2021, 32, 78–104. [Google Scholar] [CrossRef]
- Bernhoft, A.; Clasen, P.E.; Kristoffersen, A.B.; Torp, M. Less Fusarium Infestation and Mycotoxin Contamination in Organic than in Conventional Cereals. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 842–852. [Google Scholar] [CrossRef]
- Pleadin, J.; Staver, M.M.; Markov, K.; Frece, J.; Zadravec, M.; Jaki, V.; Krupić, I.; Vahčić, N. Mycotoxins in Organic and Conventional Cereals and Cereal Products Grown and Marketed in Croatia. Mycotoxin Res. 2017, 33, 219–227. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Hashempour-Baltork, F.; Mousavi Khaneghah, A.; Hosseini, H. New Perspective Approaches in Controlling Fungi and Mycotoxins in Food Using Emerging and Green Technologies. Curr. Opin. Food Sci. 2021, 39, 7–15. [Google Scholar] [CrossRef]
- Piacentini, K.C.; Savi, G.D.; Olivo, G.; Scussel, V.M. Quality and Occurrence of Deoxynivalenol and Fumonisins in Craft Beer. Food Control 2015, 50, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Burini, J.A.; Eizaguirre, J.I.; Loviso, C.; Libkind, D. Non-Conventional Yeasts as Tools for Innovation and Differentiation in Brewing. Rev. Argent. Microbiol. 2021, 53, 359–377. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin Group | Relevant Representatives | Producing Fungi | Most Affected Cereals | Toxicity in Humans and Animals | References |
---|---|---|---|---|---|
Trichothecenes A | T-2 and HT-2 toxins | F. sporochioides, F. langsethiae | Oats, barley | Hepatotoxicity, decrease in cell viability, inhibition of cell proliferation, oxidative stress, mitochondria damage, alimentary toxic aleukia (ATA), disruption of DNA and RNA synthesis | [20,21] |
DAS | F. equiseti | Wheat, oat barley, rye, sorghum | Immunotoxicity, hematotoxicity, pulmonary and growth disorders, gastrointestinal lesions and diarrhea observed in various farm animals | ||
Trichothecenes B | Nivalenol | F. graminearum | Wheat, rye | Immunotoxic, genotoxic, disruption of microbial homeostasis, development of chronic enteric disease | [22,23,24] |
DON, DON-3-Glc, 3- and 15-AcDON | F. graminearum, F. culmorum, F. cerealis | Wheat, barley, maize, oat, rye | Alterations of intestinal structures, disruption of epithelial barriers, impairment of intestinal mucosal immune response, changes in gut microbiota composition, growth retardation | ||
Zearalenone | ZEN, α-ZEL, ß-ZEL, etc. | F. graminearum | Maize | Estrogenic effect, DNA methylation, decrease in embryo implantation rate, oxidative stress, decreased testosterone concentration and increased progesterone level | [25] |
Fumonisins | FB1, FB2, FB3, FB4 | F. verticillioides, F. proliferatum | Maize | Disruption of sphingolipid metabolism, oesophageal and liver cancers, neural tube defects, cardiovascular problems | [26] |
Emerging mycotoxins | Beauvericin and enniatins | G. fujikuroi complex | Wheat, oat | Cytotoxic, potential genotoxic, hematotoxic | [27] |
Butenolide | F. graminearum F. equiseti | Wheat, oat, barley, rye, sorghum | Inhalation toxicity, dermal toxicity, cytotoxicity, potential induction of myocardial damage | [28,29,30] | |
Fusarin C | F. verticillioides, F. graminearum | Maize | Cancerogenic (oesophageal and breast), mutagenic, cytotoxic | [31] | |
Equisetin | F. equiseti, F. semitectum | Wheat, oat, barley, rye, sorghum | Moderate toxicity to mice | [22] | |
Neosolaniol | F. graminearum | Barley, maize, rice, sorghum, wheat, triticale | Anorectic response to exposure in mice (stronger in the case of an intraperitoneal than oral exposure) | [21,32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascari, X.; Marin, S.; Ramos, A.J.; Sanchis, V. Relevant Fusarium Mycotoxins in Malt and Beer. Foods 2022, 11, 246. https://doi.org/10.3390/foods11020246
Pascari X, Marin S, Ramos AJ, Sanchis V. Relevant Fusarium Mycotoxins in Malt and Beer. Foods. 2022; 11(2):246. https://doi.org/10.3390/foods11020246
Chicago/Turabian StylePascari, Xenia, Sonia Marin, Antonio J. Ramos, and Vicente Sanchis. 2022. "Relevant Fusarium Mycotoxins in Malt and Beer" Foods 11, no. 2: 246. https://doi.org/10.3390/foods11020246
APA StylePascari, X., Marin, S., Ramos, A. J., & Sanchis, V. (2022). Relevant Fusarium Mycotoxins in Malt and Beer. Foods, 11(2), 246. https://doi.org/10.3390/foods11020246